Recent advances and perspectives of microsized alloying-type porous anode materials in high-performance Li- and Na-ion batteries

Gaojie Li , Siguang Guo , Ben Xiang , Shixiong Mei , Yang Zheng , Xuming Zhang , Biao Gao , Paul K. Chu , Kaifu Huo

Energy Materials ›› 2022, Vol. 2 ›› Issue (3) : 200020

PDF
Energy Materials ›› 2022, Vol. 2 ›› Issue (3) :200020 DOI: 10.20517/energymater.2022.24
Review

Recent advances and perspectives of microsized alloying-type porous anode materials in high-performance Li- and Na-ion batteries

Author information +
History +
PDF

Abstract

Alloying materials (e.g., Si, Ge, Sn, Sb, and so on) are promising anode materials for next-generation lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) due to their high capacity, suitable working voltage, earth abundance, environmental friendliness, and non-toxicity. Although some important breakthroughs have been reported recently for these materials, their dramatic volume change during alloying/dealloying causes severe pulverization, leading to poor cycling stability and safety risks. Although the nanoengineering of alloys can mitigate the volumetric expansion to some extent, there remain other drawbacks, such as low initial Columbic efficiency and volumetric energy density. Porous microscale alloys comprised of nanoparticles and nanopores inherit micro- and nanoproperties, so that volume expansion during lithiation/sodiation can be better accommodated by the porous structure to consequently release stress and improve the cycling stability. Herein, the recent progress of porous microscale alloying-type anode materials for LIBs and SIBs is reviewed by summarizing the Li and Na storage mechanisms, the challenges associated with different materials, common fabrication methods, and the relationship between the structure and electrochemical properties in LIBs and SIBs. Finally, the prospects of porous microscale alloys are discussed to provide guidance for future research and the commercial development of anode materials for LIBs and SIBs.

Keywords

Alloy-type materials / microsized porous materials / lithium-ion batteries / sodium-ion batteries

Cite this article

Download citation ▾
Gaojie Li, Siguang Guo, Ben Xiang, Shixiong Mei, Yang Zheng, Xuming Zhang, Biao Gao, Paul K. Chu, Kaifu Huo. Recent advances and perspectives of microsized alloying-type porous anode materials in high-performance Li- and Na-ion batteries. Energy Materials, 2022, 2(3): 200020 DOI:10.20517/energymater.2022.24

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gogotsi Y.Materials science. True performance metrics in electrochemical energy storage.Science2011;334:917-8

[2]

Zu L,Qu L.Mesoporous materials for electrochemical energy storage and conversion.Adv Energy Mater2020;10:2002152

[3]

Jiang B,Luo B.LiPO2F2 electrolyte additive for high-performance Li-rich cathode material.J Energy Chem2021;60:564-71

[4]

Cheng HM.Charge delivery goes the distance.Science2017;356:582-3

[5]

Zhang Z,Lin H.Flexible fiber-shaped supercapacitors with high energy density based on self-twisted graphene fibers.J Power Sources2019;433:226711

[6]

Pu X,Zhao D.Recent progress in rechargeable sodium-ion batteries: toward high-power applications.Small2019;15:e1805427

[7]

Mishra K,Hashmi SA.Recent progress in electrode and electrolyte materials for flexible sodium-ion batteries.J Mater Chem A2020;8:22507-43

[8]

Xu B,Wang Z.Recent progress in cathode materials research for advanced lithium ion batteries.Mater Sci Eng R Rep2012;73:51-65

[9]

Choi JU,Sun Y.Recent progress and perspective of advanced high-energy Co-less Ni-rich cathodes for Li-ion batteries: yesterday, today, and tomorrow.Adv Energy Mater2020;10:2002027

[10]

Zhai L,Yang X.30 Li + -accommodating covalent organic frameworks as ultralong cyclable high-capacity Li-ion battery electrodes.Adv Funct Materials2022;32:2108798

[11]

Wang L,Dai S.Promises and challenges of alloy-type and conversion-type anode materials for sodium-ion batteries.Mater Today Energy2019;11:46-60

[12]

