Challenges and prospects of Mg-air batteries: a review

Yaru Wang , Yukun Sun , Wen Ren , Duo Zhang , Yang Yang , Jun Yang , Jiulin Wang , Xiaoqin Zeng , Yanna NuLi

Energy Materials ›› 2022, Vol. 2 ›› Issue (4) : 200024

PDF
Energy Materials ›› 2022, Vol. 2 ›› Issue (4) :200024 DOI: 10.20517/energymater.2022.20
Review

Challenges and prospects of Mg-air batteries: a review

Author information +
History +
PDF

Abstract

Mg-air batteries, with their intrinsic advantages such as high theoretical volumetric energy density, low cost, and environmental friendliness, have attracted tremendous attention for electrical energy storage systems. However, they are still in an early stage of development and suffer from large voltage polarization and poor cycling performance. At present, Mg-air batteries with high rechargeability remain difficult to achieve, mainly because the discharge products [Mg(OH)2, MgO and MgO2] are thermodynamically and kinetically difficult to decompose at moderate voltage ranges. Therefore, it is crucial to optimize the reaction paths and kinetics from the electrodes to the batteries via the combination of materials design and first-principles calculations. In this review, remarkable progress is highlighted regarding the currently used materials for Mg-air batteries, including anodes, electrolytes, and cathodes. In addition, the corresponding reaction mechanisms are comprehensively surveyed. Finally, future perspectives for rechargeable Mg-air batteries with decreased voltage polarization and improved cycling performance are also described for further practical applications.

Keywords

Mg-air batteries / rechargeability / anode / electrolyte / cathode / application

Cite this article

Download citation ▾
Yaru Wang, Yukun Sun, Wen Ren, Duo Zhang, Yang Yang, Jun Yang, Jiulin Wang, Xiaoqin Zeng, Yanna NuLi. Challenges and prospects of Mg-air batteries: a review. Energy Materials, 2022, 2(4): 200024 DOI:10.20517/energymater.2022.20

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

He G,Moutis P,Whitacre JF.The economic end of life of electrochemical energy storage.Appl Energy2020;273:115151

[2]

Paul S.Materials and electrochemistry: present and future battery.J Electrochem Sci Technol2016;7:115-31

[3]

Wagner FT,Mathias MF.Electrochemistry and the future of the automobile.J Phys Chem Lett2010;1:2204-19

[4]

Kwak WJ,Sharon D.Lithium-oxygen batteries and related systems: potential, status, and future.Chem Rev2020;120:6626-83

[5]

Li H,Han C.Advanced rechargeable zinc-based batteries: recent progress and future perspectives.Nano Energy2019;62:550-87

[6]

Liu Y,Li W,Li J.A comprehensive review on recent progress in aluminum-air batteries.Green Energy Environ2017;2:246-77

[7]

Zhang T,Chen J.Magnesium-air batteries: from principle to application.Mater Horiz2014;1:196-206

[8]

Li C,Gebert F.Current progress on rechargeable magnesium-air battery.Adv Energy Mater2017;7:1700869

[9]

Rahman MA,Wen C.High energy density metal-air batteries: a review.J Electrochem Soc2013;160:A1759-71

[10]

Wang H,Shao Y.Advancing electrolyte solution chemistry and interfacial electrochemistry of divalent metal batteries.ChemElectroChem2021;8:3013-29

[11]

Mu T,Shi R.Ultrahigh rate capability and long cycling stability of dual-ion batteries enabled by TiO2 microspheres with abundant oxygen vacancies.Chem Commun2020;56:8039-42

[12]

Vardar G,Smith JG.Identifying the discharge product and reaction pathway for a secondary Mg/O2 battery.Chem Mater2015;27:7564-8

[13]

Shiga T,Kato Y,Takechi K.A rechargeable non-aqueous Mg-O2 battery.Chem Commun2013;49:9152-4

[14]

Shiga T,Yagi Y,Takechi K.Catalytic cycle employing a TEMPO-anion complex to obtain a secondary Mg-O2 battery.J Phys Chem Lett2014;5:1648-52

[15]

