Understanding the role of interfaces in solid-state lithium-sulfur batteries

Tao Tao , Zhijia Zheng , Yuxuan Gao , Baozhi Yu , Ye Fan , Ying Chen , Shaoming Huang , Shengguo Lu

Energy Materials ›› 2022, Vol. 2 ›› Issue (5) : 200036

PDF
Energy Materials ›› 2022, Vol. 2 ›› Issue (5) :200036 DOI: 10.20517/energymater.2022.46
Review

Understanding the role of interfaces in solid-state lithium-sulfur batteries

Author information +
History +
PDF

Abstract

All-solid-state lithium-sulfur batteries (ASSLSBs) exhibit huge potential applications in electrical energy storage systems due to their unique advantages, such as low costs, safety and high energy density. However, the issues facing solid-state electrolyte (SSE)/electrode interfaces, including lithium dendrite growth, poor interfacial capability and large interfacial resistance, seriously hinder their commercial development. Furthermore, an insufficient fundamental understanding of the interfacial roles during cycling is also a significant challenge for designing and constructing high-performance ASSLSBs. This article provides an in-depth analysis of the origin and issues of SSE/electrode interfaces, summarizes various strategies for resolving these interfacial issues and highlights advanced analytical characterization techniques to effectively investigate the interfacial properties of these systems. Future possible research directions for developing high-performance ASSLSBs are also suggested. Overall, advanced in-situ characterization techniques, intelligent interfacial engineering and a deeper understanding of the interfacial properties will aid the realization of high-performance ASSLSBs.

Keywords

All-solid-state lithium-sulfur batteries / interfacial issues / advanced strategies / solid-state electrolytes / sulfur-based cathodes

Cite this article

Download citation ▾
Tao Tao, Zhijia Zheng, Yuxuan Gao, Baozhi Yu, Ye Fan, Ying Chen, Shaoming Huang, Shengguo Lu. Understanding the role of interfaces in solid-state lithium-sulfur batteries. Energy Materials, 2022, 2(5): 200036 DOI:10.20517/energymater.2022.46

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Takada K.Progress and prospective of solid-state lithium batteries.Acta Materialia2013;61:759-70

[2]

Song MK,Zhang Y.Lithium/sulfur batteries with high specific energy: old challenges and new opportunities.Nanoscale2013;5:2186-204

[3]

Lin Z.Lithium-sulfur batteries: from liquid to solid cells.J Mater Chem A2015;3:936-58

[4]

Pang Q,Kwok CY.Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes.Nat Energy2016;1

[5]

Wang Y,Rubloff G,Lee SB.High-capacity lithium sulfur battery and beyond: a review of metal anode protection layers and perspective of solid-state electrolytes.J Mater Sci2019;54:3671-93

[6]

Yan M,Yin Y,Guo Y.Interfacial design for lithium-sulfur batteries: from liquid to solid.Energy Chem2019;1:100002

[7]

Kasemchainan J,Spencer Jolly D.Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells.Nat Mater2019;18:1105-11

[8]

Zhang W,Peng L.Elevating reactivity and cyclability of all-solid-state lithium-sulfur batteries by the combination of tellurium-doping and surface coating.Nano Energy2020;76:105083

[9]

Nie K,Qiu J.Interfaces between cathode and electrolyte in solid state lithium batteries: challenges and perspectives.Front Chem2018;6:616 PMCID:PMC6299818

[10]

Lou S,Fu C.Interface issues and challenges in all-solid-state batteries: lithium, sodium, and Beyond.Adv Mater2021;33:e2000721

[11]

Sun Y,Zhao C.A review of solid electrolytes for safe lithium-sulfur batteries.Sci China Chem2017;60:1508-26

[12]

Judez X,Li CM et al.Review-solid electrolytes for safe and high energy density lithium-sulfur batteries: promises and challenges.J Electrochem Soc2018;165:A6008-16.

