Anodization fabrication techniques and energy-related applications for nanostructured anodic films on transition metals

Longfei Jiang , Pengze Li , Shiyi Wang , Rui Liu , Xufei Zhu , Ye Song , Teunis van Ree

Energy Materials ›› 2022, Vol. 2 ›› Issue (6) : 200038

PDF
Energy Materials ›› 2022, Vol. 2 ›› Issue (6) :200038 DOI: 10.20517/energymater.2022.52
Review

Anodization fabrication techniques and energy-related applications for nanostructured anodic films on transition metals

Author information +
History +
PDF

Abstract

Nanostructured anodic films on transition metals prepared using the electrochemical anodization method have recently attracted particular attention owing to their extraordinary properties and potential use in a variety of applications. Herein, we provide a thorough review of the anodization fabrication of anodic films with different nanostructures, including nanopores, nanotubes, nanoflowers, nanoneedles and nanowires on transition metals, focusing on the growth processes of nanostructured anodic films on three representative transition metals, namely, iron, copper and zinc. Specific consideration is given to the anodization behavior and formed film nanostructures of these transition metals. We conclude that electrolyte composition plays a key role in influencing the final morphologies of anodic films. Fluoride-containing solutions represent universal electrolytes for forming nanostructured anodic films on transition metals. The main applications of the resulting nanostructured anodic films, especially in energy-related fields, such as photoelectrochemical water splitting and supercapacitors, are also presented and discussed. Finally, we indicate the main challenges associated with the fabrication of anodic films with highly ordered nanostructures and the potential future directions of this field are indicated.

Keywords

Anodization / transition metals / anodic films / nanostructures / applications

Cite this article

Download citation ▾
Longfei Jiang, Pengze Li, Shiyi Wang, Rui Liu, Xufei Zhu, Ye Song, Teunis van Ree. Anodization fabrication techniques and energy-related applications for nanostructured anodic films on transition metals. Energy Materials, 2022, 2(6): 200038 DOI:10.20517/energymater.2022.52

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lee W.Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures.Chem Rev2014;114:7487-556.

[2]

Masuda H.Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina.Science1995;268:1466-8.

[3]

Nielsch K,Schwirn K,Gösele U.Self-ordering regimes of porous alumina: The 10% porosity rule.Nano Lett2002;2:677-80.

[4]

Lee W,Steinhart M,Scholz R.Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium.Nat Nanotech2008;3:234-9.

[5]

Lee K,Ouyang M.Self-ordered, controlled structure nanoporous membranes using constant current anodization.Nano Lett2008;8:4624-9.

[6]

Gong D,Varghese OK.Titanium oxide nanotube arrays prepared by anodic oxidation.J Mater Res2001;16:3331-4.

[7]

Macak JM,Taveira L,Schmuki P.Smooth anodic TiO2 nanotubes.Angew Chem Int Ed2005;44:7463-5.

[8]

Macak JM.Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes.Electrochim Acta2006;52:1258-64.

[9]

Albu SP,Macak JM,Schmuki P.Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications.Nano Lett2007;7:1286-9.

[10]

Lee K,Schmuki P.One-dimensional titanium dioxide nanomaterials: nanotubes.Chem Rev2014;114:9385-454.

[11]

Yang Y,Kim D.Enabling the anodic growth of highly ordered V2O5 nanoporous/nanotubular structures.Angew Chem Int Ed2011;50:9071-5.

[12]

Yang Y,Zobel M.Formation of highly ordered VO2 nanotubular/nanoporous layers and their supercooling effect in phase transitions.Adv Mater2012;24:1571-5.

[13]

Lee H,Lee J,Lee K.Highly reversible crystal transformation of anodized porous V2O5 nanostructures for wide potential window high-performance supercapacitors.Electrochim Acta2020;334:135618.

[14]

Lee CY,Schmuki P.Anodic formation of self-organized cobalt oxide nanoporous layers.Angew Chem Int Ed2013;52:2077-81.

[15]

Li Y,Yu Z.Bifunctional porous cobalt phosphide foam for high-current-density alkaline water electrolysis with 4000 h long stability.ACS Sustainable Chem Eng2020;8:10193-200.

[16]

Yang Y,Ruan G,M J.Tour. Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices.Adv Mater2014;26:8163-8.

[17]

Jin B,Huang L,Yang M.Aligned MoOx/MoS2 core-shell nanotubular structures with a high density of reactive sites based on self-ordered anodic molybdenum oxide nanotubes.Angew Chem Int Ed2016;55:12252-56.

[18]

Szkoda M,Siuzdak K.Photocatalytical properties of maze-like MoO3 microstructures prepared by anodization of Mo plate.Electrochim Acta2017;228:139-45.

[19]

Jin B,Chu H.MoP-protected Mo oxide nanotube arrays for long-term stable supercapacitors.Appl Mater Today2019;17:227-35.

[20]

Yanagishita T,Kondo T.Highly ordered anodic porous oxides of transition metals fabricated by anodization combined with a pretexturing process.Electrochem Commun2021;123:106916.

