Design of manganese dioxide for supercapacitors and zinc-ion batteries: similarities and differences

Henghan Dai , Ruicong Zhou , Zhao Zhang , Jinyuan Zhou , Gengzhi Sun

Energy Materials ›› 2022, Vol. 2 ›› Issue (6) : 200040

PDF
Energy Materials ›› 2022, Vol. 2 ›› Issue (6) :200040 DOI: 10.20517/energymater.2022.56
Review

Design of manganese dioxide for supercapacitors and zinc-ion batteries: similarities and differences

Author information +
History +
PDF

Abstract

Energy storage devices, e.g., supercapacitors (SCs) and zinc-ion batteries (ZIBs), based on aqueous electrolytes, have the advantages of rapid ion diffusion, environmental benignness, high safety and low cost. Generally, SCs provide excellent power density with the capability of fast charge/discharge, while ZIBs offer high energy density by storing more charge per unit weight/volume. Although the charge storage mechanisms are considered different, manganese dioxide (MnO2) has proven to be an appropriate electrode material for both SCs and ZIBs because of its unique characteristics, including polymorphic forms, tunable structures and designable morphologies. Herein, the design of MnO2-based materials for SCs and ZIBs is comprehensively reviewed. In particular, we compare the similarities and differences in utilizing MnO2-based materials as active materials for SCs and ZIBs by highlighting their corresponding charge storage mechanisms. We then introduce a few commonly adopted strategies for tuning the physicochemical properties of MnO2 and their specific merits. Finally, we discuss the future perspectives of MnO2 for SC and ZIB applications regarding the investigation of charge storage mechanisms, materials design and the enhancement of electrochemical performance.

Keywords

Aqueous energy storage devices / manganese dioxide / zinc-ion batteries / supercapacitors / mechanisms

Cite this article

Download citation ▾
Henghan Dai, Ruicong Zhou, Zhao Zhang, Jinyuan Zhou, Gengzhi Sun. Design of manganese dioxide for supercapacitors and zinc-ion batteries: similarities and differences. Energy Materials, 2022, 2(6): 200040 DOI:10.20517/energymater.2022.56

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gerard O,Krishnan S,Subramaniam R.A review on the recent advances in binder-free electrodes for electrochemical energy storage application.J Energy Storage2022;50:104283

[2]

Yu C,Chen R.A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube scaffold and MXene nanosheets.Small2018;:e1801203

[3]

Xiao J,Zhang C,Kang F.Dimensionality, function and performance of carbon materials in energy storage devices.Adv Energy Mater2022;12:2100775

[4]

Liu Y,Li J.Pre-intercalation chemistry of electrode materials in aqueous energy storage systems.Coord Chem Rev2022;460:214477

[5]

Shin J,Park Y.Aqueous zinc ion batteries: focus on zinc metal anodes.Chem Sci2020;11:2028-44 PMCID:PMC7053421

[6]

Dai H,Qin G.Enhanced Jahn-Teller distortion boosts molybdenum trioxide’s superior lithium ion storage capability.Dalton Trans2022;51:524-31

[7]

Dai H,Zhao Y.Recent advances in molybdenum-based materials for lithium-sulfur batteries.Research2021;2021:5130420 PMCID:PMC7949955

[8]

Zhang X,Luo L,Du Z.A review on thermal management of lithium-ion batteries for electric vehicles.Energy2022;238:121652

[9]

Rivera-barrera J,Sarmiento-maldonado H.SoC estimation for lithium-ion batteries: review and future challenges.Electronics2017;6:102

[10]

Muralidharan N,Dixit M.Next-generation cobalt-free cathodes - a prospective solution to the battery industry’s cobalt problem.Adv Energy Mater2022;12:2103050

[11]

Li J,Hawley WB.From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing.Chem Rev2022;122:903-56

[12]

Chao D,Xie F.Roadmap for advanced aqueous batteries: from design of materials to applications.Sci Adv2020;6:eaba4098 PMCID:PMC7244306