[13]

Tian Y,Richards WD.Compatibility issues between electrodes and electrolytes in solid-state batteries.Energy Environ Sci2017;10:1150-66

[14]

Gauthier M,Grimaud A.Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights.J Phys Chem Lett2015;6:4653-72

[15]

Luntz AC,Reuter K.Interfacial challenges in solid-state Li ion batteries.J Phys Chem Lett2015;6:4599-604

[16]

Sang L,Castro FC.Understanding the effect of interlayers at the thiophosphate solid electrolyte/lithium interface for all-solid-state Li batteries.Chem Mater2018;30:8747-56

[17]

Xiao Y,Bo S,Miara LJ.Understanding interface stability in solid-state batteries.Nat Rev Mater2020;5:105-26

[18]

Zhang X,Zhang Q.Advances in interfaces between Li metal anode and electrolyte.Adv Mater Interfaces2018;5:1701097

[19]

Umeshbabu E,Yang Y.Recent progress in all-solid-state lithium-sulfur batteries using high Li-Ion conductive solid electrolytes.Electrochem Energ Rev2019;2:199-230

[20]

Zhang C,Han Z,Wang M.Electrochemical and structural analysis in all-solid-state lithium batteries by analytical electron microscopy: progress and perspectives.Adv Mater2020;32:e1903747

[21]

Yue J,Yin Y.Progress of the interface design in all-solid-state Li-S batteries.Adv Funct Mater2018;28:1707533

[22]

Wu Z,Yoshida A.Utmost limits of various solid electrolytes in all-solid-state lithium batteries: a critical review.Renew Sust Energy Rev2019;109:367-85

[23]

Xu L,Cheng Y.Interfaces in solid-state lithium batteries.Joule2018;2:1991-2015

[24]

Hu Y-,Huggins RA.Ionic conductivity of Lithium orthosilicate -Lithium phosphate solid solutions.J Electrochem Soc1977;124:1240-2

[25]

Shannon R,English A.New Li solid electrolytes.Electrochim Acta1977;22:783-96

[26]

Hong H.Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors.Mater Res Bulletin1978;13:117-24

[27]

Kato Y,Saito T.High-power all-solid-state batteries using sulfide superionic conductors.Nat Energy2016;1

[28]

Ribes M,Souquet J.Sulfide glasses: glass forming region, structure and ionic conduction of glasses in Na2SXS2 (X Si;Ge), Na2SP2S5 and Li2S GeS2 systems.J Non-Crystall Solids1980;38-39:271-6

[29]

Rao M,Li X,Li W.Lithium-sulfur cell with combining carbon nanofibers-sulfur cathode and gel polymer electrolyte.J Power Sources2012;212:179-85

[30]

Wang L,Xia YY.A high performance lithium-ion sulfur battery based on a Li2S cathode using a dual-phase electrolyte.Energy Environ Sci2015;8:1551-8

[31]

Shin BR,Oh DY,Kim JW.Comparative study of TiS2/Li-In all-solid-state lithium batteries using glass-geramic Li3PS4 and Li10GeP2S12 solid electrolytes.Electrochim Acta2014;146:395-402

[32]

Duan J,Nolan AM.Lithium-graphite paste: an interface compatible anode for solid-state batteries.Adv Mater2019;31:e1807243

[33]

Wen J,Duan J.Highly adhesive Li-BN nanosheet composite anode with excellent interfacial compatibility for solid-state Li metal batteries.ACS Nano2019;13:14549-56

[34]

Ohara K,Mori M.Structural and electronic features of binary Li2S-P2S5 glasses.Sci Rep2016;6:21302 PMCID:PMC4759574

[35]

Gao Z,Fu L.Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries.Adv Mater2018;30:e1705702

[36]

Zheng B,Wang H.Stabilizing Li10SnP2S12/Li interface via an in situ formed solid electrolyte interphase layer.ACS Appl Mater Interfaces2018;10:25473-82

[37]

Kraft MA,Calderon M.Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I).J Am Chem Soc2017;139:10909-18

[38]

Das S,Norby P,de Jongh PE.All-solid-state lithium-sulfur battery based on a nanoconfined LiBH4 electrolyte.J Electrochem Soc2016;163:A2029-34

[39]

Fan Z,Zhang T.Solid/solid interfacial architecturing of solid polymer electrolyte-based all-solid-state lithium-sulfur batteries by atomic layer deposition.Small2019;15:e1903952

[40]

Qu H,Du A.Multifunctional sandwich-structured electrolyte for high-performance lithium-sulfur batteries.Adv Sci (Weinh)2018;5:1700503 PMCID:PMC5867043

[41]

Tatsumisago M.Glassy materials based on Li2S for all-solid-state lithium secondary batteries.Solid State Ionics2004;175:13-8