Zhang H,Passerini S.Beyond insertion for Na-ion batteries: nanostructured alloying and conversion anode materials.Adv Energy Mater2018;8:1702582

[13]

Li X,Lv L,Qu Q.Electroactive organics as promising anode materials for rechargeable lithium ion and sodium ion batteries.Energy Mater2022;2:200014

[14]

Zhao L,Lai W.Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts.Adv Energy Mater2021;11:2002704

[15]

Li G,Wang Y.Cream roll-inspired advanced MnS/C composite for sodium-ion batteries: encapsulating MnS cream into hollow N,S-co-doped carbon rolls.Nanoscale2020;12:8493-501

[16]

Hou H,Wei W,Ji X.Carbon anode materials for advanced sodium-ion batteries.Adv Energy Mater2017;7:1602898.

[17]

Chang H,Han X.Recent developments in advanced anode materials for lithium-ion batteries.Energy Mater2021;

[18]

Cao L,Ou X.Heterointerface engineering of hierarchical Bi2S3/MoS2 with self-generated rich phase boundaries for superior sodium storage performance.Adv Funct Mater2020;30:1910732

[19]

Xiong X,Wang G.SnS nanoparticles electrostatically anchored on three-dimensional N-doped graphene as an active and durable anode for sodium-ion batteries.Energy Environ Sci2017;10:1757-63

[20]

Yang C,Ou X.Heterostructured nanocube-shaped binary sulfide (SnCo)S2 interlaced with S-doped graphene as a high-performance anode for advanced Na+ batteries.Adv Funct Mater2019;29:1807971

[21]

Ou X,Liang X.Fabrication of SnS2/Mn2SnS4/carbon heterostructures for sodium-ion batteries with high initial coulombic efficiency and cycling stability.ACS Nano2019;13:3666-76

[22]

Chen K,Hu Z.Simple preparation of baroque Mn-based chalcogenide/honeycomb-like carbon composites for sodium-ion batteries from renewable Pleurotus Eryngii.Energy Fules35:6265-71

[23]

Wu C,Yu Y.The state and challenges of anode materials based on conversion reactions for sodium storage.Small2018;14:e1703671

[24]

Lu Y,Lou XW.Nanostructured conversion-type anode materials for advanced lithium-ion batteries.Chem2018;4:972-96

[25]

Chae S,Kim K,Cho J.Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries.Joule2017;1:47-60

[26]

Yang Z,Zhang C.Porous 3D silicon-diamondyne blooms excellent storage and diffusion properties for Li, Na, and K ions.Adv Energy Mater2021;11:2101197

[27]

Ke C,Zheng Z.Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation.Rare Met2021;40:1347-56

[28]

Cheng X,Li D.A self-healing volume variation three-dimensional continuous bulk porous bismuth for ultrafast sodium storage.Adv Funct Mater2021;31:2011264

[29]

Lei K,Chen C.Recent progresses on alloy-based anodes for potassium-ion batteries.Rare Met2020;39:989-1004

[30]

Imtiaz S,Xu Y,Blackman C.Progress and perspectives on alloying-type anode materials for advanced potassium-ion batteries.Mater Today2021;48:241-69

[31]

Niu J,Aurbach D.Alloy anode materials for rechargeable Mg ion batteries.Adv Energy Mater2020;10:2000697

[32]

Wu X,Ding Y.Dealloyed nanoporous materials for rechargeable post-lithium batteries.ChemSusChem2020;13:3287

[33]

Qi S,Zhang W,Ma J.Recent advances in alloy-based anode materials for potassium ion batteries.Rare Met2020;39:970-88

[34]

Chen Q,Chen M.Nanoporous metal by dealloying for electrochemical energy conversion and storage.MRS Bull2018;43:43-8

[35]

Artymowicz D,Newman R.Relationship between the parting limit for de-alloying and a particular geometric high-density site percolation threshold.Philos Mag2009;89:1663-93

[36]

Feng J,Ci L,Ai Q.Chemical dealloying synthesis of porous silicon anchored by in situ generated graphene sheets as anode material for lithium-ion batteries.J Power Sources2015;287:177-83

[37]

