Metal nitride heterostructures capsulated in carbon nanospheres to accommodate lithium metal for constructing a stable composite anode

Baichuan Ding , Xufei An , Jing Yu , Wei Lv , Feiyu Kang , Yan-Bing He

Energy Materials ›› 2022, Vol. 2 ›› Issue (6) : 200039

PDF
Energy Materials ›› 2022, Vol. 2 ›› Issue (6) :200039 DOI: 10.20517/energymater.2022.53
Article

Metal nitride heterostructures capsulated in carbon nanospheres to accommodate lithium metal for constructing a stable composite anode

Author information +
History +
PDF

Abstract

Although various hosts have been proposed to accommodate the Lithium (Li) metal to solve the uneven Li deposition and infinite volume change, the pulverization of the host or lithiophilic modification layer easily leads to structural damage and the poor cycling stability of the composite anode. Herein, we design a host of metal nitrides (Mo2N and WN heterostructures) nanoparticles capsulated in the hollow carbon nanospheres, which can accommodate Li metal to form a stable composite anode. The lithiophilic Mo2N guides uniform infusion and reduces the nucleation barriers of Li metal during electrochemical process. Note that the rigid WN matrix is uniformly composited with Mo2N, which can suppress the pulverization of Mo2N during the repeat Li plating/stripping, ensuring the stability of regulated deposition during long cycling. High mechanical strength, uniform surface potential distribution and good electrolyte wettability of the Li metal-based composite anode guarantee the rapid Li plating/stripping kinetics. Thus, the obtained composite anode can stably cycle 1400 h at 1 mA cm-2 and 1 mA h cm-2 in the symmetric battery. The assembled full cells with LiNi0.8Mn0.1Co0.1O2 (NCM811) also deliver high capacity retention under the high loading (8.6 mg cm-2) or lean electrolyte (2 μL mg-1) condition. This work suggests a promising host structure design to construct a highly stable lithium metal anode for practical applications.

Keywords

Lithium metal anode / matrix structural modification / anode structure design

Cite this article

Download citation ▾
Baichuan Ding, Xufei An, Jing Yu, Wei Lv, Feiyu Kang, Yan-Bing He. Metal nitride heterostructures capsulated in carbon nanospheres to accommodate lithium metal for constructing a stable composite anode. Energy Materials, 2022, 2(6): 200039 DOI:10.20517/energymater.2022.53

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Grey CP.Sustainability and in situ monitoring in battery development.Nat Mater2016;16:45-56

[2]

Larcher D.Towards greener and more sustainable batteries for electrical energy storage.Nat Chem2015;7:19-29

[3]

Scrosati B,Sun Y.Lithium-ion batteries. A look into the future.Energy Environ Sci2011;4:3287

[4]

Tarascon JM.Issues and challenges facing rechargeable lithium batteries.Nature2001;414:359-67

[5]

Albertus P,Litzelman S.Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries.Nat Energy2018;3:16-21

[6]

Cheng XB,Zhao CZ.Toward safe lithium metal anode in rechargeable batteries: a review.Chem Rev2017;117:10403-73

[7]

Lin D,Cui Y.Reviving the lithium metal anode for high-energy batteries.Nat Nanotechnol2017;12:194-206

[8]

Liu DH,Li M.Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives.Chem Soc Rev2020;49:5407-45

[9]

Chen XR,Yan C.Review on Li deposition in working batteries: from nucleation to early growth.Adv Mater2021;33:e2004128

[10]

Lu Y,Archer LA.Stable lithium electrodeposition in liquid and nanoporous solid electrolytes.Nat Mater2014;13:961-9

[11]

Zhang L,Du C.Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up.Nat Nanotechnol2020;15:94-8

[12]

Zou P,Zhan H.Polymorph evolution mechanisms and regulation strategies of lithium metal anode under multiphysical fields.Chem Rev2021;121:5986-6056

[13]

Li M,Chen Z.30 years of lithium-ion batteries.Adv Mater2018;30:e1800561

[14]

Lu J,Pan F,Amine K.High-performance anode materials for rechargeable lithium-ion batteries.Electrochem Energ Rev2018;1:35-53

[15]

Cao X,Zou L.Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization.Nat Energy2019;4:796-805

[16]

Li Y,Pei A.Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy.Science2017;358:506-10

[17]

Liu T,Bi X.In situ quantification of interphasial chemistry in Li-ion battery.Nat Nanotechnol2019;14:50-6

[18]

Wu H,Wang C,Xu W.Recent progress in understanding solid electrolyte interphase on lithium metal anodes.Adv Energy Mater2021;11:2003092

[19]

Yan C,Xiao Y.Toward critical electrode/electrolyte interfaces in rechargeable batteries.Adv Funct Mater2020;30:1909887

[20]

Zhou Y,Yu X.Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery.Nat Nanotechnol2020;15:224-30

[21]

Yu Z,Bao Z.Design principles of artificial solid electrolyte interphases for lithium-metal anodes.Cell Rep Phys Sci2020;1:100119

[22]