Dong Q,Luo J,Hwang H.Enabling rechargeable non-aqueous Mg-O2 battery operations with dual redox mediators.Chem Commun2016;52:13753-6

[16]

Smith JG,Hiramatsu H.Theoretical limiting potentials in Mg/O2 Batteries.Chem Mater2016;28:1390-401

[17]

Smith JG,Hiramatsu H.Intrinsic conductivity in magnesium-oxygen battery discharge products: MgO and MgO2.Chem Mater2017;29:3152-63

[18]

Chen X,Le Q,Liu M.A comprehensive review of the development of magnesium anodes for primary batteries.J Mater Chem A2021;9:12367-99

[19]

Li W,Zhou C,Chen J.Metallic magnesium nano/mesoscale structures: their shape-controlled preparation and mg/air battery applications.Angew Chem Int Ed2006;45:6009-12

[20]

Xin G,Wang C,Li X.Porous Mg thin films for Mg-air batteries.Dalton Trans2013;42:16693-6

[21]

Zhao Y,Dong S.A bismuth-based protective layer for magnesium metal anode in noncorrosive electrolytes.ACS Energy Lett2021;6:2594-601

[22]

Gu X,Cheng Y,Xi T.In vitro corrosion and biocompatibility of binary magnesium alloys.Biomaterials2009;30:484-98

[23]

Deng M,Lamaka SV,Zheludkevich ML.Mg-Ca binary alloys as anodes for primary Mg-air batteries.J Power Sources2018;396:109-18

[24]

Ma J,Li Y,Ren F.Electrochemical investigations on AZ series magnesium alloys as anode materials in a sodium chloride solution.J Materi Eng Perform2019;28:2873-80

[25]

Ma J,Li Y,Volinsky AA.Electrochemical performance of Mg-air batteries based on AZ series magnesium alloys.Ionics2019;25:2201-9

[26]

Wang N,Xiong W,Li Q.Effect of crystallographic orientation on the discharge and corrosion behaviour of AP65 magnesium alloy anodes.Corrosion Science2018;144:107-26

[27]

Zhao J,Hu Y.Discharge behavior of Mg-4wt%Ga-2wt%Hg alloy as anode for seawater activated battery.Electrochim Acta2011;56:8224-31

[28]

Yuasa M,Suzuki K,Chino Y.Discharge properties of Mg-Al-Mn-Ca and Mg-Al-Mn alloys as anode materials for primary magnesium-air batteries.J Power Sources2015;297:449-56

[29]

Wang N,Peng C,Zhang X.Influence of aluminium and lead on activation of magnesium as anode.T Nonferr Metal Soc2010;20:1403-11

[30]

Liu X,Liu S.Discharge and corrosion behaviors of the α-Mg and β-Li based Mg alloys for Mg-air batteries at different current densities.Mater Des2018;160:138-46

[31]

Sivashanmugam A,Renganathan NG.Performance of a magnesium-lithium alloy as an anode for magnesium batteries.J Appl Electrochem2004;34:1135-9

[32]

Gusieva K,Scully JR.Corrosion of magnesium alloys: the role of alloying.Int Mater Rev2014;60:169-94

[33]

Ma Y,Li D,Huang X.Performance of Mg-14Li-1Al-0.1Ce as anode for Mg-air battery.J Power Sources2011;196:2346-50

[34]

Wang N,Peng C,Feng Y.Discharge behaviour of Mg-Al-Pb and Mg-Al-Pb-In alloys as anodes for Mg-air battery.Electrochim Acta2014;149:193-205

[35]

Liu X,Xue J.Discharge performance of the magnesium anodes with different phase constitutions for Mg-air batteries.J Power Sources2018;396:667-74

[36]

Zheng T,Zhang Y,Pan F.Composition optimization and electrochemical properties of Mg-Al-Sn-Mn alloy anode for Mg-air batteries.Mater Des2018;137:245-55

[37]

Xiong H,Yin X,Yan Y.Effects of microstructure on the electrochemical discharge behavior of Mg-6wt%Al-1wt%Sn alloy as anode for Mg-air primary battery.J Alloys Compd2017;708:652-61

[38]

Yuasa M,Suzuki K,Chino Y.Effects of microstructure on discharge behavior of AZ91 alloy as anode for Mg–air battery.Mater Trans2014;55:1202-7