Zhang H,Song H.Synthesis of micro-sized porous antimony via vapor dealloying for high-performance Na-ion battery anode.Solid State Ionics2020;352:115365

[38]

Sohn M,Park H,Choi J.Microstructure controlled porous silicon particles as a high capacity lithium storage material via dual step pore engineering.Adv Funct Mater2018;28:1800855

[39]

Lin N,Han Y,Xu T.Mesoporous hollow Ge microspheres prepared via molten-salt metallothermic reaction for high-performance Li-storage anode.ACS Appl Mater Interfaces2018;10:8399-404

[40]

Yang Y,Bian X,An Y.Morphology- and porosity-tunable synthesis of 3D nanoporous SiGe alloy as a high-performance lithium-ion battery anode.ACS Nano2018;12:2900-8

[41]

Gao H,Zhang C,Zhang Z.A dealloying synthetic strategy for nanoporous bismuth-antimony anodes for sodium ion batteries.ACS Nano2018;12:3568-77

[42]

Yan Y,Wang Z,Zhang Y.AlF3 microrods modified nanoporous Ge/Ag anodes fabricated by one-step dealloying strategy for stable lithium storage.Mater Letters2020;276:128254

[43]

Ma W,Gao H,Peng Z.Alloying boosting superior sodium storage performance in nanoporous tin-antimony alloy anode for sodium ion batteries.Nano Energy2018;54:349-59

[44]

Zhang H,Zhang M.Hybrid aerogel-derived Sn-Ni alloy immobilized within porous carbon/graphene dual matrices for high-performance lithium storage.J Colloid Interface Sci2017;501:267-72

[45]

Yin H,Mao X,Wang D.Preparation of a porous nanostructured germanium from GeO2 via a “reduction-alloying-dealloying” approach.J Mater Chem A2015;3:1427-30

[46]

Yuan Y,Wang Z,Jin X.Efficient nanostructuring of silicon by electrochemical alloying/dealloying in molten salts for improved lithium storage.Angew Chem Int Ed Engl2018;57:15743-8

[47]

Wada T,Yubuta K,Yoshida H.Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process.Nano Lett2014;14:4505-10

[48]

Wada T,Kato H.Preparation of three-dimensional nanoporous Si using dealloying by metallic melt and application as a lithium-ion rechargeable battery negative electrode.J Power Sources2016;306:8-16

[49]

Chen Y,Xu C.Multi-step low-cost synthesis of ultrafine silicon porous structures for high-reversible lithium-ion battery anodes.J Mater Sci2020;55:13938-50

[50]

Wang J,Kim YS.Scalable synthesis of nanoporous silicon microparticles for highly cyclable lithium-ion batteries.Nano Res2020;13:1558-63

[51]

An W,Mei S.Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes.Nat Commun2019;10:1447 PMCID:PMC6441089

[52]

An Y,Wei H.Porosity- and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with MXene for lithium-metal anode.Adv Funct Mater2019;30:1908721

[53]

Míguez H,López C.Germanium FCC structure from a colloidal crystal template.Langmuir2000;16:4405-8

[54]

Song T,Samal M.A Ge inverse opal with porous walls as an anode for lithium ion batteries.Energy Environ Sci2012;5:9028

[55]

Geier S,Peters K,Fattakhova-rohlfing D.A wet-chemical route for macroporous inverse opal Ge anodes for lithium ion batteries with high capacity retention.Sustainable Energy Fuels2018;2:85-90

[56]

Esmanski A.Silicon inverse-opal-based macroporous materials as negative electrodes for lithium ion batteries.Adv Funct Mater2009;19:1999-2010

[57]

Jeong J,Jung D,Lee S.High-performance characteristics of silicon inverse opal synthesized by the simple magnesium reduction as anodes for lithium-ion batteries.J Power Sources2015;300:182-9

[58]

Gowda SR,Herle S.Three-dimensionally engineered porous silicon electrodes for Li-ion batteries.Nano Lett2012;12:6060-5

[59]

Bao Z,Shian S.Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas.Nature2007;446:172-5

[60]

Hwa Y,Yu B,Sohn H.Mesoporous nano-Si anode for Li-ion batteries produced by magnesio-mechanochemical reduction of amorphous SiO2.Energy Technol2013;1:327-31

