An industrial pathway to emerging presodiation strategies for increasing the reversible ions in sodium-ion batteries and capacitors

Jian-Jia Mu , Zhao-Meng Liu , Qing-Song Lai , Da Wang , Xuan-Wen Gao , Dong-Run Yang , Hong Chen , Wen-Bin Luo

Energy Materials ›› 2022, Vol. 2 ›› Issue (6) : 200043

PDF
Energy Materials ›› 2022, Vol. 2 ›› Issue (6) :200043 DOI: 10.20517/energymater.2022.57
Review

An industrial pathway to emerging presodiation strategies for increasing the reversible ions in sodium-ion batteries and capacitors

Author information +
History +
PDF

Abstract

Sodium-ion batteries (SIBs) and capacitors (SICs) have been drawing considerable interest in recent years and are considered two of the most promising candidates for next-generation battery technologies in the energy storage industry. Therefore, it is essential to explore feasible strategies to increase the energy density and cycling lifespan of these technologies for their future commercialization. However, relatively low Coulombic efficiency severely limits the energy density of sodium-ion full cells, particularly in the initial cycle, which gradually decreases the number of recyclable ions. Presodiation techniques are regarded as effective approaches to counteract the irreversible capacity in the initial cycle and boost the energy density of SIBs and SICs. Their cyclic stability can also be enhanced by the slow release of supplemental sodium and high-content recyclable ions during cycling. In this review, a general understanding of the sodium-ion loss pathways and presodiation process towards full cells with high Coulombic efficiency is summarized. From the perspectives of safety, operability and efficiency, the merits and drawbacks of various presodiation techniques are evaluated. This review attempts to provide a fundamental understanding of presodiation principles and strategies to promote the industrial development of SIBs and SICs.

Keywords

Na-ion batteries / presodiation / recyclable ions / full cells / commercialization

Cite this article

Download citation ▾
Jian-Jia Mu, Zhao-Meng Liu, Qing-Song Lai, Da Wang, Xuan-Wen Gao, Dong-Run Yang, Hong Chen, Wen-Bin Luo. An industrial pathway to emerging presodiation strategies for increasing the reversible ions in sodium-ion batteries and capacitors. Energy Materials, 2022, 2(6): 200043 DOI:10.20517/energymater.2022.57

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Delmas C.Sodium and sodium-ion batteries: 50 years of research.Adv Energy Mater2018;8:1703137.

[2]

Roose B,Meheretu G.Local manufacturing of perovskite solar cells, a game-changer for low- and lower-middle income countries?.Energy Environ Sci2022;15:3571-82.

[3]

Sadeghi G.Energy storage on demand: thermal energy storage development, materials, design, and integration challenges.Energy Storage Mater2022;46:192-222.

[4]

Feng X,Wu N.Review of modification strategies in emerging inorganic solid-state electrolytes for lithium, sodium, and potassium batteries.Joule2022;6:543-87.

[5]

Shi Q,Zheng Y.Co-benefits of CO2 emission reduction from China’s clean air actions between 2013-2020.Nat Commun2022;13:5061. PMCID:PMC9419635

[6]

Pan Z,Yang J.Aqueous rechargeable multivalent metal-ion batteries: advances and challenges.Adv Energy Mater2021;11:2100608.

[7]

Wang B,Yuan F.An insight into the initial Coulombic efficiency of carbon-based anode materials for potassium-ion batteries.Chem Eng J2022;428:131093.

[8]

Hu Y,Tang W.Ultra-stable, ultra-long-lifespan and ultra-high-rate Na-ion batteries using small-molecule organic cathodes.Energy Storage Mater2021;41:738-47.

[9]

Li Y,Sun GH.Self-standing hard carbon anode derived from hyper-linked nanocellulose with high cycling stability for lithium-ion batteries.EcoMat2021;3:e12091

[10]

Liang J,Zhou X.High Li-ion conductivity artificial interface enabled by Li-grafted graphene oxide for stable Li metal pouch cell.ACS Appl Mater Interfaces2021;13:29500-10.

[11]

Hu J,Li L.A lithium feedstock pathway: coupled electrochemical extraction and direct battery materials manufacturing.ACS Energy Lett2022;7:2420-7.