[39]

Hoey GR.Corrosion of anodically and cathodically polarized magnesium in aqueous media.J Electrochem Soc1958;105:245

[40]

Song G,Stjohn D,Li Y.The electrochemical corrosion of pure magnesium in 1 N NaCl.Corros Sci1997;39:855-75

[41]

Birbilis N,Thomas S,Scully J.Evidence for enhanced catalytic activity of magnesium arising from anodic dissolution.Electrochim Acta2014;132:277-83

[42]

Lebouil S,Monti F,Volovitch P.A novel approach to on-line measurement of gas evolution kinetics: application to the negative difference effect of Mg in chloride solution.Electrochim Acta2014;124:176-82

[43]

Song G.Understanding magnesium corrosion-a framework for improved alloy performance.Adv Eng Mater2003;5:837-58

[44]

Richey FW,Luntz AC.Mg anode corrosion in aqueous electrolytes and implications for Mg-air batteries.J Electrochem Soc2016;163:A958-63

[45]

Shrestha N,Utgikar V.Mg-RE alloy anode materials for Mg-air battery application.J Electrochem Soc2019;166:A3139-53

[46]

Sathyanarayana S.A new magnesium - air cell for long-life applications.J Appl Electrochem1981;11:33-9

[47]

Deyab M.Decyl glucoside as a corrosion inhibitor for magnesium-air battery.J Power Sources2016;325:98-103

[48]

Vaghefinazari B,Lamaka SV,Zheludkevich ML.Tailoring the Mg-air primary battery performance using strong complexing agents as electrolyte additives.J Power Sources2020;453:227880

[49]

Dinesh M, Saminathan K, Selvam M, Srither S, Rajendran V, Kaler KV. Water soluble graphene as electrolyte additive in magnesium-air battery system.J Power Sources2015;276:32-8

[50]

Liu J,Chen Z,Shen ZX.Progress in aqueous rechargeable batteries.Green Energy Environ2018;3:20-41

[51]

Lu Z,Moshkovich M.On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions.J Electroanal Chem1999;466:203-17

[52]

Vardar G,Thompson T.Mg/O2 Battery based on the magnesium–aluminum chloride complex (MACC) electrolyte.Chem Mater2016;28:7629-37

[53]

Yi J,Guo S,Xue H.Novel stable gel polymer electrolyte: toward a high safety and long life Li-air battery.ACS Appl Mater Interfaces2015;7:23798-804

[54]

Liew SY,Lai CW,Yang TC.An eco-friendly water-soluble graphene-incorporated agar gel electrolyte for magnesium-air batteries.Ionics2019;25:1291-301

[55]

Li L,He E.High-energy-density magnesium-air battery based on dual-layer gel electrolyte.Angew Chem Int Ed2021;60:15317-22

[56]

Armand M,MacFarlane DR,Scrosati B.Ionic-liquid materials for the electrochemical challenges of the future.Nat Mater2009;8:621-9

[57]

Galiński M,Stępniak I.Ionic liquids as electrolytes.Electrochim Acta2006;51:5567-80

[58]

Macfarlane DR,Howlett PC.Ionic liquids and their solid-state analogues as materials for energy generation and storage.Nat Rev Mater2016;1:15005

[59]

Han L,Zhu J.Recent developments and challenges in hybrid solid electrolytes for lithium-ion batteries.Front Energy Res2020;8:202

[60]

Karuppasamy K,Vikraman D.Ionic liquid-based electrolytes for energy storage devices: a brief review on their limits and applications.Polymers2020;12:918 PMCID:PMC7240671

[61]

Åvall G,Brandell D.Sodium-ion battery electrolytes: modeling and simulations.Adv Energy Mater2018;8:1703036

[62]

Saha P,Velikokhatnyi OI,Alman D.Rechargeable magnesium battery: current status and key challenges for the future.Prog Mater Sci2014;66:1-86

[63]

Mandai T,Watanabe M.Solvate ionic liquids for Li, Na, K, and Mg batteries.Chem Rec2018;19:708-22

[64]

Fu J,Park MG,Fowler M.Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives.Adv Mater2017;29:1604685