[61]

Wang B,Wu T,Wen Z.Self-template construction of mesoporous silicon submicrocube anode for advanced lithium ion batteries.Energy Stor Mater2018;15:139-47

[62]

Entwistle J,Patwardhan S.A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond.J Mater Chem A2018;6:18344-56

[63]

Jia H,He X.Reversible storage of lithium in three-dimensional macroporous germanium.Chem Mater2014;26:5683-8

[64]

Lin N,Zhou J.A low temperature molten salt process for aluminothermic reduction of silicon oxides to crystalline Si for Li-ion batteries.Energy Environ Sci2015;8:3187-91

[65]

Manukyan KV,Mukasyan AS.Size-tunable germanium particles prepared by self-sustaining reduction of germanium oxide.J Solid State Chem2019;270:92-7

[66]

Peterson AK,Skrabalak SE.Aerosol synthesis of porous particles using simple salts as a pore template.Langmuir2010;26:8804-9

[67]

Dai F,Yi R.Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance.Nat Commun2014;5:3605

[68]

Tang D,Zhao J.Bottom-up synthesis of mesoporous germanium as anodes for lithium-ion batteries.J Colloid Interface Sci2020;561:494-500

[69]

Ge M,Rong J.Review of porous silicon preparation and its application for lithium-ion battery anodes.Nanotechnology2013;24:422001

[70]

Huang Z,Werner P,Gösele U.Metal-assisted chemical etching of silicon: a review.Adv Mater2011;23:285-308.

[71]

Peng K,Fang H,Xu Y.Uniform, Axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays.Angew Chem2005;117:2797-802

[72]

Li X,Wang J.Stable silicon anodes for lithium-ion batteries using mesoporous metallurgical silicon.Adv Energy Mater2015;5:1401556

[73]

Bai F,Song D,Jiang B.One-step synthesis of lightly doped porous silicon nanowires in HF/AgNO3/H2O2 solution at room temperature.J Solid State Chem2012;196:596-600

[74]

Hochbaum AI,Hwang YJ.Single crystalline mesoporous silicon nanowires.Nano Lett2009;9:3550-4

[75]

Zhong X,Lin YC,Duan X.Unveiling the formation pathway of single crystalline porous silicon nanowires.ACS Appl Mater Interfaces2011;3:261-70 PMCID:PMC3061564

[76]

Zhang Z,Ren W,Zhong Z.Low-cost synthesis of porous silicon via ferrite-assisted chemical etching and their application as Si-based anodes for Li-ion batteries.Adv Electron Mater2015;1:1400059

[77]

Cao M,Deng JX.Preparation of large-area porous silicon through Cu-assisted chemical etching.MSF2016;847:78-83

[78]

Rezvani SJ,Boarino L.Rapid formation of single crystalline Ge nanowires by anodic metal assisted etching.Cryst Eng Comm2016;18:7843-8

[79]

Han X,Chen H.Bulk boron doping and surface carbon coating enabling fast-charging and stable Si anodes: from thin film to thick Si electrodes.J Mater Chem A2021;9:3628-36

[80]

Uhlir A.Electrolytic shaping of germanium and Silicon.Bell Syst Tech J1956;35:333-47

[81]

Thakur M,Isaacson MJ,Biswal SL.Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries.Sci Rep2012;2:795 PMCID:PMC3493010

[82]

Turner DR.Electropolishing silicon in hydrofluoric acid solutions.J Electrochem Soc1958;105:402

[83]

Bioud YA,Belarouci A.Fast growth synthesis of mesoporous germanium films by high frequency bipolar electrochemical etching.Electrochim Acta2017;232:422-30

[84]

Bang BM,Lee J,Park S.Mass production of uniform-sized nanoporous silicon nanowire anodes via block copolymer lithography.Energy Environ Sci2011;4:3395

[85]

Jia H,Song J.A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries.Nano Energy2018;50:589-97

[86]

Jeong YK,Vilá RA.Microclusters of kinked silicon nanowires synthesized by a recyclable iodide process for high-performance lithium-Ion battery anodes.Adv Energy Mater2020;10:2002108

[87]

Jia H,Song J.Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes.Nat Commun2020;11:1474 PMCID:PMC7081208

[88]

Yao R,Wu Y,He Y.Controllable self-assembled mesoporous silicon nanocrystals framework as anode material for Li-ion battery.Electrochim Acta2021;390:138850

[89]

Liu X,Antonietti M.A molten-salt route for synthesis of Si and Ge nanoparticles: chemical reduction of oxides by electrons solvated in salt melt. J Mater Chem 2012;22:5454.