[21]

Mor GK,Paulose M,Grimes CA.A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications.Sol Energy Mater Sol Cells2006;90:2011-75.

[22]

Regonini D,Jaroenworaluck A.A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes.Mat Sci Eng R2013;74:377-406.

[23]

Riboni F,So S.Aligned metal oxide nanotube arrays: key-aspects of anodic TiO2 nanotube formation and properties.Nanoscale Horiz2016;1:445-66.

[24]

Prakasam HE,Paulose M,Grimes CA.Synthesis and photoelectrochemical properties of nanopores iron (III) oxide by potentiostatic anodization.Nanotechnology2006;17:4285-91.

[25]

Song Y,Qi W,Zhu X.High-field anodization of aluminum in concentrated acid solutions and at higher temperatures.J Electroanal Chem2012;673:24-31.

[26]

Yang J,Lin Q.Morphology defects guided pore initiation during the formation of porous anodic alumina.ACS Appl Mater Interfaces2014;6:2285-91.

[27]

Albu SP,Schmuki P.High aspect ratio, self-ordered iron oxide nanopores formed by anodization of Fe in ethylene glycol/NH4F electrolytes.Phys Status Solidi RRL2009;3:64-6.

[28]

Jagminas A,Bernotas N,Selskis A.Compositional and structural characterization of nanoporous films produced by iron anodizing in ethylene glycol solution.Appl Surf Sci2011;257:3893-7.

[29]

Habazaki H,Aoki Y,Thompson GE.Galvanostatic growth of nanoporous anodic films on iron in ammonium fluoride-ethylene glycol electrolytes with different water contents.J Phys Chem C2010;114:18853-9.

[30]

Konno Y,Skeldon P,Habazaki H.Factors influencing the growth behaviour of nanoporous anodic films on iron under galvanostatic anodizing.J Solid State Electrochem2012;16:3887-96.

[31]

Santamaria M,Konno Y,Di Quarto F.Physicochemical characterization and photoelectrochemical analysis of iron oxide films.J Solid State Electrochem2013;17:3005-14.

[32]

LaTempa TJ,Paulose M.Temperature-dependent growth of self-assembled hematite (α-Fe2O3) nanotube arrays: rapid electrochemical synthesis and photoelectrochemical properties.J Phys Chem C2009;113:16293-8.

[33]

Rangaraju RR,Raja KS.Nanostructured anodic iron oxide film as photoanode for water oxidation.J Phys D Appl Phys2009;42:135303.

[34]

Rangaraju RR,Panday A.An investigation on room temperature synthesis of vertically oriented arrays of iron oxide nanotubes by anodization of iron.Electrochim Acta2010;55:785-93.

[35]

Wu J,Liu S.High responsivity photoconductors based on iron pyrite nanowires using sulfurization of anodized iron oxide nanotubes.Nano Lett2014;14:6002-9.

[36]

Pawlik A,Socha RP,Małek K.Effects of anodizing conditions and annealing temperature on the morphology and crystalline structure of anodic oxide layers grown on iron.Appl Surf Sci2017;426:1084-93.

[37]

Lucas-Granados B,Fernández-Domene RM.Controlled hydrodynamic conditions on the formation of iron oxide nanostructures synthesized by electrochemical anodization: effect of the electrode rotation speed.Appl Surf Sci2017;392:503-13.

[38]

Lucas-Granados B,Fernández-Domene RM.Influence of electrolyte temperature on the synthesis of iron oxide nanostructures by electrochemical anodization for water splitting.Int J Hydrogen Energ2018;43:7923-37.

[39]

Lee CY,Kado Y,Schmuki P.Anodic nanotubular/porous hematite photoanode for solar water splitting: substantial effect of iron substrate purity.ChemSusChem2014;7:934-40.

[40]

Mohapatra SK,Banerjee S.Water photooxidation by smooth and ultrathin α-Fe2O3 nanotube arrays.Chem Mater2009;21:3048-55.

[41]

Yu SH,Kim JJ,Sung YE.Vertically aligned iron oxide nanotube arrays and porous magnetite nanostructures as three-dimensional electrodes for lithium ion microbatteries.RSC Adv2012;2:12177-81.

[42]

Zhang Z,Takahashi T.Fabrication of shape-controlled α-Fe2O3 nanostructures by sonoelectrochemical anodization for visible light photocatalytic application.Mater Lett2010;64:435-8.

[43]

Zhang Z,Takahashi T.Self-assembled hematite α-Fe2O3 nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation.Appl Catal B Environ2010;95:423-9.

[44]

Jun H,Kim JY.Photoelectrochemical water splitting over ordered honeycomb hematite electrodes stabilized by alumina shielding.Energy Environ Sci2012;5:6375-82.

[45]

Pervez SA,Farooq U.Crystalline iron oxide nanotube arrays with high aspect ratio as binder free anode for Li-ion batteries.Phys Status Solidi A2014;211:1-6.

