Constructing stable lithium metal anodes using a lithium adsorbent with a high Mn3+/Mn4+ ratio

Yue Zhao , Ziqiang Liu , Zhendong Li , Zhe Peng , Xiayin Yao

Energy Materials ›› 2022, Vol. 2 ›› Issue (5) : 200034

PDF
Energy Materials ›› 2022, Vol. 2 ›› Issue (5) :200034 DOI: 10.20517/energymater.2022.44
Article

Constructing stable lithium metal anodes using a lithium adsorbent with a high Mn3+/Mn4+ ratio

Author information +
History +
PDF

Abstract

Lithium (Li) metal batteries (LMBs) have emerged as the most prospective candidates for post-Li-ion batteries. However, the practical deployment of LMBs is frustrated by the notorious Li dendrite growth on hostless Li metal anodes. Herein, a protonated Li manganese (Mn) oxide with a high Mn3+/Mn4+ ratio is used as a Li adsorbent for constructing highly stable Li metal anodes. In addition to the Mn3+ sites with high Li affinity that afford an ultralow Li nucleation overpotential, the decrease in the average Mnn+ oxidation state also induces a disordered adsorbent structure via the Jahn-Teller effect, resulting in improved Li transfer kinetics with a significantly reduced Li electroplating overpotential. Based on the mutually improved Li diffusion and adsorption kinetics, the Li adsorbent is used as a versatile host to enable dendrite-free and stable Li metal anodes in LMBs. Consequently, a modified Li||LiNi0.8Mn0.1Co0.1O2 (NMC811) coin cell with a high NMC811 loading of 4.3 mAh cm-2 delivers a high Coulombic efficiency of 99.85% over 200 cycles and the modified Li||NMC811 pouch cell also achieves a remarkable improvement in electrochemical performance. This work demonstrates a novel approach for the preparation of highly efficient Li protection structures for safe LMBs with long lifespans.

Keywords

Lithium metal batteries / lithium metal anodes / dendrites / protonated lithium manganese oxide

Cite this article

Download citation ▾
Yue Zhao, Ziqiang Liu, Zhendong Li, Zhe Peng, Xiayin Yao. Constructing stable lithium metal anodes using a lithium adsorbent with a high Mn3+/Mn4+ ratio. Energy Materials, 2022, 2(5): 200034 DOI:10.20517/energymater.2022.44

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chu S.Opportunities and challenges for a sustainable energy future.Nature2012;488:294-303

[2]

Choi JW.Promise and reality of post-lithium-ion batteries with high energy densities.Nat Rev Mater2016;1:16013

[3]

Liu J,Cui Y.Pathways for practical high-energy long-cycling lithium metal batteries.Nat Energy2019;4:180-6

[4]

Cheng XB,Zhao CZ.Toward safe lithium metal anode in rechargeable batteries: a review.Chem Rev2017;117:10403-73

[5]

Jiao S,Li Q.Behavior of lithium metal anodes under various capacity utilization and high current density in lithium metal batteries.Joule2018;2:110-24

[6]

Fan X,Ji X.Highly fluorinated interphases enable high-voltage Li-metal batteries.Chem2018;4:174-85

[7]

Zhu C,Li R.Anion-Diluent pairing for stable high-energy Li metal batteries.ACS Energy Lett2022;7:1338-47

[8]

Fan X,Han F.Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery.Sci Adv2018;4:eaau9245 PMCID:PMC6303121

[9]

Ji X,Wang P.Solid-state electrolyte design for lithium dendrite suppression.Adv Mater2020;32:e2002741

[10]

Zhang Z,Wang S.Li2O-reinforced Cu nanoclusters as porous structure for dendrite-free and long-lifespan lithium metal anode.ACS Appl Mater Interfaces2016;8:26801-8

[11]

Huang S,Ming H,Fan LZ.Chemical energy release driven lithiophilic layer on 1 m2 commercial brass mesh toward highly stable lithium metal batteries.Nano Lett2019;19:1832-7

[12]

Luo K,Li Z.Shielded electric field-boosted lithiophilic Sites: a Janus interface toward stable lithium metal anodes.Chem Eng J2021;416:129142

[13]

Peng Z,Huai L.Enhanced stability of Li metal anodes by synergetic control of nucleation and the solid electrolyte interphase.Adv Energy Mater2019;9:1901764

[14]

Zhang D,Wu M.Lithiophilic 3D porous CuZn current collector for stable lithium metal batteries.ACS Energy Lett2020;5:180-6

[15]

Chen W,Zhao Q,Huang W.Au-modified 3D carbon cloth as a dendrite-free framework for Li metal with excellent electrochemical stability.J Alloys Comp2021;871:159491

[16]

Zhang R,Chen X.Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes.Angew Chem Int Ed Engl2017;56:7764-8

[17]

Wang M,Lin H.A framework with enriched fluorinated sites for stable Li metal cycling.Acta Physico Chimica Sinica2021;37:2007016

[18]

Kim Y,Noh H.Facet selectivity of Cu current collector for Li electrodeposition.Energy Storage Mater2019;19:154-62

[19]

Gu Y,Zhang XG.Lithiophilic faceted Cu(100) surfaces: high utilization of host surface and cavities for lithium metal anodes.Angew Chem Int Ed Engl2019;58:3092-6

[20]

Li S,Huai L.A strongly interactive adatom/substrate interface for dendrite-free and high-rate Li metal anodes.J Energy Chem2021;62:179-90

[21]

Julien CM.Raman spectroscopic studies of lithium manganates with spinel structure.J Phys Condens Matter2003;15:3151-62

[22]

Mu Y,Zhang W.Electrochemical lithium recovery from brine with high Mg2+/Li+ ratio using mesoporous λ-MnO2/LiMn2O4 modified 3D graphite felt electrodes.Desalination2021;511:115112

[23]

Saif H,Pawlowski S,Velizarov S.Development of highly selective composite polymeric membranes for Li+/Mg2+ separation.J Membrane Sci2021;620:118891

[24]

Zuo C,Qi R.Double the capacity of manganese spinel for lithium-ion storage by suppression of cooperative Jahn-Teller distortion.Adv Energy Mater2020;10:2000363

[25]

Li X,Wu D,Bo S.Jahn-Teller assisted Na diffusion for high performance Na Ion batteries.Chem Mater2016;28:6575-83

[26]

Pei A,Shi F,Cui Y.Nanoscale nucleation and growth of electrodeposited lithium metal.Nano Lett2017;17:1132-9

[27]

Fleischmann S,Wang X.Continuous transition from double-layer to Faradaic charge storage in confined electrolytes.Nat Energy2022;7:222-8

[28]

Zhan Y,Ma X.Failure mechanism of lithiophilic sites in composite lithium metal anode under practical conditions.Advan Energy Mater2022;12:2103291

[29]

Xu J,Chen J.Stabilizing lithiophilic sites via bimetallic oxide heterointerfaces.Adv Mater Inter2022;9:2200750

PDF

53

Accesses

0

Citation

Detail

Sections
Recommended

/