[90]

Xiang B,Fu J.Graphene-encapsulated blackberry-like porous silicon nanospheres prepared by modest magnesiothermic reduction for high-performance lithium-ion battery anode.Rare Met2021;40:383-92

[91]

Chevrier VL,Dahn JR.First principles studies of silicon as a negative electrode material for lithium-ion batteries.Can J Phys2009;87:625-32

[92]

Shenoy V,Qi Y.Elastic softening of amorphous and crystalline Li-Si Phases with increasing Li concentration: a first-principles study.J Power Sources2010;195:6825-30

[93]

Zuo X,Müller-buschbaum P.Silicon based lithium-ion battery anodes: a chronicle perspective review.Nano Energy2017;31:113-43

[94]

Shen L,Fang X,Chen L.Magnesiothermically reduced diatomaceous earth as a porous silicon anode material for lithium ion batteries.J Power Sources2012;213:229-32

[95]

Mu T,Lou S.Scalable mesoporous silicon microparticles composed of interconnected nanoplates for superior lithium storage.Chem Eng J2019;375:121923

[96]

He W,Xin F.Scalable fabrication of micro-sized bulk porous Si from Fe-Si alloy as a high performance anode for lithium-ion batteries.J Mater Chem A2015;3:17956-62

[97]

Han X,Zheng G.Scalable engineering of bulk porous Si anodes for high initial efficiency and high-areal-capacity lithium-ion batteries.ACS Appl Mater Interfaces2019;11:714-21

[98]

Jia H,Yang J,Nuli Y.Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material.Adv Energy Mater2011;1:1036-9.

[99]

Zhou Y,Chen L.Novel mesoporous silicon nanorod as an anode material for lithium ion batteries.Electrochim Acta2014;127:252-8

[100]

Tang J,Wang Q.Two-dimensional porous silicon nanosheets as anode materials for high performance lithium-ion batteries.Nanoscale2019;11:10984-91

[101]

Bang BM,Kim H,Park S.High-performance macroporous bulk silicon anodes synthesized by template-free chemical etching.Adv Energy Mater2012;2:878-83

[102]

Li X,Hu S.Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes.Nat Commun2014;5:4105

[103]

Zhang Z,Ren W.Scalable synthesis of interconnected porous silicon/carbon composites by the rochow reaction as high-performance anodes of lithium ion batteries.Angew Chem2014;126:5265-9

[104]

Zhong H,Zhou Y.Synthesis of nanosized mesoporous silicon by magnesium-thermal method used as anode material for lithium ion battery.J Power Sources2014;262:10-4

[105]

Choi S,Ryu J,Cho J.Revisit of metallothermic reduction for macroporous Si: compromise between capacity and volume expansion for practical Li-ion battery.Nano Energy2015;12:161-8

[106]

Liang J,Hou Z,Zhu Y.Nanoporous silicon prepared through air-oxidation demagnesiation of Mg2Si and properties of its lithium ion batteries.Chem Commun (Camb)2015;51:7230-3

[107]

Jiang T,Yin Q.Morphology, composition and electrochemistry of a nano-porous silicon versus bulk silicon anode for lithium-ion batteries.J Mater Sci2017;52:3670-7

[108]

Liu X,Yang J.Scalable and cost-effective preparation of hierarchical porous silicon with a high conversion yield for superior lithium-ion storage.Energy Technol2016;4:593-9

[109]

Jia H,Yang J,Nuli Y.Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material.Adv Energy Mater2011;1:1036-9

[110]