[65]

Kang Y,Hayashi K.Hybrid sodium-air cell with Na[FSA-C2C1im][FSA] ionic liquid electrolyte.Electrochim Acta2016;218:119-24

[66]

Xie J.Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes.Small2019;15:e1805061

[67]

Dokko K,Yamauchi K.Solvate ionic liquid electrolyte for Li-S batteries.J Electrochem Soc2013;160:A1304-10

[68]

Li Z,Haruta M.Si/Li2S battery with solvate ionic liquid electrolyte.Electrochemistry2016;84:887-90

[69]

Yan Y,Pozo-gonzalo C.Investigating discharge performance and Mg interphase properties of an Ionic Liquid electrolyte based Mg-air battery.Electrochim Acta2017;235:270-9

[70]

Khoo T,Torriero AA,Howlett PC.Discharge behaviour and interfacial properties of a magnesium battery incorporating trihexyl(tetradecyl)phosphonium based ionic liquid electrolytes.Electrochim Acta2013;87:701-8

[71]

Zhu N,Wu F,Wu C.Ionic liquid-based electrolytes for aluminum/magnesium/sodium-ion batteries.Energy Mater Adv2021;2021:1-29

[72]

Kar M,Azofra LM,Forsyth M.Ionic liquid electrolytes for reversible magnesium electrochemistry.Chem Commun2016;52:4033-6

[73]

Su S,Wang N,Yang J.Magnesium borohydride-based electrolytes containing 1-butyl-1-methylpiperidinium bis(trifluoromethyl sulfonyl)imide ionic liquid for rechargeable magnesium batteries.J Electrochem Soc2016;163:D682-8

[74]

Gao X,Jeong S.Prototype rechargeable magnesium batteries using ionic liquid electrolytes.J Power Sources2019;423:52-9

[75]

Law Y,Brimaud S.Oxygen reduction and evolution in an ionic liquid ([BMP][TFSA]) based electrolyte: a model study of the cathode reactions in Mg-air batteries.J Power Sources2016;333:173-83

[76]

Bozorgchenani M,Schnaidt J.Electrocatalytic oxygen reduction and oxygen evolution in Mg-free and Mg-containing ionic liquid 1-Butyl-1-Methylpyrrolidinium Bis (Trifluoromethanesulfonyl) imide.ChemElectroChem2018;5:2600-11

[77]

Jusys Z,Behm RJ.O2 reduction on a Au film electrode in an ionic liquid in the absence and presence of Mg2+ ions: product formation and adlayer dynamics.J Chem Phys2019;150:041724

[78]

Nørskov JK,Logadottir A.Origin of the overpotential for oxygen reduction at a fuel-cell cathode.J Phys Chem B2004;108:17886-92

[79]

Huang Z,Peng Y,Fisher A.Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives.Adv Energy Mater2017;7:1700544

[80]

Gasteiger HA,Sompalli B.Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs.Appl Catal B2005;56:9-35

[81]

Cheng F.Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.Chem Soc Rev2012;41:2172-92

[82]

Perez J,Ticianelli E.Oxygen electrocatalysis on thin porous coating rotating platinum electrodes.Electrochim Acta1998;44:1329-39

[83]

Huang Q,Tang Y,Akins DL.Carbon-supported Pt-Co alloy nanoparticles for oxygen reduction reaction.Electrochem Commun2006;8:1220-4

[84]

Chen C,Huo Z.Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces.Science2014;343:1339-43

[85]

Zhao Y,Liu J.Dependent relationship between quantitative lattice contraction and enhanced oxygen reduction activity over Pt-Cu alloy catalysts.ACS Appl Mater Interfaces2017;9:35740-8

[86]

Jong Yoo S,Jeon TY.Enhanced stability and activity of Pt-Y alloy catalysts for electrocatalytic oxygen reduction.Chem Commun2011;47:11414-6

[87]

Gao J,Zeng X.Carbon supported nano Pt-Mo alloy catalysts for oxygen reduction in magnesium-air batteries.RSC Adv2016;6:83025-30

[88]