[42]

Hayashi A,Mizuno F,Tatsumisago M.Rechargeable lithium batteries, using sulfur-based cathode materials and Li2S-P2S5 glass-ceramic electrolytes.Electrochim Acta2004;50:893-7

[43]

Chen M,Adams S.The unusual role of Li6PS5Br in all-solid-state CuS/Li6PS5Br/In-Li batteries.Solid State Ionics2014;268:300-4

[44]

Li X,Luo J.High-performance Li-SeSx all-solid-state lithium batteries.Adv Mater2019;31:e1808100

[45]

Zhang Q,Huang Z,Wu J.CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life.J Energy Chem2020;40:151-5

[46]

Tatsumisago M,Hayashi A.Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries.J Asian Cer Soc2013;1:17-25

[47]

Wang D,Zheng X,Gong Z.Li2S@NC composite enable high active material loading and high Li2S utilization for all-solid-state lithium sulfur batteries.J Power Sourc2020;479:228792

[48]

Wang Q,Jin J.A new high-capacity cathode for all-solid-state lithium sulfur battery.Solid State Ionics2020;357:115500

[49]

Ando T,Matsuyama T,Tatsumisago M.High-rate operation of sulfur/mesoporous activated carbon composite electrode for all-solid-state lithium-sulfur batteries.J Ceram Soc Japan2020;128:233-7

[50]

Phuc NHH,Muto H,Kazuhiro H.Sulfur-carbon nano fiber composite solid electrolyte for all-solid-state Li-S batteries.ACS Appl Energy Mater2020;3:1569-73

[51]

Shi J,Weng W.Co3S4@Li7P3S11 hexagonal platelets as cathodes with superior interfacial contact for all-solid-state lithium batteries.ACS Appl Mater Interfaces2020;12:14079-86

[52]

Fujii Y,Miura A.Fe-P-S electrodes for all-solid-state lithium secondary batteries using sulfide-based solid electrolytes.J Power Sources2020;449:227576

[53]

Ryou M,Lee Y,Bieker P.Mechanical surface modification of lithium metal: towards improved li metal anode performance by directed Li plating.Adv Funct Mater2015;25:834-41

[54]

Kozen AC,Pearse AJ.Next-generation lithium metal anode engineering via atomic layer deposition.ACS Nano2015;9:5884-92

[55]

Kazyak E,Dasgupta NP.Improved cycle life and stability of lithium metal anodes through ultrathin atomic layer deposition surface treatments.Chem Mater2015;27:6457-62

[56]

Yang CP,Zhang SF,Guo YG.Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes.Nat Commun2015;6:8058 PMCID:PMC4560781

[57]

Kwon O,Suzuki K.Synthesis, structure, and conduction mechanism of the lithium superionic conductor Li10+δGe1+δP2-δS12.J Mater Chem A2015;3:438-46

[58]

Liang Z,Zhao J.Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating.Proc Natl Acad Sci USA2016;113:2862-7 PMCID:PMC4801240

[59]

Cao Y,Elam JW.Atomic layer deposition of Li XAl YS Solid-State Electrolytes for Stabilizing Lithium-Metal Anodes.ChemElectroChem 2016;3:858-63

[60]

Lin D,Liang Z.Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes.Nat Nano Technol2016;11:626-32

[61]

Liu Y,Liang Z,Yan K.Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode.Nat Commun2016;7:10992 PMCID:PMC4802050

[62]

Sun Y,Seh Z.Graphite-encapsulated Li-metal hybrid anodes for high-capacity Li batteries.Chem2016;1:287-97

[63]

Zhang R,Zhao CZ.Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth.Adv Mater2016;28:2155-62

[64]

Zhou W,Li Y,Manthiram A.Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte.J Am Chem Soc2016;138:9385-8

[65]

Pei A,Shi F,Cui Y.Nanoscale Nucleation and growth of electrodeposited lithium metal.Nano Lett2017;17:1132-9

[66]

Yang C,He S,Hitz E.Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode.Adv Mater2017;29:1702714

[67]

Tao T,Fan Y,Huang S.Anode improvement in rechargeable lithium-sulfur batteries.Adv Mater2017;29:1700542

[68]

Yu B,Mateti S,Chen Y.Nanoflake arrays of lithiophilic metal oxides for the ultra - stable anodes of lithium - metal batteries.Adv Funct Mater2018;28:1803023