[12]

Li Y,Liu B.Heteroatom doping: an effective way to boost sodium ion storage.Adv Energy Mater2020;10:2000927.

[13]

Wu J,Ciucci F,Kim J-K.Rationally designed nanostructured metal chalcogenides for advanced sodium-ion batteries.Energy Storage Mater2021;34:582-628.

[14]

Ding J,Paek E.Review of hybrid ion capacitors: from aqueous to lithium to sodium.Chem Rev2018;118:6457-98.

[15]

Cai P,Deng X.Comprehensive understanding of sodium-ion capacitors: definition, mechanisms, configurations, materials, key technologies, and future developments.Adv Energy Mater2021;11:2003804.

[16]

Deng X,Cai P.Advanced battery-type anode materials for high-performance sodium-ion capacitors.Small Methods2020;4:2000401.

[17]

Li P,Ming J.Quasi-compensatory effect in emerging anode-free lithium batteries.eScience2021;1:3-12.

[18]

Zhao-Karger Z,Ebert T.New organic electrode materials for ultrafast electrochemical energy storage.Adv Mater2019;31:1806599.

[19]

Fang Y,Lou XW.Nanostructured electrode materials for advanced sodium-ion batteries.Matter2019;1:90-114.

[20]

Tang J,Lin T.MXene derived TiS2 nanosheets for high-rate and long-life sodium-ion capacitors.Energy Storage Mater2020;26:550-9.

[21]

Tang J,Lin T.Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage.eScience2021;1:203-11.

[22]

Sun D,Wang H.Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency.Nano Energy2019;64:103937.

[23]

Jin MY,Xiao X.Optimum particle size in silicon electrodes dictated by chemomechanical deformation of the SEI.Adv Funct Mater2021;31:2010640.

[24]

He H,Tang Y,Shao M.Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries.Energy Storage Mater2019;23:233-51.

[25]

Wan Y,Chen W.Ultra-high initial coulombic efficiency induced by interface engineering enables rapid, stable sodium storage.Angew Chem Int Ed2021;60:11481-6.

[26]

Ren Q,Yan L.Manipulating free-standing, flexible and scalable microfiber carbon papers unlocking ultra-high initial Coulombic efficiency and storage sodium behavior.Chem Eng J2021;425:131656.

[27]

Tang Y,Chen J,Mao Z.Synthesis of presodiated B, N Co-doped carbon materials and application in sodium ions batteries with enhanced initial coulombic efficiency.Chem Eng J2022;427:131951.

[28]

Zhang H,Huang F.Graphene inducing graphitization: towards a hard carbon anode with ultrahigh initial coulombic efficiency for sodium storage.Chem Eng J2022;434:134503.

[29]

Lyu T,Kang Shen P.Hollow porous carbon spheres for high initial coulombic efficiency and low-potential sodium ion storage.J Colloid Interface Sci2021;604:168-77.

[30]

Liu M,Guo S.Chemically Presodiated hard carbon anodes with enhanced initial coulombic efficiencies for high-energy sodium ion batteries.ACS Appl Mater Interfaces2020;12:17620-27.

[31]

Zou K,Tian Y.Voltage-induced high-efficient in situ presodiation strategy for sodium ion capacitors.Small Methods2020;4:1900763.

[32]

Liu X,Liu T.A Simple electrode-level chemical presodiation route by solution spraying to improve the energy density of sodium-ion batteries.Adv Funct Mater2019;29:1903795.

[33]

Zou K,Cai P.Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: concepts, applications, and perspectives.Adv Funct Mater2021;31:2005581.

[34]

Liu Y,Wang H.Capillary force induced the sodium metal infusion in the Sn@HCNF scaffold: A mechanical flexible metallic battery.J Power Sources2022;545:231885

[35]

Dewar D.Optimisation of sodium-based energy storage cells using pre-sodiation: a perspective on the emerging field.Energy Environ Sci2021;14:1380-401.

[36]

Zhang T,He B.Recent advances on pre-sodiation in sodium-ion capacitors: a mini review.Electrochem Commun2021;129:107090.

