An interpenetrating network polycarbonate-based composite electrolyte for high-voltage all-solid-state lithium-metal batteries

Jiaxin Chen , Chao Wang , Guoxu Wang , Dan Zhou , Li-Zhen Fan

Energy Materials ›› 2022, Vol. 2 ›› Issue (3) : 200023

PDF
Energy Materials ›› 2022, Vol. 2 ›› Issue (3) :200023 DOI: 10.20517/energymater.2022.25
Article

An interpenetrating network polycarbonate-based composite electrolyte for high-voltage all-solid-state lithium-metal batteries

Author information +
History +
PDF

Abstract

The exploration of solid polymer-based composite electrolytes (SCPEs) that possess good safety, easy processability, and high ionic conductivity is of great significance for the development of advanced all-solid-state lithium-metal batteries (ASSLMBs). However, the poor interfacial compatibility between the electrode and solid electrolyte leads to a large interfacial impedance that weakens the electrochemical performance of the battery. Herein, an interpenetrating network polycarbonate (INPC)-based composite electrolyte is constructed via the in-situ polymerization of butyl acrylate, Li7La3Zr2O12 (LLZO), Lithium bis(trifluoromethanesulphonyl)imide, succinonitrile and 2,2-azobisisobutyronitrile on the base of a symmetric polycarbonate monomer. Benefiting from the synergistic effect of each component and the unique structure features, the INPC&LLZO-SCPE can effectively integrate the merits of the polymer and inorganic electrolytes and deliver superior ionic conductivity (3.56 × 10-4 S cm-1 at 25 °C), an impressive Li+ transference number [t(Li+) = 0.52] and a high electrochemical stability window (up to 5.0 V vs. Li+/Li). Based on this, full batteries of LiFePO4/INPC&LLZO-SCPE/Li and LiNi0.6Co0.2Mn0.2O2/INPC&LLZO-SCPE/Li are assembled, which exhibit large initial capacities of 156.3 and 158.9 mAh g-1 and high capacity retention of 86.8% and 95.4% over 500 and 100 cycles at 0.2 and 0.1 C, respectively. This work offers a new route for the construction of novel polycarbonate-based composite electrolytes for high-voltage ASSLMBs.

Keywords

All-solid-state batteries / composite electrolyte / polycarbonate / interpenetrating network / high voltage

Cite this article

Download citation ▾
Jiaxin Chen, Chao Wang, Guoxu Wang, Dan Zhou, Li-Zhen Fan. An interpenetrating network polycarbonate-based composite electrolyte for high-voltage all-solid-state lithium-metal batteries. Energy Materials, 2022, 2(3): 200023 DOI:10.20517/energymater.2022.25

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goodenough JB.Challenges for rechargeable Li batteries.Chem Mater2010;22:587-603

[2]

Bi Z.Solidification for solid-state lithium batteries with high energy density and long cycle life.Energy Mater2022;2:200011

[3]

Yang Z,Lin K.Realizing ultra-stable SnO2 anodes via in-situ formed confined space for volume expansion.Carbon2022;187:321-9

[4]

Liang J,Sun Q,Li R.Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries.Energy Storage Mater2019;21:308-34

[5]

Wang G,Fan L.Asymmetric polymer electrolyte constructed by metal-organic framework for solid-state, dendrite-free lithium metal battery.Adv Funct Mater2021;31:2007198

[6]

Wu J,Zhang W,Xie X.Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries.Energy Environ Sci2021;14:12-36

[7]

Janek J.A solid future for battery development.Nat Energy2016;1:1-4

[8]

Famprikis T,Dawson JA,Masquelier C.Fundamentals of inorganic solid-state electrolytes for batteries.Nat Mater2019;18:1278-91

[9]

Bi Z,Mu S,Zhao N.Dual-interface reinforced flexible solid garnet batteries enabled by in-situ solidified gel polymer electrolytes.Nano Energy2021;90:106498

[10]

Tan S,Ma Q,Guo Y.Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries.Electrochem Energ Rev2018;1:113-38

[11]

Ibrahim S,Ahmad R.Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes.Ionics2011;17:399-405

[12]

Zhou Q,Cui G.Rigid-flexible coupling polymer electrolytes toward high-energy lithium batteries.Macromol Mater Eng2018;303:1800337

[13]

Choudhury S,Vu D.Solid-state polymer electrolytes for high-performance lithium metal batteries.Nat Commun2019;10:4398 PMCID:PMC6765010

[14]

Sun C,Gong Y,Zhang J.Recent advances in all-solid-state rechargeable lithium batteries.Nano Energy2017;33:363-86

[15]

Wang C,Wang L.Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery.Adv Sci2019;6:1901036 PMCID:PMC6865005

[16]

Yang X,Gao X.Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal -OH group?.Energy Environ Sci2020;13:1318-25

[17]

Chen L,Li S,Nan C.PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”.Nano Energy2018;46:176-84

[18]

Zhou D,Tkacheva A,Wang G.Polymer electrolytes for lithium-based batteries: advances and prospects.Chem2019;5:2326-52