[46]

Pervez SA,Farooq U.Comparative electrochemical analysis of crystalline and amorphous anodized iron oxide nanotube layers as negative electrode for LIB.ACS Appl Mater Interfaces2014;6:11219-24.

[47]

He J,Lu Y,Liang B.Superhydrophobic anodized Fe surface modified with fluoroalkylsilane for application in LiBr-water absorption refrigeration process.Ind Eng Chem Res2017;56:495-504.

[48]

Cheng H,Tsang CK.Electrochemical fabrication and optical properties of periodically structured porous Fe2O3 films.Electrochem Commun2012;2:178-81.

[49]

Mushove T,Thompson LT.Synthesis and characterization of hematite nanotube arrays for photocatalysis.Ind Eng Chem Res2015;54:4285-92.

[50]

Xie K,Huang H.Fabrication of iron oxide nanotube arrays by electrochemical anodization.Corros Sci2014;88:66-75

[51]

Xie K,Lai Y.Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage.Electrochem Commun2011;13:657-60.

[52]

Momeni MM,Mohammadi F.Fe2O3 nanotube films prepared by anodisation as visible light photocatalytic.Surf Eng2015;31:452-7.

[53]

Rozana M,Yew CK.Annealing temperature-dependent crystallinity and photocurrent response of anodic nanoporous iron oxide film.J Mater Res2016;31:1681-90.

[54]

Yang Y,Detsch R.Biodegradable nanostructures: degradation process and biocompatibility of iron oxide nanostructured arrays.Mat Sci Eng C2018;85:203-13.

[55]

Xue Y,Du H,Zheng S.Tuning a-Fe2O3 nanotube arrays for the oxygen reduction reaction in alkaline media.RSC Adv2016;6:41878-84.

[56]

Makimizu Y,Tucek J.Activation of α-Fe2O3 for photoelectrochemical water splitting strongly enhanced by low temperature annealing in low oxygen containing ambient.Chem Eur J2020;26:2685-92.

[57]

Joseph JA,John KA.Aluminium doping in iron oxide nanoporous structures to tailor material properties for photocatalytic applications.J Appl Electrochem2020;50:81-92.

[58]

Lucas-Granados B,Fernández-Domene RM,García-Antón J.How does anodization time affect morphological and photocatalytic properties of iron oxide nanostructures?.J Mater Sci Technol2020;38:159-69.

[59]

Martín-González M,Aguirre MH,Caballero-Calero O.Unravelling nanoporous anodic iron oxide formation.Electrochim Acta2020;330:135241.

[60]

Syrek K,Czopor J,Sulka GD.Photoelectrochemical properties of anodic iron oxide layers.J Electroanal Chem2022;909:116143.

[61]

Cao J,Gao N.Designing micro-nano structure of anodized iron oxide films by metallographic adjustment on T8 steel.Ceram Int2021;47:32954-62.

[62]

Zhu X,Song Y.Oxygen bubble mould effect: serrated nanopore formation and porous alumina growth.Monatsh Chem2008;139:999-1003.

[63]

Zhu XF,Liu L.Electronic currents and the formation of nanopores in porous anodic alumina.Nanotechnology2009;20:475303.

[64]

Zhong XM,Zhang SY.Fabrication and formation mechanism of triple-layered TiO2 nanotubes.J Electrochem Soc2013;160:125-9.

[65]

Yu DL,Zhu XF.Han AJ. Morphological evolution of TiO2 nanotube arrays with lotus-root-shaped nanostructure.Appl Surf Sci2013;276:711-6.

[66]

Li C,Gong J,Gong T.A review: research progress on the formation mechanism of porous anodic oxides.Nanoscale Adv2022;4:322-33. PMCID:PMC9417932

[67]

Kang JS,Kim J.Iron oxide photoelectrode with multidimensional architecture for highly efficient photoelectrochemical water splitting.Angew Chem Int Ed2017;56:6583-8.

[68]

Ali G,Hussain A.A novel route to the formation of 3D nanoflower-like hierarchical iron oxide nanostructure.Nanotechnology2019;30:095601.

[69]

Sagu JS,Bohm M,Rout TK.Anodized steel electrodes for supercapacitors.ACS Appl Mater Interfaces2016;8:6277-85.

[70]

Wang Q,Ni Y,Zhu X.N-Doped FeS2 achieved by thermal annealing of anodized Fe in ammonia and sulfur atmosphere: applications for supercapacitors.J Electrochem Soc2021;168:080522.

[71]

Wang H,Zhang S.Preparation and supercapacitive properties of 3D flower-like iron metaphosphates based on anodization of iron.Thin Solid Films2022;742:139045.

[72]

Makimizu Y,Poornajar M.Effects of low oxygen annealing on the photoelectrochemical water splitting properties of α-Fe2O3.J Mater Chem A2020;8:1315-25.

[73]

Li Y.Photocatalytic anti-bioadhesion and bacterial deactivation on nanostructured iron oxide films.J Mater Chem B2018;6:1458-69.