Xu Z,Garakani MA,Huang J.Carbon-coated mesoporous silicon microsphere anodes with greatly reduced volume expansion.J Mater Chem A2016;4:6098-106

[111]

Kim Y,Kim H.Nanoporous silicon flakes as anode active material for lithium-ion batteries.Physica E Low Dimens Syst Nanostruct2017;85:223-6

[112]

Kim N,Yoon N.Zeolite-templated mesoporous silicon particles for advanced lithium-ion battery anodes.ACS Nano2018;12:3853-64

[113]

Wang F,Zi W.Ionothermal synthesis of crystalline nanoporous silicon and its use as anode materials in lithium-ion batteries.Nanoscale Res Lett2019;14:196 PMCID:PMC6554372

[114]

Yang Z,Hou G,Ding F.Nanoporous silicon spheres preparation via a controllable magnesiothermic reduction as anode for Li-ion batteries.Electrochim Acta2020;329:135141

[115]

Sun X,Chu K.Anodized macroporous silicon anode for integration of lithium-ion batteries on chips.J Elec Mater2012;41:2369-75

[116]

Wang F,Zi W,Du H.Solution synthesis of porous silicon particles as an anode material for lithium ion batteries.Chemistry2019;25:9071-7

[117]

Wada T.Preparation of nanoporous Si by dealloying in metallic melt and its application for negative electrode of lithium ion battery.Mater Today: Proc2017;4:11465-9.

[118]

Ge M,Ercius P.Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon.Nano Lett2014;14:261-8

[119]

Gao P,Xing A.Porous silicon from the magnesiothermic reaction as a high-performance anode material for lithium ion battery applications.Electrochim Acta2017;228:545-52

[120]

Chen X,Sajjad M.One-dimensional porous silicon nanowires with large surface area for fast charge-discharge lithium-ion batteries.Nanomaterials (Basel)2018;8:285 PMCID:PMC5977299

[121]

Guo R,Ying H,Wang J.New, Effective, and low-cost dual-functional binder for porous silicon anodes in lithium-ion batteries.ACS Appl Mater Interfaces2019;11:14051-8

[122]

Wang W,Ionescu R.Monodisperse porous silicon spheres as anode materials for lithium ion batteries.Sci Rep2015;5:8781 PMCID:PMC4350083

[123]

Pathak AD,Samanta K,Sahu KK.Selective leaching of Al from hypereutectic Al-Si alloy to produce nano-porous silicon (NPS) anodes for lithium ion batteries.Electrochim Acta2019;317:654-62

[124]

Entwistle JE.Enabling scale-up of mesoporous silicon for lithium-ion batteries: a systematic study of a thermal moderator.RSC Adv2021;11:3801-7 PMCID:PMC8694137

[125]

Zeng Y,Liu N.N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries.J Energy Chem2021;54:727-35

[126]

Shen C,Luo L.In situ and ex situ TEM study of lithiation behaviours of porous silicon nanostructures.Sci Rep2016;6:31334 PMCID:PMC5004143

[127]

Liu N,Zhao J.A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes.Nat Nanotechnol2014;9:187-92

[128]

Shi J,Gao H,Zhang Q.Silicon-based self-assemblies for high volumetric capacity Li-ion batteries via effective stress management.Adv Funct Mater2020;30:2002980

[129]

Choi JH,Jin EM.Facile and scalable synthesis of silicon nanowires from waste rice husk silica by the molten salt process.J Hazard Mater2020;399:122949

[130]

Kim H,Choo J.Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries.Angew Chem2008;120:10305-8

[131]

Tao Y,Xiao C,Qian Y.Porosity controlled synthesis of nanoporous silicon by chemical dealloying as anode for high energy lithium-ion batteries.J Colloid Interface Sci2019;554:674-81

[132]

Wang J,Lee HR.Surface-engineered mesoporous silicon microparticles as high-Coulombic-efficiency anodes for lithium-ion batteries.Nano Energy2019;61:404-10

[133]

Morito H,Ikeda T.Na-Si binary phase diagram and solution growth of silicon crystals.JAlloys and Compd2009;480:723-6

[134]