[69]

Sun Z,Jin H.Robust expandable carbon nanotube scaffold for ultrahigh-capacity lithium-metal anodes.Adv Mater2018;30:e1800884

[70]

Zhang R,Wang N.N-doped graphene modified 3D porous Cu current collector toward microscale homogeneous Li deposition for Li metal anodes.Adv Energy Mater2018;8:1800914

[71]

Zhang R,Shen X.Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries.Joule2018;2:764-77

[72]

Zhou Y,Zhang H.A carbon cloth-based lithium composite anode for high-performance lithium metal batteries.Energy Stor Mater2018;14:222-9

[73]

Zhang C,Li G,Liu X.Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes.Adv Mater2018;30:e1801328

[74]

Huo H,Luo J,Guo X.Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries.Adv Energy Mater2019;9:1804004

[75]

Zhao Q,Stalin S,Archer LA.Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries.Nat Energy2019;4:365-73

[76]

Xia Y,Xie D.A poly (vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium-sulfur batteries.Chem Eng J2019;358:1047-53

[77]

Yang X,Sun X.Towards high-performance solid-state Li-S batteries: from fundamental understanding to engineering design.Chem Soc Rev2020;49:2140-95

[78]

Liu Y,Zhang W,Lin Y.Composition modulation and structure design of inorganic-in-polymer composite solid electrolytes for advanced lithium batteries.Small2020;16:e1902813

[79]

Sun C,Gong Y,Zhang J.Recent advances in all-solid-state rechargeable lithium batteries.Nano Energy2017;33:363-86

[80]

Chung H.Mechanical and thermal failure induced by contact between a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte and Li metal in an all solid-state Li cell.Chem Mater2017;29:8611-9

[81]

Wenzel S,Krüger D,Janek J.Interphase formation on lithium solid electrolytes - an in situ approach to study interfacial reactions by photoelectron spectroscopy.Solid State Ionics2015;278:98-105

[82]

Richards WD,Wang Y,Ceder G.Interface stability in solid-state batteries.Chem Mater2016;28:266-73

[83]

Eom M,Park C,Nichols WT.High performance all-solid-state lithium-sulfur battery using a Li2S-VGCF nanocomposite.Electrochim Acta2017;230:279-84

[84]

Yao X,Han F.High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes.Adv Energy Mater2017;7:1602923

[85]

Sakuda A,Hayashi A.Sulfur-based composite electrode with interconnected mesoporous carbon for all-solid-state lithium-sulfur batteries.Energy Technol2019;7:1900077

[86]

Kamaya N,Yamakawa Y.A lithium superionic conductor.Nat Mater2011;10:682-6

[87]

Liu ZC,Payzant EA.Anomalous high ionic conductivity of nanoporous β-Li3PS4.J Am Chem Soc2013;135:975-8

[88]

Goodenough J.Challenges for rechargeable Li batteries.Chem Mater2010;22:587-603

[89]

Whiteley JM,Hu E,Lee S.Empowering the lithium metal battery through a silicon-based superionic conductor.J Electrochem Soc2014;161:A1812-7

[90]

Zhu Y,Mo Y.First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries.J Mater Chem A2016;4:3253-66

[91]

Sicolo S,Hausbrand R.Interfacial instability of amorphous lipon against lithium: a combined density functional theory and spectroscopic study.J Power Sources2017;354:124-33

[92]

Lei D,Ye H.Progress and perspective of solid-state lithium-sulfur batteries.Adv Funct Mater2018;28:1707570

[93]

Sharafi A,Davis AL.Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12.Chem Mater2017;29:7961-8

[94]

Scheers J,Johansson P.A review of electrolytes for lithium-sulphur batteries.J Power Sources2014;255:204-18

[95]

Jung YS,Nam YJ.Issues and challenges for bulk-type all-solid-state rechargeable lithium batteries using sulfide solid electrolytes.Isr J Chem2015;55:472-85

[96]

Cheng X,Yao Y,Zhang Q.Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes.Chem2019;5:74-96

[97]

Pan H,He P.A review of solid-state lithium-sulfur battery: ion transport and polysulfide chemistry.Energy Fuels2020;34:11942-61

[98]