[74]

Murphy AB,Randeniya LK.Efficiency of solar water splitting using semiconductor electrodes.Int J Hydrogen Energy2006;31:1999-2017.

[75]

Alexander BD,Rutkowska I.Metal oxide photoanodes for solar hydrogen production.J Mater Chem2008;18:2298-303.

[76]

Xue J,Shen Q.In-situ construction of photoanode with Fe2O3/Fe3O4 heterojunction nanotube array to facilitate charge separation for efficient water splitting.J Alloy Compd2022;918:165787.

[77]

Joseph JA,John SS,Shaji S.Zinc-doped iron oxide nanostructures for enhanced photocatalytic and antimicrobial applications.J Appl Electrochem2021;51:521-38.

[78]

Yu SH,Lee DJ,Hyeon T.Conversion reaction-based oxide nanomaterials for lithium ion battery anodes.Small2016;12:2146-72.

[79]

Zeng Y,Meng Y,Lu X.Iron-based supercapacitor electrodes: advances and challenges.Adv Energy Mater2016;6:1601053

[80]

Li R,Wang C,Wang Y.A facile strategy to in situ synthesize metal oxide/conductive polymer hybrid electrodes for supercapacitors.Soft Matter2022;18:2517-21.

[81]

Hickling A.The anodic behaviour of metals. part V-copper.Trans Faraday Soc1948;44:262-8.

[82]

Halliday JS.The anodic behaviour of copper in caustic soda solutions.Trans Faraday Soc1954;50:171-8.

[83]

Ashworth Y.The anodic formation of Cu2O in alkaline solutions.J Electrochem Soc1977;124:506.

[84]

Marchiano SL,Arvia AJ.The anodic formation oxide films on copper and cathodic reduction of cuprous in sodium hydroxide solutions.J Appl Electrochem1980;10:365-77.

[85]

Daltin AL,Chopart JP.Potentiostatic deposition and characterization of cuprous oxide films and nanowires.J Cryst Growth2005;282:414-20.

[86]

Lee YH,Wu MT,Fung KZ.Fabrication of Cu/Cu2O composite nanowire arrays on Si via AAO template-mediated electrodeposition.J Alloy Compd2007;427:213-8.

[87]

Shoesmith DW,Owen D.Anodic oxidation of copper in alkaline solutions I. nucleation and growth of cupric hydroxide films.J Electrochem Soc1976;123:790-9.

[88]

Wu X,Zhang J,Shi G.Copper hydroxide nanoneedle and nanotube arrays fabricated by anodization of copper.J Phys Chem B2005;109:22836-42.

[89]

Allam NK.Electrochemical fabrication of complex copper oxide nanoarchitectures via copper anodization in aqueous and non-aqueous electrolytes.Mater Lett2011;65:1949-55.

[90]

Zhang Z.Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy.J Mater Chem2012;22:2456-64.

[91]

Li Y,Liu X.Nanostructured CuO directly grown on copper foam and their supercapacitance performance.Electrochim Acta2012;85:393-8.

[92]

Hyam RS,Cho E,Lee H.Synthesis of copper hydroxide and oxide nanostructures via anodization technique for efficient photocatalytic application.J Nanosci Nanotechnol2012;12:8396-400.

[93]

Cheng Z,Fu K,Sun K.pH-controllable water permeation through a nanostructured copper mesh film.ACS Appl Mater Interfaces2012;4:5826-32.

[94]

Jiang W,Xiao F,Lu H.Preparation and antiscaling application of superhydrophobic anodized CuO nanowire surfaces.Ind Eng Chem Res2015;54:6874-83.

[95]

Xiao F,Liang B,Pehkonen SO.Superhydrophobic CuO nanoneedle-covered copper surfaces for anticorrosion.J Mater Chem A2015;3:4374-88.

[96]

Zhao J,Wang Y.Construction of CuO/Cu2O@CoO core shell nanowire arrays for high-performance supercapacitors.Surf Coat Tech2016;299:15-21.

[97]

Stepniowski WJ,Vasilić R.Morphology and photoluminescence of nanostructured oxides grown by copper passivation in aqueous potassium hydroxide solution.Mater Lett2017;198:89-92.

[98]

Wan J,He D,Suo H.A high-performance supercapacitor electrode based on three-dimensional poly-rowed copper hydroxide nanorods on copper foam.J Mater Sci Mater Electron2018;29:2660-7.

[99]

Du X,Li Q,Yang T.Facile fabrication of CuxO composite nanoarray on nanoporous copper as supercapacitor electrode.Mater Lett2018;233:170-3.

[100]

Wang B,Wang C,Yao H.The optical and electrical performance of CuO synthesized by anodic oxidation based on copper foam.Materials2020;13:5411. PMCID:PMC7730794

[101]

Zhang R,Yu H.All-solid-state wire-shaped asymmetric supercapacitor based on binder-free CuO nanowires on copper wire and PPy on carbon fiber electrodes.J Electroanal Chem2021;893:115323.