Xu Y,Basak S,Borsa DM.Reversible Na-ion uptake in Si nanoparticles.Adv Energy Mater2016;6:1501436

[135]

Han Y,Xu T.An amorphous Si material with a sponge-like structure as an anode for Li-ion and Na-ion batteries.Nanoscale2018;10:3153-8

[136]

Lim C,Shao P.Experimental study on sodiation of amorphous silicon for use as sodium-ion battery anode.Electrochim Acta2016;211:265-72

[137]

Qiu DF,Zhang JD,Zhao B.Mesoporous silicon microspheres produced from in situ magnesiothermic reduction of silicon oxide for high-performance anode material in sodium-ion batteries.Nanoscale Res Lett2018;13:275 PMCID:PMC6131684

[138]

Du FH,Fu W,Wang KX.Surface binding of polypyrrole on porous silicon hollow nanospheres for Li-ion battery anodes with high structure stability.Adv Mater2014;26:6145-50

[139]

Yi Z,Zhao Y.A flexible micro/nanostructured Si microsphere cross-linked by highly-elastic carbon nanotubes toward enhanced lithium ion battery anodes.Energy Stor Mater2019;17:93-100

[140]

Son Y,Lee T.Calendering-compatible macroporous architecture for silicon-graphite composite toward high-energy lithium-ion batteries.Adv Mater2020;32:e2003286

[141]

Park MH,Kim J.Flexible dimensional control of high-capacity Li-ion-battery anodes: from 0D hollow to 3D porous germanium nanoparticle assemblies.Adv Mater2010;22:415-8

[142]

Yang L,Li L,Wu Y.Mesoporous germanium as anode material of high capacity and good cycling prepared by a mechanochemical reaction.Electrochem Commun2010;12:418-21

[143]

Ke FS,Jamison L.Tailoring nanostructures in micrometer size germanium particles to improve their performance as an anode for lithium ion batteries.Chem Commun (Camb)2014;50:3713-5

[144]

Liang J,Hou Z.Honeycomb-like macro-germanium as high-capacity anodes for lithium-ion batteries with good cycling and rate performance.Chem Mater2015;27:4156-64

[145]

Yoon T,Harzandi A.Intramolecular deformation of zeotype-borogermanate toward a three-dimensional porous germanium anode for high-rate lithium storage.J Mater Chem A2018;6:15961-7

[146]

Kwon D,Shin M.Synthesis of dual porous structured germanium anodes with exceptional lithium-ion storage performance.J Power Sources2018;374:217-24

[147]

Choi S,Choi NS,Park S.Cost-effective scalable synthesis of mesoporous germanium particles via a redox-transmetalation reaction for high-performance energy storage devices.ACS Nano2015;9:2203-12

[148]

Zhang C,Yang Z.Hierarchically designed germanium microcubes with high initial coulombic efficiency toward highly reversible lithium storage.Chem Mater2015;27:2189-94

[149]

Liu X,Cai W.Mesoporous germanium nanoparticles synthesized in molten zinc chloride at low temperature as a high-performance anode for lithium-ion batteries.Dalton Trans2018;47:7402-6

[150]

Choi S,Kim J.Mesoporous germanium anode materials for lithium-ion battery with exceptional cycling stability in wide temperature range.Small2017;13:1603045

[151]

Mishra K,Ke F.Porous germanium enabled high areal capacity anode for lithium-ion batteries.Compos B Eng2019;163:158-64

[152]

Sosa AN,Trejo A,Salazar F.Effects of lithium on the electronic properties of porous Ge as anode material for batteries.J Comput Chem2020;41:2653-62

[153]

Kohandehghan A,Kupsta M.Activation with Li enables facile sodium storage in germanium.Nano Lett2014;14:5873-82

[154]

Lu X,He Y.Germanium as a sodium ion battery material: in situ TEM reveals fast sodiation kinetics with high capacity.Chem Mater2016;28:1236-42

[155]

Li M,Fu J,Detsi E.In situ electrochemical dilatometry study of capacity fading in nanoporous Ge-based Na-ion battery anodes.Scr Mater2019;164:52-6

[156]