Qaseem A,Wu X.Pt-free silver nanoalloy electrocatalysts for oxygen reduction reaction in alkaline media.Catal Sci Technol2016;6:3317-40

[89]

Kukunuri S,Sampath S.Effects of composition and nanostructuring of palladium selenide phases, Pd4Se, Pd7Se4 and Pd17Se15, on ORR activity and their use in Mg-air batteries.J Mater Chem A2017;5:4660-70

[90]

Outiki O,Barbier J.Platinum-palladium catalysts for fuel cell oxygen electrodes.React Kinet Catal Lett1983;23:213-20

[91]

Burke LD.An examination of the electrochemical behavior of palladium electrodes in acid.J Electrochem Soc1993;140:1284-91

[92]

Jiang L,Chu D.Oxygen reduction reaction on carbon supported Pt and Pd in alkaline solutions.J Electrochem Soc2009;156:B370

[93]

Cao Y,Ai X.The mechanism of oxygen reduction on MnO2-catalyzed air cathode in alkaline solution.J Electroanal Chem2003;557:127-34

[94]

Li CS,Lai WH,Chou SL.Ultrafine Mn3O4 nanowires/three-dimensional graphene/single-walled carbon nanotube composites: superior electrocatalysts for oxygen reduction and enhanced Mg/air batteries.ACS Appl Mater Interfaces2016;8:27710-9

[95]

Lambert TN,White SE.Understanding the effects of cationic dopants on α-MnO2 oxygen reduction reaction electrocatalysis.J Phys Chem C2017;121:2789-97

[96]

Davis DJ,Vigil JA.Role of Cu-ion doping in Cu-α-MnO2 nanowire electrocatalysts for the oxygen reduction reaction.J Phys Chem C2014;118:17342-50

[97]

Wu KH,Zhang B.Structural origin of the activity in Mn3O4-graphene oxide hybrid electrocatalysts for the oxygen reduction reaction.ChemSusChem2015;8:3331-9

[98]

Boukoureshtlieva R,Popov I,Momchilov A.Application of pyrolyzed Cobalt (II) tetramethoxyphenyl porphyrin based catalyst in metal-air systems and enzyme electrodes.Electrochim Acta2020;353:136472

[99]

Liu Y,Zhang Z.Significantly improved electrocatalytic oxygen reduction by an asymmetrical Pacman dinuclear cobalt(ii) porphyrin-porphyrin dyad.Chem Sci2020;11:87-96 PMCID:PMC7012046

[100]

Huang J,Ma X.Bio-inspired FeN5 moieties anchored on a three-dimensional graphene aerogel to improve oxygen reduction catalytic performance.J Mater Chem A2018;6:18488-97

[101]

Liu H,Tang Y,Zhang J.High-surface-area CoTMPP/C synthesized by ultrasonic spray pyrolysis for PEM fuel cell electrocatalysts.Electrochim Acta2007;52:4532-8

[102]

Lai L,Zhan D.Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction.Energy Environ Sci2012;5:7936

[103]

Vikkisk M,Joost U,Kink I.Electrocatalytic oxygen reduction on nitrogen-doped graphene in alkaline media.Appl Catal B2014;147:369-76

[104]

Liang HW,Brüller S,Müllen K.Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction.Nat Commun2014;5:4973

[105]

Du J,Zhang D,Zana A.Bifunctional Pt-IrO2 catalysts for the oxygen evolution and oxygen reduction reactions: alloy nanoparticles versus nanocomposite catalysts.ACS Catal2021;11:820-8

[106]

Kang Y,Kim H,Oh SH.Maximum catalytic activity of Pt3M in Li-O2 batteries: M=group V transition metals.Nano Energy2016;27:1-7

[107]

Li D,Robertson SJ.Heterogeneous bimetallic organic coordination polymer-derived Co/Fe@NC bifunctional catalysts for rechargeable Li-O2 batteries.ACS Appl Mater Interfaces2022;14:5459-67

[108]

Chen C,Cheng D,Zhou K.Graphite nanoarrays-confined Fe and Co single-atoms within graphene sponges as bifunctional oxygen electrocatalyst for ultralong lasting zinc-air battery.ACS Appl Mater Interfaces2020;12:40415-25

[109]