[102]

Song G,Xia C,Yang T.Synthesis and application of Cu(OH)2 nanowires on nanoporous copper prepared by dealloying Ti50Cu50 and Ti25Zr25Cu50 amorphous alloys.Mater Charact2021;178;111258.

[103]

Gong S,Yue X.Needle-like Cu(OH)2 in situ grown on nanoporous copper ribbon via anodizing route for supercapacitors.Mater Chem Phys2022;283:126046.

[104]

Ghadge TS.Post annealing temperature-dependent morphological and electrochemical properties of copper hydroxide thin film electrodes obtained by anodization of copper.J Mater Sci2016;51:9879-88.

[105]

He D,Liu G,Zhao C.Construction of leaf-like CuO-Cu2O nanocomposites on copper foam for high-performance supercapacitors.Dalton Tran2017;46:3318-24.

[106]

Anantharaj S,Noda S.Ultrafast growth of a Cu(OH)2-CuO nanoneedle array on Cu foil for methanol oxidation electrocatalysis.ACS Appl Mater Interfaces2020;12:27327-38.

[107]

Anantharaj S,Yamaoka S.Pushing the limits of rapid anodic growth of CuO/Cu(OH)2 nanoneedles on cu for the methanol oxidation reaction: Anodization pH Is the game changer.ACS Appl Energy Mater2021;4:899-912.

[108]

Wang C,Gao Z,Ma H.Synthesizing robust cuprous oxide film with adjustable morphologies as surface-enhanced raman scattering substrate by copper anodization.Mater Chem Phys2021;264:124470.

[109]

Şişman O,Öztürk ZZ.Structural, electrical and H2 sensing properties of copper oxide nanowires on glass substrate by anodization.Sensor Actuat B2016;236:1118-25.

[110]

Jerez DPO,Cervantes WR.Nanostructuring of anodic copper oxides in fluoride-containing ethylene glycol media.J Electroanal Chem807:181-6.

[111]

Wang P,Amal R.Embedment of anodized p-type Cu2O thin films with CuO nanowires for improvement in photoelectrochemical stability.Nanoscale2013;5:2952-8.

[112]

Shu X,Xu G.The anodization synthesis of copper oxide nanosheet arrays and their photoelectrochemical properties.Appl Surf Sci2017;412:505-16.

[113]

Shu X,Cui J.Supercapacitive performance of single phase CuO nanosheet arrays with ultra-long cycling stability.J Alloy Compd2018;753:731-9.

[114]

Stępniowski WJ,Chen Z,Misiołek WZ.Hard anodization of copper in potassium carbonate aqueous solution.Mater Lett2019;252:182-5.

[115]

Stępniowski WJ.The influence of electrolyte usage on the growth of nanostructured anodic films on copper in sodium carbonate aqueous solution.J Electroanal Chem2020;857:113491.

[116]

Abd-Elnaiem AM,Abdel-Latief AY,Mojsilović K.Fabrication, characterization and photocatalytic activity of copper oxide nanowires formed by anodization of copper foams.Materials2021;14:5030. PMCID:PMC8433699

[117]

Stępniowski WJ,Abrahami ST.Nanorods grown by copper anodizing in sodium carbonate.J Electroanal Chem2020;857:113628.

[118]

Stępniowski WJ,Chandrasekar S,Nowak-Stępniowska A.The impact of ethylenediaminetetraacetic acid (EDTA) additive on anodization of copper in KHCO3 - hindering Cu2+ re-deposition by EDTA influences morphology and composition of the nanostructures.J Electroanal Chem2020;871:114245.

[119]

Babu TGS.Development of highly sensitive non-enzymatic sensor for the selective determination of glucose and fabrication of a working model.Electrochim Acta2010;55:1612-8.

[120]

Huang HY,Huang GG.Electrochemical preparation of photoelectrochemically active CuI thin films from room temperature ionic liquid.Electrochim Acta2012;65:204-9.

[121]

Vishwanath RS.Electrochemical preparation of crystalline γ-CuI thin films through potential-controlled anodization of copper and its photoelectrochemical investigations.J Solid State Electr2016;20:2093-102.

[122]

Zhou C,Hou K,Zheng Y.Preparation of CuWO4@Cu2O film on copper mesh by anodization for oil/water separation and aqueous pollutant degradation.Chem Eng J2017;307:803-11.

[123]

Hu H,Gong L,Yang X.Preparation of leaflike copper phosphate films by anodic oxidation and their catalytic oxidation performance.Catal Commun2017;95:46-9.

[124]

Antonopoulos IA.Electrochemistry of copper in methanolic solutions: anodic oxidation and fabrication of hydrophobic surfaces.Electrochim Acta2017;240:195-202.

[125]

Lu Y,Qiu K.Facile synthesis of graphene-like copper oxide nanofilms with enhanced electrochemical and photocatalytic properties in energy and environmental applications.ACS Appl Mater Interfaces2015;7:9682-90.

[126]

Liu S,Pei X.The reversible wetting transition between superhydrophilicity and superhydrophobicity of tremella-like CuxO@CuxS nanosheets prepared by one-step anodization and the application of on-demand oil/water separation.J Alloy Compd2021;889:161793.