[13]

Sui Y.Anticatalytic strategies to suppress water electrolysis in aqueous batteries.Chem Rev2021;121:6654-95

[14]

Bin D,Wang Y.The development in aqueous lithium-ion batteries.J Energy Chem2018;27:1521-35

[15]

Jiang X,Meng X.The impact of electrode with carbon materials on safety performance of lithium-ion batteries: a review.Carbon2022;191:448-70

[16]

Liu K,Lin D,Cui Y.Materials for lithium-ion battery safety.Sci Adv2018;4:eaas9820 PMCID:PMC6014713

[17]

Su X,Li J.Silicon-based nanomaterials for lithium-ion batteries: a review.Adv Energy Mater2014;4:1300882

[18]

Xie J.A retrospective on lithium-ion batteries.Nat Commun2020;11:2499 PMCID:PMC7237495

[19]

Yang Z,Kintner-Meyer MC.Electrochemical energy storage for green grid.Chem Rev2011;111:3577-613

[20]

Yong B,Wang Y,He C.Understanding the design principles of advanced aqueous zinc-ion battery cathodes: from transport kinetics to structural engineering, and future perspectives.Adv Energy Mater2020;10:2002354

[21]

Peng J,Wang S.The emerging electrochemical activation tactic for aqueous energy storage: fundamentals, applications, and future.Adv Funct Mater2022;32:2111720

[22]

Lee B,Kim H,Cho BW.Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries.Chem Commun2015;51:9265-8

[23]

Tang Y,Xu Y,Xue H.Advanced batteries based on manganese dioxide and its composites.Energy Stor Mater2018;12:284-309

[24]

Qian J,Chen B.Aqueous manganese dioxide ink for paper-based capacitive energy storage devices.Angew Chem Int Ed Engl2015;54:6800-3

[25]

Pan H,Yan P.Reversible aqueous zinc/manganese oxide energy storage from conversion reactions.Nat Energy2016;1

[26]

Tang B,Liang S.Issues and opportunities facing aqueous Zinc-ion batteries.Energy Environ Sci2019;12:3288-304

[27]

Ming J,Xia C,Alshareef HN.Zinc-ion batteries: materials, mechanisms, and applications.Mater Sci Eng R Rep2019;135:58-84

[28]

Fang G,Pan A.Recent advances in aqueous Zinc-ion batteries.ACS Energy Lett2018;3:2480-501

[29]

Dong C,Chen L,Cao Y.Design strategies for high-voltage aqueous batteries.Small Struct2021;2:2100001

[30]

Wang F,Yuan X.Latest advances in supercapacitors: from new electrode materials to novel device designs.Chem Soc Rev2017;46:6816-54

[31]

Augustyn V,Dunn B.Pseudocapacitive oxide materials for high-rate electrochemical energy storage.Energy Environ Sci2014;7:1597

[32]

Huang J,Chen Y.Wide voltage aqueous asymmetric supercapacitors: advances, strategies, and challenges.Adv Funct Mater2022;32:2108107

[33]

Wang S,Yin Y,Zhang H.High-energy-density aqueous zinc-based hybrid supercapacitor-battery with uniform zinc deposition achieved by multifunctional decoupled additive.Nano Energy2022;96:107120

[34]

Li H,Han C.Advanced rechargeable zinc-based batteries: recent progress and future perspectives.Nano Energy2019;62:550-87

[35]

Zhang K,Hu Z,Tao Z.Nanostructured Mn-based oxides for electrochemical energy storage and conversion.Chem Soc Rev2015;44:699-728

[36]

Zhong C,Hu W,Zhang L.A review of electrolyte materials and compositions for electrochemical supercapacitors.Chem Soc Rev2015;44:7484-539

[37]

He P,Yan M.Building better Zinc-ion batteries: a materials perspective.EnergyChem2019;1:100022

[38]

