Predicting a novel two-dimensional BN material with a wide band gap

Qingyang Fan , Hang Zhou , Yingbo Zhao , Sining Yun

Energy Materials ›› 2022, Vol. 2 ›› Issue (3) : 200022

PDF
Energy Materials ›› 2022, Vol. 2 ›› Issue (3) :200022 DOI: 10.20517/energymater.2022.21
Article

Predicting a novel two-dimensional BN material with a wide band gap

Author information +
History +
PDF

Abstract

Based on density functional theory, a new two-dimensional boron nitride, Pmma BN, is proposed and studied in detail for the first time. The stability of Pmma BN is demonstrated using phonon spectra, ab initio molecular dynamics simulations at 300 and 500 K, and in-plane elastic constants. The orientation dependences of the Young’s modulus and Poisson’s ratio show that Pmma BN has large mechanical anisotropy. Pmma BN is an indirect band gap semiconductor material with a band gap of 5.15 eV and the hole and electron effective masses have high anisotropy. The electron carrier mobilities of Pmma BN along the x and y directions are similar, while the hole carrier mobility along the y direction is more than double that along the x direction. The band gap of Pmma BN remains indirect under the effect of uniaxial tensile strain and its adjustable range reaches 0.64 eV when the uniaxial strain is applied along the x direction. When uniaxial strain is applied along the y direction, the positions of the conduction band minimum and valence band maximum change. Pmma BN under uniaxial strain shows strong optical absorption capacity in the ultraviolet region. To explore its potential clean energy applications, the thermoelectric properties of Pmma BN are also investigated.

Keywords

Two-dimensional boron nitride / band gap engineering / uniaxial strain / thermoelectric properties

Cite this article

Download citation ▾
Qingyang Fan, Hang Zhou, Yingbo Zhao, Sining Yun. Predicting a novel two-dimensional BN material with a wide band gap. Energy Materials, 2022, 2(3): 200022 DOI:10.20517/energymater.2022.21

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Novoselov KS,Jiang D.Electric field effect in atomically thin carbon films.Science2004;306:666

[2]

Novoselov KS,Morozov SV.Two-dimensional gas of massless Dirac fermions in graphene.Nature2005;438:197-200

[3]

Mounet N,Schwaller P.Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds.Nat Nanotechnol2018;13:246-52

[4]

Xu R,Liu B.Computational design and property predictions for two-dimensional nanostructures.Mater Today2018;21:391-418

[5]

Ma Y,Yang S.Ultrathin two-dimensional metallic nanomaterials.Mater Chem Front2018;2:456-67

[6]

Choi W,Han GH,Akinwande D.Recent development of two-dimensional transition metal dichalcogenides and their applications.Mater Today2017;20:116-30

[7]

Dong R.Review Article: progress in fabrication of transition metal dichalcogenides heterostructure systems.J Vac Sci Technol B Nanotechnol Microelectron2017;35:030803 PMCID:PMC5648579

[8]

Manzeli S,Pasquier D,Kis A.2D transition metal dichalcogenides.Nat Rev Mater2017;2

[9]

Kolobov AV.Two-dimensional transitionmetal dichalcogenides.SPRINGER2018;

[10]

Illarionov YY,Jech M.Insulators for 2D nanoelectronics: the gap to bridge.Nat Commun2020;11:3385 PMCID:PMC7341854

[11]

Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene.Rev Mod Phys2009;81:109-62

[12]

Liu J,Song T.Computational search for two-dimensional intrinsic half-metals in transition-metal dinitrides.J Mater Chem C2017;5:727-32

[13]

Ashton M,Sinnott SB,Stewart DA.Two-dimensional intrinsic half-metals with large spin gaps.Nano Letters2017;17:5251

[14]

Wang S,Liu Y.Two-dimensional nodal-loop half-metal in monolayer MnN.Phys Rev Materials2019;3

[15]

Saito Y,Iwasa Y.Highly crystalline 2d superconductors.Nat Rev Mater2016;2(1):16094

[16]

Fan Q,Tripp MW.Biphenylene network: a nonbenzenoid carbon allotrope.Science2021;372:852-6

[17]

Li G,Liu H,Li Y.Architecture of graphdiyne nanoscale films.Chem Commun (Camb)2010;46:3256-8

[18]