[127]

Meng M,Zuo L,Zhang T.Fabrication of hierarchical porous metallic glasses decorated with Cu nanoparticles as integrated electrodes for high-performance non-enzymatic glucose sensing.Scripta Mater2021;199:113884.

[128]

Sisman O,Akkus UO.Hybrid liquid crystalline zinc phthalocyanine@Cu2O nanowires for NO2 sensor application.Sens Actuators B Chem2021;345:130431.

[129]

Yamamoto R,Zhu R.Fabrication of superhydrophobic copper metal nanowire surfaces with high thermal conductivity.Appl Surf Sci2021;537:147854.

[130]

Paracchino A,Sivula K,Thimsen E.Highly active oxide photocathode for photoelectrochemical water reduction.Nature Mater2011;10:456-61.

[131]

Joya KS.Controlled surface-assembly of nanoscale leaf-type Cu-oxide electrocatalyst for high activity water oxidation.ACS Catal2016;6:1768-71.

[132]

Zhang Z,Liu L,Wu Y.Electrochemically prepared cuprous oxide film for photo-catalytic oxygen evolution from water oxidation under visible light.Sol Energy Mater Sol Cells2015;132:275-81.

[133]

Majumdar D.Recent advancements of copper oxide based nanomaterials for supercapacitor applications.J Energy Storage2021;34:101995.

[134]

Chen J,Zhou S,Wong CP.Facile and scalable fabrication of three-dimensional Cu(OH)2 nanoporous nanorods for solid-state supercapacitors.J Mater Chem A2015;3:17385-91.

[135]

Huber K.Anodic formation of coatings on magnesium, zinc, and cadmium.J Electrochem Soc1953; 100:376-82.

[136]

Dirkse TP.Electrolytic oxidation of zinc in alkaline solutions.J Electrochem Soc1955; 102:497-501.

[137]

Fry H.The anodic oxidation of zinc and a method of altering the characteristics of the anodic films.J Electrochem Soc1959;106:606-11.

[138]

Bockris JO,Damjanovic A.On the deposition and dissolution of zinc in alkaline solutions.J Electrochem Soc1972;119:285-95.

[139]

Szpak S.The Zn-KOH system: the solution-precipitation path for anodic ZnO formation.J Electrochem Soc1979;126:1914-23.

[140]

El Ela AH, Bahay ME, El-Raghy SM. Anodic oxidation and self-polarization of zinc metal.J Mater Sci1981;16:2726-36.

[141]

Liu MB,Yao NP.Passivation of zinc anodes in KOH electrolytes J Electrochem Soc 1981;128:1663-8.

[142]

Nanto H,Takata S.Intense white photoluminescence in ZnO thin film formed by anodization.J Mater Sci1983;18:2721-6.

[143]

Yamaguchi Y,Yoshihara S.Photocatalytic ZnO films prepared by anodizing.J Electroanal Chem1998;442:1-3.

[144]

Wu X,Li C.Room-temperature fabrication of highly oriented ZnO nanoneedle arrays by anodization of zinc foil.Nanotechnology2006;17:4936-40.

[145]

Sreekantan S,Lockman Z.Room temperature anodic deposition and shape control of one-dimensional nanostructured zinc oxide.J Alloy Compd2009;476:513-18.

[146]

Huang GS,Cheng YC,Huang AP.Fabrication and characterization of anodic ZnO nanoparticles.Appl Phys A2007;86:463-7.

[147]

Masuda R,Kitano S,Nozawa T.Characterization of dark-colored nanoporous anodic films on zinc.Coatings2020;10:1014.

[148]

Hu Z,Li Z,Peng LM.Large-scale and rapid synthesis of ultralong ZnO nanowire films via anodization.J Phys Chem C2010;114:881-9.

[149]

Kim YT,Kim S,Choi J.Fabrication of hierarchical ZnO nanostructures for dye-sensitized solar cells.Electrochim Acta2012;78:417-21.

[150]

Park J,Choi J.Formation of ZnO nanowires during short durations of potentiostatic and galvanostatic anodization.Curr Appl Phys2013;13:1370-5.

[151]

Samir N,Allam NK.Self-assembled growth of vertically aligned ZnO nanorods for light sensing applications.Mater Lett2014;137:45-8.

[152]

Yavaş A,Erol M.Growth of ZnO nanoflowers: effects of anodization time and substrate roughness on structural, morphological, and wetting properties.J Aust Ceram Soc2020;56:995-1003.

[153]

Tantray AM.Photo electrochemical ability of dense and aligned ZnO nanowire arrays fabricated through electrochemical anodization.Chem Phys Lett2020;747:137346.

[154]

Tantray AM,Mir MA,Shah MA.Random oriented ZnO nanorods fabricated through anodization of zinc in KHCO3 electrolyte.ECS J Solid State Sci2021;10:081003.