Yi Z,Li T,Li Y.Meso-porous amorphous Ge: synthesis and mechanism of an anode material for Na and K storage.Nano Res2019;12:1824-30

[157]

Song T,Qian M.A dealloying approach to synthesizing micro-sized porous tin (Sn) from immiscible alloy systems for potential lithium-ion battery anode applications.J Porous Mater2015;22:713-9

[158]

Ryu S,Song JT.High-pressure evaporation-based nanoporous black Sn for enhanced performance of lithium-ion battery anodes.Part Part Syst Charact2019;36:1800331

[159]

Cook JB,Liu Y.Nanoporous tin with a granular hierarchical ligament morphology as a highly stable Li-ion battery anode.ACS Appl Mater Interfaces2017;9:293-303

[160]

Wang JW,Mao SX.Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction.Nano Lett2012;12:5897-902

[161]

Kim C,Kim I.Long-term cycling stability of porous Sn anode for sodium-ion batteries.J Power Sources2016;317:153-8

[162]

Wang L,Lei K,Tian S.3D porous tin created by tuning the redox potential acts as an advanced electrode for sodium-ion batteries.Chem Sus Chem2018;11:3376-81

[163]

Kim IT,Manthiram A.Cu6Sn5-TiC-C nanocomposite anodes for high-performance sodium-ion batteries.J Power Sources2015;281:11-7

[164]

Zhang B,Foix D,Corte DA.Microsized Sn as advanced anodes in glyme-based electrolyte for Na-ion batteries.Adv Mater2016;28:9824-30

[165]

Liang S,Zhu J,Müller-buschbaum P.A chronicle review of nonsilicon (Sn, Sb, Ge)-based lithium/sodium-ion battery alloying anodes.Small Methods2020;4:2000218

[166]

Detsi E,Yan Y.Tuning ligament shape in dealloyed nanoporous tin and the impact of nanoscale morphology on its applications in Na-ion alloy battery anodes.Phys Rev Materials2018;2

[167]

Guo M,Zhang X.Electrochemical behavior and self-organization of porous Sn nanocrystals@acetylene black microspheres in lithium-ion half cells.Appl Surf Sci2019;470:36-43

[168]

Cheng Y,Li R.Enhanced cycling performances of hollow Sn compared to solid Sn in Na-ion battery.Electrochim Acta2015;180:227-33

[169]

Shi L.Synthesis and sodium storage performance of Sb porous nanostructure.J Alloys Compd2020;846:156369

[170]

Li M,Foucher AC.Impact of hierarchical nanoporous architectures on sodium storage in antimony-based sodium-ion battery anodes.ACS Appl Energy Mater2020;3:11231-41

[171]

Yuan Y,Wang Z.A simple synthesis of nanoporous Sb/C with high Sb content and dispersity as an advanced anode for sodium ion batteries.J Mater Chem A2018;6:5555-9

[172]

Ma W,Gao H.A mesoporous antimony-based nanocomposite for advanced sodium ion batteries.Energy Stor Mater2018;13:247-56

[173]

Liu S,Bian X,Xu H.The morphology-controlled synthesis of a nanoporous-antimony anode for high-performance sodium-ion batteries.Energy Environ Sci2016;9:1229-36

[174]

Hou H,Yang Y.Sb porous hollow microspheres as advanced anode materials for sodium-ion batteries.J Mater Chem A2015;3:2971-7

[175]

Hou H,Yang Y,Fang L,Pan C,Ji X.Sodium/lithium storage behavior of antimony hollow nanospheres for rechargeable batteries. ACS Appl Mater Interfaces 2014;6:16189-96.

[176]

Rodriguez JR,Mitchell GM,Pol VG.Three-Dimensional Antimony Nanochains for Lithium-Ion Storage.ACS Appl Nano Mater2019;2:5351-5

[177]

Meng W,Chen J,Wang Z.Porous Sb with three-dimensional Sb nanodendrites as electrode material for high-performance Li/Na-ion batteries.Nanotechnology2020;31:175401

[178]

Li H,Zhou M.Facile Tailoring of Multidimensional Nanostructured Sb for Sodium Storage Applications.ACS Nano2019;13:9533-40

PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

/