Sumita M,Ikeda M.Charged and discharged states of cathode/sulfide electrolyte interfaces in all-solid-state lithium ion batteries.J Phys Chem C2016;120:13332-9

[99]

Xu R,Zhang S.Construction of all-solid-state batteries based on a sulfur-graphene composite and Li9.54Si1.74P1.44S11.7Cl0.3 solid electrolyte.Chemistry2017;23:13950-6

[100]

Liu Y,Zhou H.Rechargeable solid-state Li-Air and Li-S batteries: materials, construction, and challenges.Adv Energy Mater2018;8:1701602

[101]

Riphaus N,Beyer H,Gasteiger HA.Editors’ choice - understanding chemical stability issues between different solid electrolytes in all-solid-state batteries.J Electrochem Soc2019;166:A975-83

[102]

Marceau H,Paolella A.In operando scanning electron microscopy and ultraviolet-visible spectroscopy studies of lithium/sulfur cells using all solid-state polymer electrolyte.J Power Sources2016;319:247-54

[103]

Chung S.A Li2S-TiS2-electrolyte composite for stable Li2S-based lithium-sulfur batteries.Adv Energy Mater2019;9:1901397

[104]

Xiang Y,Cheng Y,Yang Y.Advanced characterization techniques for solid state lithium battery research.Materials Today2020;36:139-57

[105]

Xu C,Gustafsson T,Brandell D.Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study.J Mater Chem A2014;2:7256-64

[106]

Lin Y,Liu K,Liu J.Unique starch polymer electrolyte for high capacity all-solid-state lithium sulfur battery.Green Chem2016;18:3796-803

[107]

Li Y,Xu H.Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries.Angew Chem Int Ed2017;56:753-6

[108]

Kim J.Hybrid gel polymer electrolyte for high-safety lithium-sulfur batteries.Mater Lett2017;187:40-3

[109]

Hartmann P,Busche MR.Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on Solid electrolytes.J Phys Chem C2013;117:21064-74

[110]

Wenzel S,Leichtweiss T,Sann J.Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte.Solid State Ionics2016;286:24-33

[111]

Wang C,Liu B.Conformal, nanoscale ZnO Surface modification of garnet-based solid-state electrolyte for lithium metal anodes.Nano Lett2017;17:565-71

[112]

Xu B,Duan H.Li3PO4-added garnet-type Li6.5La3Zr1.5Ta0.5O12 for Li-dendrite suppression.J Power Sources2017;354:68-73

[113]

Sharafi A,Kerns RD,Sakamoto J.Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte.J Mater Chem A2017;5:21491-504

[114]

Xia W,Duan H.Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2.J Am Ceram Soc2017;100:2832-9

[115]

Nagao M,Tatsumisago M.Li2S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium-sulfur batteries.J Power Sources2015;274:471-6

[116]

Xu R,Li S,Wang X.All-solid-state lithium-sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor.J Mater Chem A2017;5:6310-7

[117]

Sheng O,Luo J.Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium-sulfur batteries.J Mater Chem A2017;5:12934-42

[118]

Zhu P,Zhu J.Flexible electrolyte-cathode bilayer framework with stabilized interface for room-temperature all-solid-state lithium-sulfur batteries.Energy Stor Mater2019;17:220-5

[119]

Shin M.Incorporating solvate and solid electrolytes for all-solid-state Li2S batteries with high capacity and long cycle life.Adv Energy Mater2019;9:1900938

[120]

Hayashi A,Mizuno F,Tatsumisago M.All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes.Electr Comm2003;5:701-5

[121]

Zhu X,Gu Z.Electrochemical characterization and performance improvement of lithium/sulfur polymer batteries.J Power Sources2005;139:269-73

[122]

Jeong S,Choi Y.Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions.J Power Sources2007;174:745-50

[123]

Kobayashi T,Shishihara D.All solid-state battery with sulfur electrode and thio-LISICON electrolyte.J Power Sources2008;182:621-5

[124]

Hayashi A,Ohtomo T,Tatsumisago M.All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material.J Power Sources2008;183:422-6

[125]

Hayashi A,Nagao M.Characterization of Li2S-P2S5-Cu composite electrode for all-solid-state lithium secondary batteries.J Mater Sci2010;45:377-81

[126]

Nagao M,Tatsumisago M.Sulfur-carbon composite electrode for all-solid-state Li/S battery with Li2S-P2S5 solid electrolyte.Electrochim Acta2011;56:6055-9