[37]

Chojnacka A,Bachetzky C,Béguin F.A strategy for optimizing the output energy and durability of metal-ion capacitors fabricated with alloy-based anodes.Energy Storage Mater2022;51:719-32.

[38]

Yang F,Jia Z.High specific energy and power sodium-based dual-ion supercabatteries by pseudocapacitive Ni-Zn-Mn ternary perovskite fluorides@reduced graphene oxides anodes with conversion-alloying-intercalation triple mechanisms.Energy Storage Mater2022;53:222-37.

[39]

Zhao J,Pei A.A general prelithiation approach for group IV elements and corresponding oxides.Energy Storage Mater2018;10:275-81.

[40]

Yang S-Y,Xia H-Y.Battery prelithiation enabled by lithium fixation on cathode.J Power Sources2020;480:229109.

[41]

Sun Y,Seh ZW.High-capacity battery cathode prelithiation to offset initial lithium loss.Nature Energy2016;1:15008.

[42]

Li F,Wu W,Qu D.Prelithiation bridges the gap for developing next-generation lithium-ion batteries/capacitors.Small Methods2022;6:2200411.

[43]

Song Z,Xiao X.Presodiation strategies for the promotion of sodium-based energy storage systems.Chem A Eur J2021;27:16082-92.

[44]

Liu W,Mitlin D.Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes.Adv Energy Mater2020;10:2002297.

[45]

Ji L,Shao Y.Controlling SEI formation on SnSb-Porous carbon nanofibers for improved Na ion storage.Adv Mater2014;26:2901-8.

[46]

Zhang J,Yang J.Engineering solid electrolyte interphase on red phosphorus for long-term and high-capacity sodium storage.Chem Mater2020;32:448-58.

[47]

Darwiche A,Madec L,Martinez H.Impact of the salts and solvents on the SEI formation in Sb/Na batteries: an XPS analysis.Electrochim Acta2016;207:284-92.

[48]

Zhao Y,Kuo L-Y.High capacity, dendrite-free growth, and minimum volume change na metal anode.Small2018;14:1703717.

[49]

Lao M,Luo W.Alloy-based anode materials toward advanced sodium-ion batteries.Adv Mater2017;29:1700622.

[50]

Nazarian-Samani M,Haghighat-Shishavan S.Predelithiation-driven ultrastable Na-ion battery performance using Si,P-rich ternary M-Si-P anodes.Energy Storage Mater2022;49:421-32.

[51]

Sun B,Zhang J.Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries.Adv Mater2018;30:1801334.

[52]

Chen QD,Dai JH.Functionalized M2TiC2Tx MXenes (M = Cr and Mo; T = F, O, and OH) as high performance electrode materials for sodium ion batteries.Phys Chem Chem Phys2021;23:1038-49.

[53]

Xie B,Wang L.Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture.Nano Energy2019;61:201-10.

[54]

Xie F,Jensen ACS.Hard-soft carbon composite anodes with synergistic sodium storage performance.Adv Funct Mater2019;29:1901072.

[55]

Li Q,Zhao P.Commercial activated carbon as a novel precursor of the amorphous carbon for high-performance sodium-ion batteries anode.Carbon2018;129:85-94.

[56]

Lu H,Jia Y.Engineering Al2O3 atomic layer deposition: enhanced hard carbon-electrolyte interface towards practical sodium ion batteries.Nano Energy2019;64:103903.

[57]

Chen C,Zhu Y.Nonignorable influence of oxygen in hard carbon for sodium ion storage.ACS Sustain Chem Eng2020;8:1497-506.

[58]

Qi Y,Zhong W,Xu M.KTiOPO4: a long-life, high-rate and low-temperature-workable host for Na/K-ion batteries.Chem Eng J2021;417:128159.

[59]

Jo JH,Park YJ.A new pre-sodiation additive for sodium-ion batteries.Energy Storage Mater2020;32:281-9.

[60]

Sun C,Li C.A safe, low-cost and high-efficiency presodiation strategy for pouch-type sodium-ion capacitors with high energy density.J Energy Chem2022;64:442-50.

[61]

Shen B,Dai C.Manipulating irreversible phase transition of NaCrO2 towards an effective sodium compensation additive for superior sodium-ion full cells.J Colloid Interface Sci2019;553:524-9.