Lv Y,Ma L,Chen S.Recent advances in electrolytes for “beyond aqueous” Zinc-ion batteries.Adv Mater2022;34:e2106409

[39]

Zhou T,Xie L.Cathode materials for aqueous Zinc-ion batteries: a mini review.J Colloid Interface Sci2022;605:828-50

[40]

Gao Y.Review on recent advances in nanostructured transition-metal-sulfide-based electrode materials for cathode materials of asymmetric supercapacitors.Chem Eng J2022;430:132745

[41]

Kumar S,Zhu L,Kim NH.0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review.Chem Eng J2021;403:126352

[42]

Hu Y,Wang J.Manganese-oxide-based electrode materials for energy storage applications: how close are we to the theoretical capacitance?.Adv Mater2018;30:e1802569

[43]

Kumar A,Kumar A,Chandra R.Performance of high energy density symmetric supercapacitor based on sputtered MnO2 nanorods.ChemistrySelect2016;1:3885-91

[44]

Yu N,Zhang W,Tang Z.High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics.Adv Energy Mater2016;6:1501458

[45]

Radhamani AV,Rao MS.ZnO@MnO2 core-shell nanofiber cathodes for high performance asymmetric supercapacitors.ACS Appl Mater Interfaces2016;8:30531-42

[46]

Zhou D,Zhang F.Freestanding MnO2 nanoflakes/porous carbon nanofibers for high-performance flexible supercapacitor electrodes.Electrochim Acta2015;161:427-35

[47]

Cai K,Feng J.Recent advances on spinel zinc manganate cathode materials for Zinc-ion batteries.Chem Rec2022;22:e202100169

[48]

Davoglio RA,Marco JF.Synthesis and characterization of α-MnO2 nanoneedles for electrochemical supercapacitors.Electrochim Acta2018;261:428-35

[49]

Guo C,Li J.Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery.Electrochim Acta2019;304:370-7

[50]

Li Y,Huang S.Guest-species-incorporation in manganese/vanadium-based oxides: towards high performance aqueous Zinc-ion batteries.Nano Energy2021;85:105969

[51]

Zhang Z,Shen Y.Issues and opportunities of manganese-based materials for enhanced Zn-ion storage performances.J Energy Storage2022;45:103729

[52]

Xie Q,Xue T.Alkali ions pre-intercalation of δ-MnO2 nanosheets for high-capacity and stable Zn-ion battery.Mater Today Energy2022;24:100934

[53]

Wang M,Zhang X.Opportunities of aqueous manganese-based batteries with deposition and stripping chemistry.Adv Energy Mater2021;11:2002904

[54]

Nam KW,Choi JH.Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries.Energy Environ Sci2019;12:1999-2009

[55]

Wu Y,Tobin Z.Amorphous manganese oxides: an approach for reversible aqueous Zinc-ion batteries.ACS Appl Energy Mater2020;3:1627-33

[56]

Li S,Qi L,Wang H.Progress in research on manganese dioxide electrode materials for electrochemical capacitors.Chinese J Anal Chem2012;40:339-46

[57]

Wang J,Ding B.Pseudocapacitive materials for electrochemical capacitors: from rational synthesis to capacitance optimization.Natl Sci Rev2017;4:71-90

[58]

Brousse T,Dugas R,Crosnier O.Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors.J Electrochem Soc2006;153:A2171

[59]

Yan J,Wei T,Zhang M.Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes.Carbon2010;48:3825-33

[60]

Zhang Y,Jiang J.High performance aqueous sodium-ion capacitors enabled by pseudocapacitance of layered MnO2.Energy Technol2018;6:2146-53

[61]

Chen Q,Kou Z.Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables Zinc-ion hybrid supercapacitor of battery-level energy density.Small2020;16:e2000091

[62]

Tang X,Ning J,Hu M.Charge storage mechanisms of manganese dioxide-based supercapacitors: a review.New Carbon Mater2021;36:702-10

[63]