[127]

Nagao M,Tatsumisago M.Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery.Electr Comm2012;22:177-80

[128]

Agostini M,Yamada T,Hassoun J.A lithium-sulfur battery using a solid, glass-type P2S5-Li2S electrolyte.Solid State Ionics2013;244:48-51

[129]

Nagao M,Narisawa H.All-solid-state Li-sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte.J Power Sources2013;222:237-42

[130]

Kinoshita S,Machida N.Additive effect of ionic liquids on the electrochemical property of a sulfur composite electrode for all-solid-state lithium-sulfur battery.J Power Sources2014;269:727-34

[131]

Nagata H.Transformation of P2S5 into a solid electrolyte with ionic conductivity at the positive composite electrode of all-solid-state lithium-sulfur batteries.Energy Technol2014;2:753-6

[132]

Chen M.High performance all-solid-state lithium/sulfur batteries using lithium argyrodite electrolyte.J Solid State Electrochem2015;19:697-702

[133]

Yu C,Ganapathy S.Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries.Electrochim Acta2016;215:93-9

[134]

Choi HU,Park J.Performance improvement of all-solid-state Li-S batteries with optimizing morphology and structure of sulfur composite electrode.J Alloys Comp2017;723:787-94

[135]

Zhang Y,Shen Y,Nan C.Synergistic effect of processing and composition x on conductivity of xLi2S-(100-x)P2S5 electrolytes.Solid State Ionics2017;305:1-6

[136]

Ulissi U,Hosseini SM,Aihara Y.High capacity all-solid-state lithium batteries enabled by pyrite-sulfur composites.Adv Energy Mater2018;8:1801462

[137]

Zhang Y,Zhang Q.High-performance all-solid-state lithium-sulfur batteries with sulfur/carbon nano-hybrids in a composite cathode.J Mater Chem A2018;6:23345-56

[138]

Gracia I,Judez X.S-containing copolymer as cathode material in poly(ethylene oxide)-based all-solid-state Li-S batteries.J Power Sources2018;390:148-52

[139]

Yu C,Ganapathy S.Tailoring Li6PS5 Br ionic conductivity and understanding of its role in cathode mixtures for high performance all-solid-state Li-S batteries.J Mater Chem A2019;7:10412-21

[140]

Lin Z,Fu W,Liang C.Lithium polysulfidophosphates: a family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries.Angew Chem Int Ed2013;52:7460-3

[141]

Lin Z,Dudney NJ.Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries.ACS Nano2013;7:2829-33

[142]

Unemoto A,Nogami G.Development of bulk-type all-solid-state lithium-sulfur battery using LiBH4 electrolyte.Appl Phys Lett2014;105:083901

[143]

Han F,Fan X.High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S nanocomposite.Nano Lett2016;16:4521-7

[144]

Tao X,Liu W.Solid-state lithium-sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer.Nano Lett2017;17:2967-72

[145]

Zhang C,Zhu Y,Liu J.Improved lithium-ion and electrically conductive sulfur cathode for all-solid-state lithium-sulfur batteries.RSC Adv2017;7:19231-6

[146]

Suzuki K,Hara K.Composite sulfur electrode prepared by high-temperature mechanical milling for use in an all-solid-state lithium-sulfur battery with a Li3.25Ge0.25P0.75S4 electrolyte.Electrochim Acta2017;258:110-5

[147]

Suzuki K,Nagao M.Synthesis, structure, and electrochemical properties of a sulfur-carbon replica composite electrode for all-solid-state li-sulfur batteries.J Electrochem Soc2017;164:A6178-83

[148]

Oh DY,Jung SH,Choi N.Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries.J Mater Chem A2017;5:20771-9

[149]

Trevey JE,Lee S.High lithium ion conducting Li2S-GeS2-P2S5 glass-ceramic solid electrolyte with sulfur additive for all solid-state lithium secondary batteries.Electrochim Acta2011;56:4243-7

[150]

Hao Y,Xu F.A design of solid-state Li-S cell with evaporated lithium anode to eliminate shuttle effects.ACS Appl Mater Interfaces2017;9:33735-9

[151]

Nagao M,Narisawa H.Reaction mechanism of all-solid-state lithium-sulfur battery with two-dimensional mesoporous carbon electrodes.J Power Sources2013;243:60-4