[19]

Zhao N,Bi Z.Solid garnet batteries.Joule2019;3:1190-9

[20]

Mindemark J,Bowden T.Beyond PEO-Alternative host materials for Li+ -conducting solid polymer electrolytes.Prog Polym Sci2018;81:114-43

[21]

Zhang J,Dong T.Aliphatic polycarbonate-based solid-state polymer electrolytes for advanced lithium batteries: advances and perspective.Small2018;14:e1800821

[22]

Xu H,Liu Z,Deng Y.Carbonyl-coordinating polymers for high-voltage solid-state lithium batteries: solid polymer electrolytes.MRS Energy Sustainability2020;7:E2

[23]

Sun B,Edström K.Realization of high performance polycarbonate-based Li polymer batteries.Electrochem Commun2015;52:71-4

[24]

Jung YC,Kim DH,Eftekhari A.Room-temperature performance of poly(ethylene ether carbonate)-based solid polymer electrolytes for all-solid-state lithium batteries.Sci Rep2017;7:17482 PMCID:PMC5727542

[25]

Sun B,Edström K.Polycarbonate-based solid polymer electrolytes for Li-ion batteries.Solid State Ionics2014;262:738-42

[26]

Liu W,Sun J.Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers.Nano Lett2015;15:2740-5

[27]

Fan L,Nan C.Tailoring inorganic-polymer composites for the mass production of solid-state batteries.Nat Rev Mater2021;6:1003-19

[28]

Huo H,Luo J,Guo X.Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries.Adv Energy Mater2019;9:1804004

[29]

Liu X,Zhou X.An interpenetrating network poly(diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries.J Mater Chem A2017;5:11124-30

[30]

Zekoll S,Hekselman AKO.Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries.Energy Environ Sci2018;11:185-201

[31]

Yu X,Ma J,Zhou X.Selectively wetted rigid-flexible coupling polymer electrolyte enabling superior stability and compatibility of high-voltage lithium metal batteries.Adv Energy Mater2020;10:1903939

[32]

Zeng C.Poly(methyl methacrylate) and polystyrene/clay nanocomposites prepared by in-situ polymerization.Macromolecules2001;34:4098-103

[33]

Lin-gibson S,Antonucci JM,Horkay F.Synthesis and characterization of poly(ethylene glycol) dimethacrylate hydrogels.Macromol Symp2005;227:243-54

[34]

Nair JR,Bella F,Gerbaldi C.Thermally cured semi-interpenetrating electrolyte networks (s-IPN) for safe and aging-resistant secondary lithium polymer batteries.J Power Sources2016;306:258-67

[35]

Zeng XX,Li NW,Guo YG.Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries.J Am Chem Soc2016;138:15825-8

[36]

Zhang N,Feng M.In situ generation of a soft-tough asymmetric composite electrolyte for dendrite-free lithium metal batteries.J Mater Chem A2021;9:4018-25

[37]

Hou X.Novel interpenetrating polymer network electrolytes.Polymer2001;42:4181-8

[38]

Oh B,Zhang Z,Tsukamoto H.New interpenetrating network type poly(siloxane-g-ethylene oxide) polymer electrolyte for lithium battery.J Power Sources2003;119-121:442-7

[39]

Ju J,Chen B.Integrated interface strategy toward room temperature solid-state lithium batteries.ACS Appl Mater Interfaces2018;10:13588-97

[40]

Bi Z,Zhao N,Huang W.Cathode supported solid lithium batteries enabling high energy density and stable cyclability.Energy Storage Mater2021;35:512-9

[41]

Zhou D,Liu R.In situ synthesis of a hierarchical all-solid-state electrolyte based on nitrile materials for high-performance lithium-ion batteries.Adv Energy Mater2015;5:1500353

[42]

Yue L,Zhang J.All solid-state polymer electrolytes for high-performance lithium ion batteries.Energy Storage Mater2016;5:139-64

[43]

Du F,Li Y,Liu Z.All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes.J Power Sources2015;300:24-8

[44]

Jia M,Huo H.Comprehensive investigation into garnet electrolytes toward application-oriented solid lithium batteries.Electrochem Energ Rev2020;3:656-89

[45]

Huang W,Bi Z.Can we find solution to eliminate Li penetration through solid garnet electrolytes?.Mater Today Nano2020;10:100075

[46]

Alarco PJ,Abouimrane A.The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors.Nat Mater2004;3:476-81

[47]

Zhang X,Chen X,Zhang Q.Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries.Adv Funct Mater2017;27:1605989

[48]

Yan C,Tian Y.Lithium metal anodes: dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition (Adv. Mater. 25/2018).Adv Mater2018;30:1870181

[49]

Yang Z,Lin K,Fu Y.Surface passivated Li Si with improved storage stability as a prelithiation reagent in anodes.Electrochem Commun2022;138:107272

[50]

Jiang T,Wang G,Nan C.Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries.Adv Energy Mater2020;10:1903376

PDF

77

Accesses

0

Citation

Detail

Sections
Recommended

/