Guo W,Li S.Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: challenges and perspectives.Nano Energy2019;57:459-72

[64]

Kim SJ,Sadique N.Unraveling the dissolution-mediated reaction mechanism of α-MnO2 cathodes for aqueous Zn-ion batteries.Small2020;16:e2005406

[65]

Qiu C,Xue L.The function of Mn2+ additive in aqueous electrolyte for Zn/δ-MnO2 battery.Electrochim Acta2020;351:136445

[66]

Julien CM.Nanostructured MnO2 as electrode materials for energy storage.Nanomaterials2017;7:396 PMCID:PMC5707613

[67]

Majumdar D.Review on current progress of MnO2-based ternary nanocomposites for supercapacitor applications.ChemElectroChem2021;8:291-336

[68]

Shin J,Yaylian R,Meng YS.A review on mechanistic understanding of MnO2 in aqueous electrolyte for electrical energy storage systems.Int Mater Rev2020;65:356-87

[69]

Messaoudi B,Keddam M.Anodic behaviour of manganese in alkaline medium.Electrochim Acta2001;46:2487-98

[70]

Roberts AJ.Effect of specific surface area on capacitance in asymmetric carbon/α-MnO2 supercapacitors.Electrochim Acta2010;55:7460-9

[71]

Wu B,Yan M.Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery.Small2018;14:e1703850

[72]

Wang J,Xu C,Ma X.Polymorphous supercapacitors constructed from flexible three-dimensional carbon network/Polyaniline/MnO2 composite textiles.ACS Appl Mater Interfaces2018;10:10851-9

[73]

Fu Y,Zha D,Ouyang X.Yolk-shell-structured MnO2 microspheres with oxygen vacancies for high-performance supercapacitors.J Mater Chem A2018;6:1601-11

[74]

Fu W,Ren X,Yushin G.Hierarchical fabric decorated with carbon nanowire/metal oxide nanocomposites for 1.6 V wearable aqueous supercapacitors.Adv Energy Mater2018;8:1703454

[75]

Qi H,Yang S.Hierarchical nanocarbon-MnO2 electrodes for enhanced electrochemical capacitor performance.Energy Stor Mater2019;16:607-18

[76]

Chen L,Yang X.Sandwich-structured MnO2@N-doped carbon@MnO2 nanotubes for high-performance supercapacitors.J Alloys Compd2017;695:3339-47

[77]

Han D,Xu P,Liu J.Facile synthesis of hierarchical hollow ε-MnO2 spheres and their application in supercapacitor electrodes.J Solid State Chem2014;218:178-83

[78]

Xiong P,Sakai N,Li S.Redox active cation intercalation/deintercalation in two-dimensional layered MnO2 nanostructures for high-rate electrochemical energy storage.ACS Appl Mater Interfaces2017;9:6282-91

[79]

Jabeen N,Savilov SV,Yu Y.Enhanced pseudocapacitive performance of α-MnO2 by cation preinsertion.ACS Appl Mater Interfaces2016;8:33732-40

[80]

Gao P,Hey T.The critical role of point defects in improving the specific capacitance of δ-MnO2 nanosheets.Nat Commun2017;8:14559 PMCID:PMC5331340

[81]

Chen S,Ma X,Zhou X.Asymmetric supercapacitors by integrating high content Na+/K+-inserted MnO2 nanosheets and layered Ti3C2Tx paper.Electrochim Acta2020;332:135497

[82]

Zhao Q,Ding S.Preintercalation strategy in manganese oxides for electrochemical energy storage: review and prospects.Adv Mater2020;32:e2002450

[83]

Peng H,Sui J,Zhang W.Sodium in situ intercalated ultrathin δ-MnO2 flakes electrode with enhanced intercalation capacitive performance for asymmetric supercapacitors.ChemistrySelect2020;5:869-74

[84]

Jabeen N,Xia Q,Zhu J.High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays.Adv Mater2017;29:1700804

[85]

