ZnO/MgZnO heterostructure membrane with type II band alignment for ceramic fuel cells

M.A.K. Yousaf Shah , Yuzheng Lu , Naveed Mushtaq , Manish Singh , Sajid Rauf , Muhammad Yousaf , Bin Zhu

Energy Materials ›› 2022, Vol. 2 ›› Issue (4) : 200031

PDF
Energy Materials ›› 2022, Vol. 2 ›› Issue (4) :200031 DOI: 10.20517/energymater.2022.27
Article

ZnO/MgZnO heterostructure membrane with type II band alignment for ceramic fuel cells

Author information +
History +
PDF

Abstract

Semiconductor membrane fuel cells are a new promising R&D for solid oxide fuel cells and proton ceramic fuel cells. There is a challenge of the electronic short circuit issue by using semiconductor to replace conventional electrolyte membrane. In this work, type II band alignment of the semiconductor heterostructure based on Mg-doped ZnO and ZnO can, on one hand, block electrons passing through the junction, and on the other hand, trigger the ionic properties of membrane to boost the fuel cell performance. The Mg doping into ZnO creates more oxygen vacancies at the surface of ZnO, leading to enhanced ionic transport, and meaningful fuel cell performance of 673 mW/cm2; while the Mg-doped ZnO/ZnO heterostructure fuel cell has delivered 997 mW/cm2 and OCV 1.04 V at 520 oC. It is worth highlighting that the constructed heterostructure interface, especially the band bending and constituted build-in electric field, plays a pivotal role in enhancing the ionic transport and suppressing the electron passing through the internal device. First principal calculations using density functional theory confirmed the doping of Mg and the formation of heterostructure with ZnO to help for enhancing charge carriers and separations. This work suggests that the constructed type II band alignment or the semiconductor heterostructure is useful for developing advanced fuel cells.

Keywords

Type-II semiconductor heterostructure / ZnO/Mg-ZnO / ceramic fuel cells, high ionic conductivity

Cite this article

Download citation ▾
M.A.K. Yousaf Shah, Yuzheng Lu, Naveed Mushtaq, Manish Singh, Sajid Rauf, Muhammad Yousaf, Bin Zhu. ZnO/MgZnO heterostructure membrane with type II band alignment for ceramic fuel cells. Energy Materials, 2022, 2(4): 200031 DOI:10.20517/energymater.2022.27

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xia C,Wang B,Chen G.Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells.Nat Commun2019;10:1707 PMCID:PMC6461657

[2]

Lee KM,Ngai KS.Recent developments of zinc oxide based photocatalyst in water treatment technology: a review.Water Res2016;88:428-48

[3]

D’agostino D,Bobba F.Effects of cobalt substitution on ZnO surface reactivity and electronic structure.J Mater Chem C2019;7:8364-73

[4]

Xia C,Shen L.Semiconductor electrolyte for low-operating-temperature solid oxide fuel cell: Li-doped ZnO.Int J Hydrog Energy2018;43:12825-34

[5]

Shah MY,Mushtaq N.Semiconductor Fe-doped SrTiO3-δ perovskite electrolyte for low-temperature solid oxide fuel cell (LT-SOFC) operating below 520 °C.Int J Hydrog Energy2020;45:14470-9

[6]

Shah MAKY,Rauf S.Electrochemical properties of a Co-doped SrSnO3-δ -based semiconductor as an electrolyte for solid oxide fuel cells.ACS Appl Energy Mater2020;3:6323-33

[7]

Shah MAKY,Zhu B.Semiconductor Nb-doped SrTiO3-δ perovskite electrolyte for a ceramic fuel cell.ACS Appl Energy Mater2021;4:365-75

[8]

Shah MAKY,Mushtaq N.Novel perovskite semiconductor based on Co/Fe-codoped LBZY (La0.5Ba0.5Co0.2Fe0.2Zr0.3Y0.3O3-δ) as an electrolyte in ceramic fuel cells.ACS Appl Energy Mater2021;4:5798-808

[9]

Rauf S,Shah MY.Tailoring triple charge conduction in BaCo0.2Fe0.1Ce0.2Tm0.1Zr0.3Y0.1O3-δ semiconductor electrolyte for boosting solid oxide fuel cell performance.Renew Energy2021;172:336-49

[10]

Mushtaq N,Xia C.Design principle and assessing the correlations in Sb-doped Ba0.5Sr0.5FeO3-δ perovskite oxide for enhanced oxygen reduction catalytic performance.J Catal2021;395:168-77

[11]

Tayyab Z,Xia C.Advanced LT-SOFC based on reconstruction of the energy band structure of the LiNi0.8Co0.15Al0.05O2 -Sm0.2Ce0.8O2-δ heterostructure for fast ionic transport.ACS Appl Energy Mater2021;4:8922-32

[12]

Rauf S,Yousaf Shah MAK.Application of a triple-conducting heterostructure electrolyte of Ba0.5Sr0.5Co0.1Fe0.7Zr0.1Y0.1O3-δ and Ca0.04Ce0.80Sm0.16O2-δ in a high-performance low-temperature solid oxide fuel cell.ACS Appl Mater Interfaces2020;12:35071-80

[13]

Shah MY,Rauf S.Interface engineering of bi-layer semiconductor SrCoSnO3-δ-CeO2-δ heterojunction electrolyte for boosting the electrochemical performance of low-temperature ceramic fuel cell.Int J Hydrog Energy2021;46:33969-77