[152]

Zhu Y,Liu J.A bifunctional ion-electron conducting interlayer for high energy density all-solid-state lithium-sulfur battery.J Power Sources2017;351:17-25

[153]

Zhang Q,Liu G,Mwizerwa JP.Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium-sulfur batteries.Nano Energy2019;57:771-82

[154]

Nagata H.An all-solid-state lithium-sulfur battery using two solid electrolytes having different functions.J Power Sources2016;329:268-72

[155]

Hou L,Zhao C.Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium-sulfur batteries.Energy Stor Mater2020;25:436-42

[156]

Mo Y,Ceder G.First principles study of the Li10GeP2S12 lithium super ionic conductor material.Chem Mater2012;24:15-7

[157]

Sudo R,Ishiguro K.Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal.Solid State Ionics2014;262:151-4

[158]

Fu KK,Liu B.Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface.Sci Adv2017;3:e1601659 PMCID:PMC5384807

[159]

Sakuma M,Hirayama M.Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li-M (M = Sn, Si) alloy electrodes and sulfide-based solid electrolytes.Solid State Ionics2016;285:101-5

[160]

Yang C,Ping W.An Electron/Ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries.Adv Mater2019;31:e1804815

[161]

Kato A,Tatsumisago M.Enhancing utilization of lithium metal electrodes in all-solid-state batteries by interface modification with gold thin films.J Power Sources2016;309:27-32

[162]

Shen X,Qian T.Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery.Nat Commun2019;10:900 PMCID:PMC6385276

[163]

Han X,Fu KK.Negating interfacial impedance in garnet-based solid-state Li metal batteries.Nat Mater2017;16:572-9

[164]

Cheng Q,Li N.Stabilizing solid electrolyte-anode interface in li-metal batteries by boron nitride-based nanocomposite coating.Joule2019;3:1510-22

[165]

Luo W,Zhu Y.Reducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer.Adv Mater2017;29:1606042

[166]

Luo W,Zhu Y.Transition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte.J Am Chem Soc2016;138:12258-62

[167]

Shao Y,Gong Z.Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state li batteries.ACS Energy Lett2018;3:1212-8

[168]

Sun B,Lang J,Fang M.A painted layer for high-rate and high-capacity solid-state lithium-metal batteries.Chem Commun2019;55:6704-7

[169]

Zhang Z,Yang J.Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life.ACS Appl Mater Interfaces2018;10:2556-65

[170]

Kızılaslan A.Assembling all-solid-state lithium-sulfur batteries with Li3N-protected anodes.Chempluschem2019;84:183-9

[171]

Li S,Jiang R.Inorganic all-solid-state lithium-sulfur batteries enhanced by facile thermal formation.Energy Stor Mater2022;48:283-9

[172]

Zhong L,Xiao M.Addressing interface elimination: Boosting comprehensive performance of all-solid-state Li-S battery.Energy Stor Mater2021;41:563-70

[173]

Zhang Z,Chen S.An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life.J Mater Chem A2017;5:16984-93

[174]

Yang H,Tennenbaum MJ.Polypropylene carbonate-based adaptive buffer layer for stable interfaces of solid polymer lithium metal batteries.ACS Appl Mater Interfaces2019;11:27906-12

[175]

Yu Q,Lu Q.Constructing effective interfaces for Li1.5Al0.5Ge1.5(PO4)3 pellets to achieve room-temperature hybrid solid-state lithium metal batteries.ACS Appl Mater Interfaces2019;11:9911-8

[176]

Zhou F,Lu YY.Diatomite derived hierarchical hybrid anode for high performance all-solid-state lithium metal batteries.Nat Commun2019;10:2482

[177]

Yuan H,Zhao C.Cover feature: slurry-coated sulfur/sulfide cathode with li metal anode for all-solid-state lithium-sulfur pouch cells.Batteries Supercaps2020;3:568-568

[178]

Jafta CJ,He L.Quantifying the chemical, electrochemical heterogeneity and spatial distribution of (poly) sulfide species using operando SANS.Energy Stor Mate2021;40:219-28

[179]

Zhu Z,Yin Y,Shen B.High rate and stable solid-state lithium metal batteries enabled by electronic and ionic mixed conducting network interlayers.ACS Appl Mater Interfaces2019;11:16578-85