Jiang H,Yang Q.A novel MnO2/Ti3C2Tx MXene nanocomposite as high performance electrode materials for flexible supercapacitors.Electrochim Acta2018;290:695-703

[86]

Chi HZ,Xin Y.Boron-doped manganese dioxide for supercapacitors.Chem Commun2014;50:13349-52

[87]

Choi C,Spinks GM,Baughman RH.Elastomeric and dynamic MnO2/CNT core-shell structure coiled yarn supercapacitor.Adv Energy Mater2016;6:1502119

[88]

Wang Y,Gao Y,ten Elshof JE.Defect engineering of MnO2 nanosheets by substitutional doping for printable solid-state micro-supercapacitors.Nano Energy2020;68:104306

[89]

Wang J,Liu H.A highly flexible and lightweight MnO2/graphene membrane for superior Zinc-ion batteries.Adv Funct Mater2021;31:2007397

[90]

Tong H,Liu J.Fabrication of the oxygen vacancy amorphous MnO2/Carbon nanotube as cathode for advanced aqueous Zinc-ion batteries.Energy Technol2021;9:2000769

[91]

Shi J,Wang Q.A new flexible Zinc-ion capacitor based on δ-MnO2@Carbon cloth battery-type cathode and MXene@Cotton cloth capacitor-type anode.J Power Sources2020;446:227345

[92]

Zhao L,Zhao H.Controlling oxygen vacancies through gas-assisted hydrothermal method and improving the capacitive properties of MnO2 nanowires.Appl Surf Sci2019;491:24-31

[93]

Yan L,Niu L.Experimental and theoretical investigation of the effect of oxygen vacancies on the electronic structure and pseudocapacitance of MnO2.ChemSusChem2019;12:3571-81

[94]

Zhai T,Yu M.Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors.Nano Energy2014;8:255-63

[95]

Ou T,Hu C.Synthesis and characterization of sodium-doped MnO2 for the aqueous asymmetric supercapacitor application.J Electrochem Soc2015;162:A5124-32

[96]

Li J,Wang S,Yu J.Transition metal doped MnO2 nanosheets grown on internal surface of macroporous carbon for supercapacitors and oxygen reduction reaction electrocatalysts.Appl Mater Today2016;3:63-72

[97]

Kang J,Kang L.Enhanced supercapacitor performance of MnO2 by atomic doping.Angew Chem Int Ed Engl2013;52:1664-7

[98]

Wang Z,Li Y,Lu Y.Interlinked multiphase Fe-doped MnO2 nanostructures: a novel design for enhanced pseudocapacitive performance.Nanoscale2016;8:7309-17

[99]

Peng R,Wei X,Yu P.One-step synthesis of vacancy-rich MnO2-x/reduced graphene oxide composite film for high electrochemical performance.ChemElectroChem2019;6:1122-8

[100]

Shi P,Hua L.Design of amorphous manganese oxide@multiwalled carbon nanotube fiber for robust solid-state supercapacitor.ACS Nano2017;11:444-52

[101]

Gou L,Mou K.α-MnO2@In2O3 nanotubes as cathode material for aqueous rechargeable Zn-ion battery with high electrochemical performance.J Electrochem Soc2019;166:A3362-8

[102]

Zhang J,Zhang Y.The enhanced adhesion between overlong TiNxOy/MnO2 nanoarrays and Ti substrate: towards flexible supercapacitors with high energy density and long service life.Nano Energy2018;43:91-102

[103]

Xu J,Lu M.Fabrication of hierarchical MnMoO4·H2O@MnO2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors.Chem Eng J2018;334:1466-76

[104]

Shinde PA,Patil AM,Lokhande CD.Single-step hydrothermal synthesis of WO3-MnO2 composite as an active material for all-solid-state flexible asymmetric supercapacitor.Int J Hydrog Energy2018;43:2869-80

[105]

Zhu S,Liu J.Structural directed growth of ultrathin parallel birnessite on β-MnO2 for high-performance asymmetric supercapacitors.ACS Nano2018;12:1033-42