Zheng G,Liang Z.Interconnected hollow carbon nanospheres for stable lithium metal anodes.Nat Nanotechnol2014;9:618-23

[23]

Gao Y,Gray JL.Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions.Nat Mater2019;18:384-9

[24]

Yang CP,Zhang SF,Guo YG.Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes.Nat Commun2015;6:8058 PMCID:PMC4560781

[25]

Chen H,Boyle DT.Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries.Nat Energy2021;6:790-8

[26]

Wan M,Wang L.Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode.Nat Commun2020;11:829 PMCID:PMC7012843

[27]

Jie Y,Cao R,Jiao S.Advanced liquid electrolytes for rechargeable Li metal batteries.Adv Funct Mater2020;30:1910777

[28]

Jin C,Sheng O.Rejuvenating dead lithium supply in lithium metal anodes by iodine redox.Nat Energy2021;6:378-87

[29]

Yang K,Ma J.Stable interface chemistry and multiple ion transport of composite electrolyte contribute to ultra-long cycling solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries.Angew Chem Int Ed2021;60:24668-75

[30]

Li G.Regulating mass transport behavior for high-performance lithium metal batteries and fast-charging lithium-ion batteries.Adv Energy Mater2021;11:2002891

[31]

Zhou F,Lu YY.Diatomite derived hierarchical hybrid anode for high performance all-solid-state lithium metal batteries.Nat Commun2019;10:2482 PMCID:PMC6554300

[32]

Krauskopf T,Rosenbach C,Janek J.Diffusion limitation of lithium metal and Li-Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure.Adv Energy Mater2019;9:1902568

[33]

Zhang R,Shen X.Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries.Joule2018;2:764-77

[34]

Duan J,Luo W.Is graphite lithiophobic or lithiophilic?.Natl Sci Rev2020;7:1208-17 PMCID:PMC8288999

[35]

Lu D,Lozano T.Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes.Adv Energy Mater2015;5:1400993

[36]

Zhan Y,Ma X.Failure mechanism of lithiophilic sites in composite lithium metal anode under practical conditions.Adv Energy Mater2022;12:2103291

[37]

Xu F,Qiu Y.Generalized domino-driven synthesis of hollow hybrid carbon spheres with ultrafine metal nitrides/oxides.Matter2020;3:246-60

[38]

Xu F,Lu Q.Atomic Sn-enabled high-utilization, large-capacity, and long-life Na anode.Sci Adv2022;8:eabm7489 PMCID:PMC9094655

[39]

Xu F,Huang S.Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage.Nat Commun2015;6:7221

[40]

Zhao Q,Su S.Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries.J Mater Chem A2019;7:15871-9

[41]

Luo L,Yaghoobnejad Asl H.A 3D lithiophilicMo2N-modified carbon nanofiber architecture for dendrite-free lithium-metal anodes in a full cell.Adv Mater2019;31:e1904537

[42]

Wang S,Lin Z.Synthesis, crystal structure, and elastic properties of novel tungsten nitrides.Chem Mater2012;24:3023-8

[43]

Zhang W,Tong Z.Stable Li-metal deposition via a 3D nanodiamond matrix with ultrahigh young's modulus.Small Methods2019;3:1900325

[44]

Yu J,Zhang S.A lithium nucleation-diffusion-growth mechanism to govern the horizontal deposition of lithium metal anode.Sci China Mater2021;64:2409-20

[45]

Xu F,Qiu Y.Hollow carbon nanospheres with developed porous structure and retained n doping for facilitated electrochemical energy storage.Langmuir2019;35:12889-97

[46]

Shi P,Zhang R.Lithiophilic LiC6 layers on carbon hosts enabling stable Li metal anode in working batteries.Adv Mater2019;31:e1807131

[47]

Zhu J,Li J.In-situ generated Li3N/Li-Al alloy in reduced graphene oxide framework optimizing ultra-thin lithium metal electrode for solid-state batteries.Energy Stor Mater2022;49:546-54

[48]

Ye W,Lan X.Stable nano-encapsulation of lithium through seed-free selective deposition for high-performance Li battery anodes.Adv Energy Mater2020;10:1902956

[49]

Yan K,Lee H.Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth.Nat Energy2016;1:16010

[50]

Rustomji CS,Kim TK.Liquefied gas electrolytes for electrochemical energy storage devices.Science2017;356:eaal4263

[51]

Huang Z,Zhang W.Protecting the Li-metal anode in a Li-O2 battery by using boric acid as an sei-forming additive.Adv Mater2018;30:e1803270

[52]

Zhang W,Huang J.Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries.Adv Mater2020;32:e2001740

[53]

Li S,Han B.Ultrathin and high-modulus LiBO2 layer highly elevates the interfacial dynamics and stability of lithium anode under wide temperature range.Small2022;18:e2106427

[54]

Wang Y,Fan G.Electroless formation of a fluorinated Li/Na hybrid interphase for robust lithium anodes.J Am Chem Soc2021;143:2829-37

[55]

Fu L,Wang L.A salt-in-metal anode: stabilizing the solid electrolyte interphase to enable prolonged battery cycling.Adv Funct Mater2021;31:2010602

PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

/