[155]

Miles DO,Mattia D.Hierarchical 3D ZnO nanowire structures via fast anodization of zinc.J Mater Chem A2015;3:17569-77.

[156]

Mah CF,Yam FK.Rapid formation and evolution of anodized-Zn nanostructures in NaHCO3 solution.ESC J Solid State Sci Technol2016;5:M105-12.

[157]

Zaraska L,Syrek K.Formation of ZnO nanowires during anodic oxidation of zinc in bicarbonate electrolytes.J Electroanal Chem2017;801:511-20.

[158]

Zaraska L,Hnida KE.High aspect-ratio semiconducting ZnO nanowires formed by anodic oxidation of Zn foil and thermal treatment.Mater Sci Eng B2017;226:94-8.

[159]

Zamora-Peredo L,Báez-Rodríguez A,García- González L.Raman spectroscopy of ZnO nanowires obtained by electrochemical anodization: effect of thermal treatment, voltage and anodizing time.ECS Trans2019;94:329-37.

[160]

Tantray AM.Photo electrochemical stability response of ZnO nanoflowers fabricated through single step electrochemical anodization.Chem Pap2021;75:1739-47.

[161]

Lee W,Gösele U.Fast fabrication of long-range ordered porous alumina membranes by hard anodization.Nat Mater2006;5:741-7.

[162]

Chu SZ,Inoue S,Yasumori A.Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization.Adv Mater2005;17:2115-9.

[163]

Huang W,Cao S,Shen X.Fabrication of highly ordered porous anodic alumina films in 0.75 M oxalic acid solution without using nanoimprinting.Mater Res Bull2019;111:24-33.

[164]

Kim SJ,Choi J.Understanding of anodization of zinc in an electrolyte containing fluoride ions.Electrochim Acta2008;53:7941-45.

[165]

Tello A,Sánchez J.An unexplored strategy for synthesis of ZnO nanowire films by electrochemical anodization using an organic-based electrolyte. Morphological and optical properties characterization.Chem Phys Lett2021;778:138825.

[166]

Katwal G,Rusakova IA,Varghese OK.Rapid growth of zinc oxide nanotube−nanowire hybrid architectures and their use in breast cancer-related volatile organics detection.Nano Lett2016;16:3014-21.

[167]

Dong H,Virtanen S.Fabrication of ZnO nanotube layer on Zn and evaluation of corrosion behavior and bioactivity in view of biodegradable applications.Appl Surf Sci2019;494:259-65.

[168]

Batista-Grau P,Fernández-Domene RM.Formation of ZnO nanowires by anodization under hydrodynamic conditions for photoelectrochemical water splitting.Surf Coat Tech2020;381:125197.

[169]

Batista-Grau P,Sánchez-Tovar R.Control on the morphology and photoelectrocatalytic properties of ZnO nanostructures by simple anodization varying electrolyte composition.J Electroanal Chem2021;880:114933.

[170]

Shrestha NK,Hahn R.Anodic growth of hierarchically structured nanotubular ZnO architectures on zinc surfaces using a sulfide based electrolyte.Electrochem Commun2013;34:9-13.

[171]

Sanz-Marco A,Bajo MM,García-Antón J.Cathodoluminescence characterization of ZnO/ZnS nanostructures anodized under hydrodynamic conditions.Electrochim Acta2018;269:553-9.

[172]

Aydın EB. Electrochemical synthesize and characterization of ZnO/ZnS nanostructures for hydrogen production.Int J Energy Res2020;44:1-16.

[173]

Basu PK,Saha N,Basu S.The superior performance of the electrochemically grown ZnO thin films as methane sensor.Sensor Actuat B2008;133:357-63.

[174]

Basu PK,Maji S,Basu S.Variation of optical band gap in anodically grown nanocrystalline ZnO thin films at room temperature-effect of electrolyte concentrations.J Mater Sci Mater Electron2009;20:1203-7.

[175]

Shetty A.Synthesis of zinc oxide porous structures by anodization with water as an electrolyte.Appl Phys A2012;109:151-7.

[176]

Voon CH.T, Lim BY, et al. Synthesis of zinc oxide thin film by anodizing. In 2014 IEEE International Conference on Semiconductor Electronics, 2014. p. 420-3.

[177]

Ono S,Asoh H.Self-organized and high aspect ratio nanoporous zinc oxide prepared by anodization.ECS Trans2008;13:183-9.

[178]

Dong J,Dong J.Self-organized ZnO nanorods prepared by anodization of zinc in NaOH electrolyte.RSC Adv2016;6:72968-74.

[179]

Mika K,Nyga P.Electrochemical synthesis and characterization of dark nanoporous zinc oxide films.Electrochim Acta2019;305:349-59.

[180]

Shrestha NK,Lee K,Schmuki P.Electrochemically assisted self-assembling of ZnF2-ZnO nanospheres: formation of hierarchical thin porous films.ECS Electrochem Lett2014;3:E1-E3.

[181]

Diomidis N.Effect of hydrodynamics on zinc anodizing in silicate-based electrolytes.Surf Coat Technol2005;195:307-13.