[106]

Liu N,Wang Z.Electrostatic-interaction-assisted construction of 3D networks of manganese dioxide nanosheets for flexible high-performance solid-state asymmetric supercapacitors.ACS Nano2017;11:7879-88

[107]

Zhou J,Shi L.A conductive and highly deformable all-pseudocapacitive composite paper as supercapacitor electrode with improved areal and volumetric capacitance.Small2018;14:e1803786

[108]

Chen Q,Hu C.MnO2-modified hierarchical graphene fiber electrochemical supercapacitor.J Power Sources2014;247:32-9

[109]

Tan X,Guo Q.Synthesis and characterisation of amorphous MnO2/CNT via solid-state microwave for high-performance supercapacitors.Int J Energy Res2020;44:4556-67

[110]

Chen Y,Xu C.The fabrication of asymmetry supercapacitor based on MWCNTs/MnO2/PPy composites.Electrochim Acta2019;309:424-31

[111]

Zhang QZ,Miao ZC,Chou SL.Research progress in MnO2-carbon based supercapacitor electrode materials.Small2018;14:e1702883

[112]

Yu G,Vosgueritchian M.Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors.Nano Lett2011;11:2905-11

[113]

Jia H,Lin J.Heterostructural graphene quantum dot/MnO2 nanosheets toward high-potential window electrodes for high-performance supercapacitors.Adv Sci2018;5:1700887 PMCID:PMC5979621

[114]

Song M,Chao D.Recent advances in Zn-ion batteries.Adv Funct Mater2018;28:1802564

[115]

Jia X,Neale ZG,Cao G.Active materials for aqueous Zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry.Chem Rev2020;120:7795-866

[116]

Alfaruqi MH,Kim S.Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode.J Power Sources2015;288:320-7

[117]

Lee B,Lee HR,Cho BW.Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide.Sci Rep2014;4:6066 PMCID:PMC5377529

[118]

Alfaruqi MH,Gim J.Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity Zinc-ion battery system.Chem Mater2015;27:3609-20

[119]

Deng Y,Xie Y,Chen G.Recent advances in Mn-based oxides as anode materials for lithium ion batteries.RSC Adv2014;4:23914-35

[120]

Li F,Wang G.The design of flower-like C-MnO2 nanosheets on carbon cloth toward high-performance flexible Zinc-ion batteries.J Mater Chem A2021;9:9675-84

[121]

Liu G,Bi R,Ma T.K+ pre-intercalated manganese dioxide with enhanced Zn2+ diffusion for high rate and durable aqueous Zinc-ion batteries.J Mater Chem A2019;7:20806-12

[122]

Liu M,Liu H.Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery.Nano Energy2019;64:103942

[123]

Li G,Chen J.Rechargeable Zn-ion batteries with high power and energy densities: a two-electron reaction pathway in birnessite MnO2 cathode materials.J Mater Chem A2020;8:1975-85

[124]

Jin Y,Liu L.Joint charge storage for high-rate aqueous zinc-manganese dioxide batteries.Adv Mater2019;31:e1900567

[125]

Guo X,Bai C,Fang G.Zn/MnO2 battery chemistry with dissolution-deposition mechanism.Mater Today Energy2020;16:100396

[126]

Peng H,Yang C,Wang C.Ultrathin δ-MnO2 nanoflakes with Na+ intercalation as a high-capacity cathode for aqueous Zinc-ion batteries.RSC Adv2020;10:17702-12

[127]

Sun T,Zheng S,Tao Z.Layered Ca0.28MnO2·0.5H2O as a high performance cathode for aqueous Zinc-ion battery.Small2020;16:e2000597

[128]

Fang G,Chen M.Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high-energy-density and durable aqueous Zinc-ion battery.Adv Funct Mater2019;29:1808375

[129]