Jia Z,Yi Y.Low temperature, atmospheric pressure for synthesis of a new carbon Ene-yne and application in Li storage.Nano Energy2017;33:343-9

[19]

Li X,Chi L.On-surface synthesis of graphyne-based nanostructures.Adv Mater2019;31:e1804087

[20]

Zheng C,Yang C,Chen Z.The art of two-dimensional soft nanomaterials.Sci China Chem2019;62:1145-93

[21]

Miao L,Wang Y.Certain doping concentrations caused half-metallic graphene.J Saudi Chem Soc2017;21:111-7

[22]

Yang D,Chen Y,Zhang H.Giant piezoelectricity in B/N doped 4,12,2-graphyne.Appl Surf Sci2020;499:143800

[23]

Ong WJ,Ng YH,Chai SP.Graphitic Carbon Nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?.Chem Rev2016;116:7159-329

[24]

Zhou JQ,Fu C.A novel T-C3N and seawater desalination.Nanoscale2020;12:5055-66

[25]

Chen X,Li G,Li H.Recent advances in photocatalytic renewable energy production.Energy Mater2022;

[26]

Novoselov KS,Schedin F.Two-dimensional atomic crystals.Proc Natl Acad Sci USA2005;102:10451-3 PMCID:PMC1180777

[27]

Pakdel A,Golberg D.Nano boron nitride flatland.Chem Soc Rev2014;43:934-59

[28]

Lee KH,Lee J.Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics.Nano Lett2012;12:714-8

[29]

Pontes J,Azevedo DL.Electronic, optical, vibrational and thermodynamic properties of phaBN structure: a first principles study.Comput Mater Sci2021;188:110210

[30]

Li F,Qiao L.Novel 2D boron nitride with optimal direct band gap: a theoretical prediction.Appl Surf Sci2022;578:151929

[31]

Kresse G.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set.Comput Mater Sci1996;6:15-50

[32]

Kresse G.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys Rev B Condens Matter1996;54:11169-86

[33]

Perdew JP,Ernzerhof M.Generalized gradient approximation made simple.Phys Rev Lett1996;77:3865-8

[34]

Pfrommer BG,Louie SG.Relaxation of crystals with the quasi-newton method.J Comput Phys1997;131:233-40

[35]

Heyd J,Ernzerhof M.Hybrid functionals based on a screened Coulomb potential.J Chem Phys2003;118:8207-15

[36]

Gonze X.Density-functional approach to nonlinear-response coefficients of solids.Phys Rev B Condens Matter1989;39:13120-8

[37]

Nosé S.A unified formulation of the constant temperature molecular dynamics methods.J Chem Phys1984;81:511-9

[38]

Taylor J,Wang J.Ab initio modeling of quantum transport properties of molecular electronic devices.Phys Rev B2001;63:

[39]

Wang B,Zhang Y,Wang J.Auxetic B4N Monolayer: a Promising 2D material with in-plane negative poisson’s ratio and large anisotropic mechanics.ACS Appl Mater Interfaces2019;11:33231-7

[40]

Andrew RC,Ukpong AM.Mechanical properties of graphene and boronitrene.Phys Rev B2012;85

[41]

Silvi B.Classification of chemical bonds based on topological analysis of electron localization functions.Nature1994;371:683-6

[42]

Becke AD.A simple measure of electron localization in atomic and molecular systems.J Chem Phys1990;92:5397-403

[43]

Cadelano E,Giordano S.Elastic properties of hydrogenated graphene.Phys Rev B2010;82

[44]

Ding Y.Density functional theory study of the silicene-like SiX and XSi3 (X = B, C, N, Al, P) honeycomb lattices: the various buckled structures and versatile electronic properties.J Phys Chem C2013;117:18266-78

[45]

Price P.Two-dimensional electron transport in semiconductor layers. I. Phonon scattering.Annals of Physics1981;133:217-39

[46]

Qiao J,Hu ZX,Ji W.High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus.Nat Commun2014;5:4475 PMCID:PMC4109013

[47]

Wang S,Zhu X.A new two-dimensional semiconducting carbon allotrope: a first-principles study.Carbon2019;143:517-22

[48]

Clark SJ,Pickard CJ.First principles methods using CASTEP.Z Kristallogr2005;220:567

PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

/