[182]

Kim SJ.Self-assembled arrays of ZnO stripes by anodization.Electrochem Commun2008;10:175-9.

[183]

He S,Yao L.Preparation and properties of ZnO nanostructures by electrochemical anodization method.Appl Surf Sci2010;256:2557-62.

[184]

Zhao J,Liu J,Xu X.Controllable growth of zinc oxide nanosheets and sunflower structures by anodization method.Mater Chem Phys2011;126:555-9.

[185]

Zhao J,Sun Y,Tang C.Preparation and formation mechanism of microporous spheric zinc phosphate.J Solid State Electrochem2011;15:1861-5.

[186]

Farrukh MA,Adnan R.Preparation and characterization of zinc oxide nanoflakes using anodization method and their photodegradation activity on methylene blue.Russ J Phys Chem A2012;86:2041-8.

[187]

Heo B,Choi J.Electrochemical synthesis of zinc ricinoleate and its application in ammonia adsorption.J Environ Chem Eng2021;9:105083.

[188]

Pearton SJ,Ip K,Steiner T.Recent progress in processing and properties of ZnO.Prog Mater Sci2005;50:293-340.

[189]

Chang SS,Park HJ.Luminescence properties of anodically etched porous Zn.Appl Surf Sci2000;158:330-4.

[190]

Yang J,Lu J,Yang S.Electrochemical route to the synthesis of ultrathin ZnO nanorod/nanobelt arrays on zinc substrate.Appl Phys Lett2007;90:103109.

[191]

Galstyan V,Baratto C,Sberveglieri G.Nanostructured ZnO chemical gas sensors.Ceram Int2015;41:14239-44.

[192]

Gilani S,Jadid AP.Antibacterial activity of ZnO films prepared by anodizing.J Nanostruct Chem2016;6:183-9.

[193]

Ramirez-Canon A,Cameron PJ.Zinc oxide nanostructured films produced via anodization: a rational design approach.RSC Adv2013;3:25323-30.

[194]

Ramirez-Canon A,Vezzoli M.Multiscale design of ZnO nanostructured photocatalysts.Phys Chem Chem Phys2018;20:6648-56.

[195]

Taylor CM,Wenk J.Enhancing the photo-corrosion resistance of ZnO nanowire photocatalysts.J Hazard Mater2019;378:120799.

[196]

Ozdemir ET,Dikici T,Yurddaskal M.A comparative study on structural, morphological and photocatalytic properties of anodically grown ZnO nanowires under varying parameters.J Mater Sci Mater Electron2021;32:27398-408.

[197]

Batista-Grau P,Sánchez-Tovar R,Solsona B.Indirect charge transfer of holes via surface states in ZnO nanowires for photoelectrocatalytic applications.Ceram Int2022;48:21856-67.

[198]

Zhu E,Zhao Q.Preparation, parameter optimization of anodized ZnO films and their photocatalytic performance in organic dye degradation in wastewater.Appl Phys A2022;128:697.

[199]

Huang MC,Wu BJ,Wu CC.Anodized ZnO nanostructures for photoelectrochemical water splitting.Appl Surf Sci2016;360:442-50.

[200]

Mika K,Uchacz T,Zaraska L.Dark nanostructured ZnO films formed by anodic oxidation as photoanodes in photoelectrochemical water splitting.Electrochim Acta2022;414:140176.

[201]

Chang H,Han X.Recent developments in advanced anode materials for lithium-ion batteries.Energy Mater2021;1:100003.

[202]

Chen X,Yuan T.Recent advances in earth-abundant first-row transition metal (Fe, Co and Ni)-based electrocatalysts for the oxygen evolution reaction.Energy Mater2022;2:200028.

[203]

Feng S,Xiao T.Anodization, precursor route to flowerlike patterns composed of nanoporous tin oxide nanostrips on tin substrate.J Phys Chem C2009;113:4809-13.

[204]

Lee JW,Choi WS.Well-defined meso- to macro-porous film of tin oxides formed by an anodization process.Electrochim Acta2011;56:5919-25.

[205]

Wang M,Liu Y.Current oscillations during potentiostatic anodization of tin in alkaline electrolytes.Electrochim Acta2011;56:7051-7.

[206]

Bian H,Lee C,Zhang W.Mesoporous SnO2 nanostructures of ultrahigh surface areas by novel anodization.ACS Appl Mater Interfaces2016;8:28862-71.

[207]

Li P,He M.Growth model of the tin anodizing process and the capacitive performance of porous tin oxides.J Phys Chem C2020;124:3050-58.

[208]

Gao N,Wang C.Study on the crystallinity and oxidation states of nanoporous anodized tin oxide films regulated by annealing treatment for supercapacitor application.Langmuir2022;38:164-73.

[209]

Yanagishita T,Masuda H.Preparation of ordered nanohole array structures by anodization of prepatterned Cu, Zn, and Ni.RSC Adv2022;12:6848-54. PMCID:PMC8981794

PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

/