[14]

Mushtaq N,Xia C.Promoted electrocatalytic activity and ionic transport simultaneously in dual functional Ba0.5Sr0.5Fe0.8Sb0.2O3-δ-Sm0.2Ce0.8O2-δ heterostructure.Appl Catal B2021;298:120503

[15]

Xing Y,Wang F.Cubic silicon carbide/zinc oxide heterostructure fuel cells.Appl Phys Lett2020;117:162105

[16]

Gao Z,Miller EC,Barnett SA.A perspective on low-temperature solid oxide fuel cells.Energy Environ Sci2016;9:1602-44

[17]

Zhu B,Qin H,Fan L.Fuel cells based on electrolyte and non-electrolyte separators.Energy Environ Sci2011;4:2986

[18]

Kudo A.Heterogeneous photocatalyst materials for water splitting.Chem Soc Rev2009;38:253-78

[19]

Xing Y,Li L.Proton Shuttles in CeO2/CeO2-δ core-shell structure.ACS Energy Lett2019;4:2601-7

[20]

Dong W,Zhu B.Semiconductor TiO2 thin film as an electrolyte for fuel cells.J Mater Chem A2019;7:16728-34

[21]

Agrawal A,Phase DM.Type I and type II band alignments in ZnO/MgZnO bilayer films.Appl Phys Lett2014;105:081603

[22]

Yousaf Shah MA, Mushtaq N, Rauf S, Xia C, Zhu B. The semiconductor SrFe0.2Ti0.8O3-δ-ZnO heterostructure electrolyte fuel cells.Int J Hydrog Energy2019;44:30319-27

[23]

Chen G,Luo Y.Investigation of layered Ni0.8Co0.15Al0.05LiO2 in electrode for low-temperature solid oxide fuel cells.Int J Hydrog Energy2018;43:417-25

[24]

Chen G,Luo Y.Advanced fuel cell based on new nanocrystalline structure Gd0.1Ce0.9O2 electrolyte.ACS Appl Mater Interfaces2019;11:10642-50

[25]

Rahman A,Tan AL,Hojamberdiev M.Effect of Mg doping on ZnO fabricated using aqueous leaf extract of Ziziphus mauritiana Lam. for antioxidant and antibacterial studies.Bioprocess Biosyst Eng2021;44:875-89

[26]

Choudhary MK,Sharma S.Novel green biomimetic approach for preparation of highly stable Au-ZnO heterojunctions with enhanced photocatalytic activity.ACS Appl Nano Mater2018;1:1870-8

[27]

Platonov VB,Frolov AS,Gaskov AM.High-temperature resistive gas sensors based on ZnO/SiC nanocomposites.Beilstein J Nanotechnol2019;10:1537-47 PMCID:PMC6664407

[28]

Ievtushenko A,Shtepliuk I,Lazorenko V.X-ray photoelectron spectroscopy study of nitrogen and aluminum-nitrogen doped ZnO films.Acta Phys Pol A2013;124:858-61

[29]

Fan W,Zhao F.Boosting the photocatalytic performance of (001) BiOI: enhancing donor density and separation efficiency of photogenerated electrons and holes.Chem Commun2016;52:5316-9

[30]

Chang FM,Huang JH,Lo KY.Strong correlation between optical properties and mechanism in deficiency of normalized self-assembly ZnO nanorods.Sci Rep2019;9:905 PMCID:PMC6351557

[31]

Mushtaq N,Dong W.Tuning the energy band structure at interfaces of the SrFe0.75Ti0.25O3-δ-Sm0.25Ce0.75O2-δ heterostructure for fast ionic transport.ACS Appl Mater Interfaces2019;11:38737-45

[32]

Lu Y,Shi J.Advanced low-temperature solid oxide fuel cells based on a built-in electric field.Energy Mater2021;1:100007

[33]

Zhu B,Xia C.Nano-scale view into solid oxide fuel cell and semiconductor membrane fuel cell: material and technology.Energy Mater2021;1:100002

[34]

Zhu B,Wang Y.Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3-δ and ion-doping ceria heterostructure material for new generation fuel cell.Nano Energy2017;37:195-202

[35]

Yousaf M,Hu E.Tunable magneto-optical and interfacial defects of Nd and Cr-doped bismuth ferrite nanoparticles for microwave absorber applications.J Colloid Interface Sci2022;608:1868-81

[36]

Song L,Zhang S.Synthesis and characterization of Ag/AgBrO 3 photocatalyst with high photocatalytic activity.Mater Chem Phys2016;182:119-24

[37]

Lacerda LHDS.Isomorphic substitution and intermediary energy levels: a new application of DFT modelling and semiconductor theory to describe p-n type junctions interface in heterostructures: isomorphic substitution in ZnO/BTO.Phys Status Solidi B2017;254:1700119

[38]

Catti M,Dovesi R.Full piezoelectric tensors of wurtzite and zinc blende ZnO and ZnS by first-principles calculations.J Phys Chem Solids2003;64:2183-90

[39]

Wang Z,Zhang X.Enhanced photocatalytic destruction of pollutants by surface W vacancies in VW-Bi2WO6 under visible light.J Colloid Interface Sci2020;576:385-93

PDF

65

Accesses

0

Citation

Detail

Sections
Recommended

/