Zhai T,Sun S.Phosphate ion functionalized Co3O4 ultrathin nanosheets with greatly improved surface reactivity for high performance pseudocapacitors.Adv Mater2017;29:1604167

[130]

Zhang Y,Pan G.Introducing oxygen defects into phosphate ions intercalated manganese dioxide/vertical multilayer graphene arrays to boost flexible Zinc ion storage.Small Methods2020;4:1900828

[131]

Huang J,Hou M.Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous Zinc-ion battery.Nat Commun2018;9:2906 PMCID:PMC6060179

[132]

Zhang Q,Ji H.Issues and rational design of aqueous electrolyte for Zn-ion batteries.SusMat2021;1:432-47

[133]

Wang D,Liang G.A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery.ACS Nano2019;13:10643-52

[134]

Han M,Liang S.Oxygen defects in β-MnO2 enabling high-performance rechargeable aqueous zinc/manganese dioxide battery.iScience2020;23:100797 PMCID:PMC6957857

[135]

Zhao J,Zhou Z.A safe flexible self-powered wristband system by integrating defective MnO2-x nanosheet-based Zinc-ion batteries with perovskite solar cells.ACS Nano2021;15:10597-608

[136]

Xiong T,Wu H.Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous Zinc ion battery.Adv Energy Mater2019;9:1803815

[137]

Xiong T,Xue J.K+-intercalated MnO2 electrode for high performance aqueous supercapacitor.ACS Appl Energy Mater2018;

[138]

Zhao Q,Zhao W.Boosting the energy density of aqueous batteries via facile grotthuss proton transport.Angew Chem Int Ed Engl2021;60:4169-74

[139]

Wang J,Zhao H.Superior-performance aqueous Zinc ion battery based on structural transformation of MnO2 by rare earth doping.J Phys Chem C2019;123:22735-41

[140]

Zhang Y,Luo M.Defect promoted capacity and durability of N-MnO2-x branch arrays via low-temperature NH3 treatment for advanced aqueous Zinc ion batteries.Small2019;15:e1905452

[141]

Cai Y,Huang S,Srinivasan M.Amorphous manganese dioxide with the enhanced pseudocapacitive performance for aqueous rechargeable Zinc-ion battery.Chem Eng J2020;396:125221

[142]

Chen X,Zeng Z,Li X.Engineering stable Zn-MnO2 batteries by synergistic stabilization between the carbon nanofiber core and birnessite-MnO2 nanosheets shell.Chem Eng J2021;405:126969

[143]

Wu F,Xu X.MnO2 nanosheet-assembled hollow polyhedron grown on carbon cloth for flexible aqueous Zinc-ion batteries.ChemSusChem2020;13:1537-45

[144]

Long J,Cuan J.Boosted charge transfer in twinborn α-(Mn2O3-MnO2) heterostructures: toward high-rate and ultralong-life Zinc-ion batteries.ACS Appl Mater Interfaces2020;12:32526-35

[145]

Chen J.Combination of lightweight elements and nanostructured materials for batteries.ACC Chem Res2009;42:713-23

[146]

Ling W,Chen Z.Nanostructure design strategies for aqueous Zinc-ion batteries.ChemElectroChem2020;7:2957-78

[147]

Li D,Zhang H.MnO2 particles grown on the surface of N-doped hollow porous carbon nanospheres for aqueous rechargeable zinc ion batteries.Appl Surf Sci2020;510:145458

[148]

Zhang X,Deng S.3D CNTs networks enable MnO2 cathodes with high capacity and superior rate capability for flexible rechargeable Zn-MnO2 batteries.Small Methods2019;3:1900525

[149]

Zhu X,Wang W.Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 nanosheets on V2CTx MXene.ACS Nano2021;15:2971-83

[150]

Huang J,Liu K,He Z.Interfacial chemical binding and improved kinetics assisting stable aqueous Zn-MnO2 batteries.Mater Today Energy2020;17:100475

PDF

70

Accesses

0

Citation

Detail

Sections
Recommended

/