[62]

Zhang Q,Shi Y.Electrocatalytic-driven compensation for sodium ion pouch cell with high energy density and long lifespan.Energy Storage Mater2021;39:54-9.

[63]

Liu X,Wang W.Ultrafine sodium sulfide clusters confined in carbon nano-polyhedrons as high-efficiency presodiation reagents for sodium-ion batteries.ACS Appl Mater Interfaces2021;13:27057-65.

[64]

Pan X,Jeżowski P.Na2S sacrificial cathodic material for high performance sodium-ion capacitors.Electrochim Acta2019;318:471-8.

[65]

De Ilarduya J, Otaegui L, López del Amo JM, Armand M, Singh G. NaN3 addition, a strategy to overcome the problem of sodium deficiency in P2-Na0.67[Fe0.5Mn0.5]O2 cathode for sodium-ion battery.J Power Sources2017;337:197-203.

[66]

Park K,Goodenough JB.Electrochemical and chemical properties of Na2NiO2 as a cathode additive for a rechargeable sodium battery.Chem Mater2015;27:6682-8.

[67]

Zou K,Gao X.Molecularly compensated pre-metallation strategy for metal-ion batteries and capacitors.Angew Chem Int Ed2021;60:17070-9.

[68]

Zou K,Liu H.Electronic effect and regiochemistry of substitution in pre-sodiation chemistry.J Phys Chem Lett2021;12:11968-79.

[69]

Song Z,Deng X.Ultra-low-dose pre-metallation strategy served for commercial metal-ion capacitors.Nanomicro Lett2022;14:53. PMCID:PMC8800971

[70]

Ding F,Yu P.Additive-free self-presodiation strategy for high-performance Na-ion batteries.Adv Funct Mater2021;31:2101475.

[71]

Mirza S,Zhang H.A simple pre-sodiation strategy to improve the performance and energy density of sodium ion batteries with Na4V2(PO4)3 as the cathode material.J Mater Chem A2020;8:23368-75.

[72]

Marinaro M,Wohlfahrt-Mehrens M.Toward pre-lithiatied high areal capacity silicon anodes for Lithium-ion batteries.Electrochim Acta2016;206:99-107.

[73]

Liu W,Zhang C.Gassing in Sn-anode sodium-ion batteries and its remedy by metallurgically prealloying Na.ACS Appl Mater Interfaces2019;11:23207-12.

[74]

Moeez I,Lim H-D.Presodiation strategies and their effect on electrode-electrolyte interphases for high-performance electrodes for sodium-ion batteries.ACS Appl Mater Interfaces2019;11:41394-401.

[75]

Tang J,Pol VG.Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries.J Power Sources2018;396:476-82.

[76]

Liu Z,Mu X.A scalable cathode chemical prelithiation strategy for advanced silicon-based lithium ion full batteries.ACS Appl Mater Interfaces2021;13:11985-94.

[77]

Yue H,Feng T.Understanding of the mechanism enables controllable chemical prelithiation of anode materials for lithium-ion batteries.ACS Appl Mater Interfaces2021;13:53996-4004.

[78]

Shen Y,Pu Y.Effective chemical prelithiation strategy for building a silicon/sulfur li-ion battery.ACS Energy Lett2019;4:1717-24.

[79]

Jang J,Choi J.Molecularly tailored lithium-arene complex enables chemical prelithiation of high-capacity lithium-ion battery anodes.Angew Chem Int Ed2020;59:14473-80.

[80]

Zheng G,Ma J.Ultrafast presodiation of graphene anodes for high-efficiency and high-rate sodium-ion storage.InfoMat2021;3:1445-54.

[81]

Cao Y,Zhong X,Li H.A safe, convenient liquid phase pre-sodiation method for titanium-based SIB materials.Chem Commun2019;55:14761-4.

[82]

Zhou J,Lian X.Advanced red phosphorus/carbon composites with practical application potential for sodium ion batteries.Energy Storage Mater2022;46:20-8.

[83]

Liu S,Tang X.Enabling high-performance sodium metal anode via a presodiated alloy-induced interphase.Chem Eng J2021;417:128997.

PDF

188

Accesses

0

Citation

Detail

Sections
Recommended

/