[180]

Gao X,Tsao Y.All-solid-state lithium-sulfur batteries enhanced by redox mediators.J Am Chem Soc2021;143:18188-95

[181]

Duan C,Li W.Realizing the compatibility of a Li metal anode in an all-solid-state Li-S battery by chemical iodine-vapor deposition.Energy Environ Sci2022;15:3236-45

[182]

Liu S,Imanishi N.Effect of co-doping nano-silica filler and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF3SO2)2N/Li.J Power Sources2011;196:7681-6

[183]

Liu W,Sun J.Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers.Nano Lett2015;15:2740-5

[184]

Fu KK,Dai J.Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries.Proc Natl Acad Sci USA2016;113:7094-9 PMCID:PMC4932948

[185]

Wang Q,Jin J.A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries.Chem Commun2016;52:1637-40

[186]

Blanga R,Burstein L.The search for a solid electrolyte, as a polysulfide barrier, for lithium/sulfur batteries.J Solid State Electrochem2016;20:3393-404

[187]

Xia Y,Xia X.A newly designed composite gel polymer electrolyte based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for enhanced solid-state lithium-sulfur batteries.Chemistry2017;23:15203-9

[188]

Liu W,Lin D.Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires.Nat Energy2017;2

[189]

Judez X,Li C.Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) Polymer electrolyte for all solid-state Li-S cell.J Phys Chem Lett2017;8:1956-60

[190]

Wenzel S,Dietrich C,Janek J.Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes.Solid State Ionics2018;318:102-12

[191]

Chen L,Li S,Nan C.PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”.Nano Energy2018;46:176-84

[192]

Lee J,Rottmayer M,Huang H.Free-standing PEO/LITFSI/LAGP composite electrolyte membranes for applications to flexible solid-state lithium-based batteries.J Electrochem Soc2019;166:A416-22

[193]

Xu X,Nie X.Li7P3S11/poly(ethylene oxide) hybrid solid electrolytes with excellent interfacial compatibility for all-solid-state batteries.J Power Sources2018;400:212-7

[194]

Hu J,Yang S.Dry electrode technology for scalable and flexible high-energy sulfur cathodes in all-solid-state lithium-sulfur batteries.J Energy Chem2022;71:612-8

[195]

Dai J,Wang C,Hu L.Interface engineering for garnet-based solid-state lithium-metal batteries: materials, structures, and characterization.Adv Mater2018;30:e1802068

[196]

Nobili F,Marassi R,Scrosati B.An AC impedance spectroscopic study of LixCoO2 at different temperatures.J Phys Chem B2002;106:3909-15

[197]

Zhang W,Weigand H.Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries.ACS Appl Mater Interfaces2017;9:17835-45

[198]

Wang C,Dai J.In situ neutron depth profiling of lithium metal-garnet interfaces for solid state batteries.J Am Chem Soc2017;139:14257-64

[199]

Ishiguro K,Matsui M.Stability of Nb-Doped Cubic Li7La3Zr2O12 with Lithium Metal.J Electrochem Soc2013;160:A1690-3

[200]

Schwöbel A,Jaegermann W.Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission.Solid State Ionics2015;273:51-4

[201]

Gong Y,Jiang L.In situ atomic-scale observation of electrochemical delithiation induced structure evolution of LiCoO2 Cathode in a working all-solid-state battery.J Am Chem Soc2017;139:4274-7

[202]

Yousaf M,Li Y.A mechanistic study of electrode materials for rechargeable batteries beyond lithium ions by in situ transmission electron microscopy.Energy Environ Sci2021;14:2670-707

[203]

Nagao M,Tatsumisago M,Tsuda T.In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5solid electrolyte.Phys Chem Chem Phys2013;15:18600-6

[204]

Tan DHS,Chen Z.From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries.Nat Nanotechnol2020;15:170-80

[205]

Liang X,Wu X.Solid-state electrolytes for solid-state lithium-sulfur batteries: comparisons, advances and prospects.J Energy Chem2022;73:370-86

[206]

Li G,Lu J.Lithium-sulfur batteries for commercial applications.Chem2018;4:3-7

[207]

Zhu B,Xia C.A nanoscale perspective on solid oxide and semiconductor membrane fuel cells: materials and technology.Energy Mater2022;1:100002

PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

/