Xu N,Luo L.Controllable hortensia-like MnO2 synergized with carbon nanotubes as an efficient electrocatalyst for long-term metal-air batteries.ACS Appl Mater Interfaces2019;11:578-87

[110]

Débart A,Bao J.Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries.Angew Chem Int Ed2008;47:4521-4

[111]

Zhu L,Trouillet V.MnO2 and reduced graphene oxide as bifunctional electrocatalysts for Li-O2 batteries.ACS Appl Energy Mater2019;2:7121-31

[112]

Kim K.Unique designed structure of bimetallic cobalt and nickel oxide nanocages with nitrogen doping as bifunctional catalysts.Ionics2021;27:845-52

[113]

Fan L; College of Materials Science and Engineering, Heilongjiang Provincial Key Laboratory of Polymeric Composite Materials, Qiqihar University, No.42, Wenhua Street, Qiqihar 161006, PR China. A novel Sm0.5Sr0.5Co1-xFexO3-δ/acetylene black composite as bifunctional electrocatalyst for oxygen reduction/evolution reactions.Int J Electrochem Sci2021;16:210722

[114]

Xu M,Yu X,Yang J.Spinel NiCo2S4 as excellent bi-functional cathode catalysts for rechargeable Li-O2 batteries.J Electrochem Soc2019;166:F406-13

[115]

Wu X,Liu J.Mesoporous hollow nested nanospheres of Ni, Cu, Co-based mixed sulfides for electrocatalytic oxygen reduction and evolution.ACS Appl Nano Mater2019;2:4921-32

[116]

Sun D,Zhang W.A solution-phase bifunctional catalyst for lithium-oxygen batteries.J Am Chem Soc2014;136:8941-6

[117]

Deng H,Zhang X.Killing two birds with one stone: a Cu ion redox mediator for a non-aqueous Li-O2 battery.J Mater Chem A2019;7:17261-5

[118]

Sheng C,Wu Y,Chen Y.Disproportionation of sodium superoxide in metal-air batteries.Angew Chem Int Ed2018;57:9906-10

[119]

Bhauriyal P,Bhattacharyya G,Pathak B.First-principles study of magnesium peroxide nucleation for Mg-air battery.Chem Asian J2018;13:3198-203

[120]

Kwak W,Kim H.Oxidation stability of organic redox mediators as mobile catalysts in lithium-oxygen batteries.ACS Energy Lett2020;5:2122-9

[121]

Sun Y,Ji H.Boosting the optimization of lithium metal batteries by molecular dynamics simulations: a perspective.Adv Energy Mater2020;10:2002373

[122]

Butler KT,Canepa P.Designing interfaces in energy materials applications with first-principles calculations.npj Comput Mater2019;5:19

[123]

Chen T,Sai Gautam G.Evaluation of Mg compounds as coating materials in Mg batteries.Front Chem2019;7:24 PMCID:PMC6363690

[124]

Chen T,Canepa P.Ionic transport in potential coating materials for Mg batteries.Chem Mater2019;31:8087-99

[125]

Clark S,Horstmann B.A review of model-based design tools for metal-air batteries.Batteries2018;4:5

[126]

Wan LF.The solvation structure of Mg ions in dichloro complex solutions from first-principles molecular dynamics and simulated X-ray absorption spectra.J Am Chem Soc2014;136:14456-64

[127]

Rajput NN,Sa N,Persson KA.The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics.J Am Chem Soc2015;137:3411-20

[128]

Canepa P,Malik R.Understanding the initial stages of reversible Mg deposition and stripping in inorganic nonaqueous electrolytes.Chem Mater2015;27:3317-25

[129]

Xu N,Zhang T,Qiao J.Efficient quantum dots anchored nanocomposite for highly active ORR/OER electrocatalyst of advanced metal-air batteries.Nano Energy2019;57:176-85

[130]

Qian Z,Sun B.Unraveling the promotion effects of a soluble cobaltocene catalyst with respect to Li-O2 battery discharge.J Phys Chem Lett2020;11:7028-34

[131]

Lai J,Zhang F.Imidazolium bromide: a tri-functional additive for rechargeable Li-O2 batteries.Energy Stor Mater2022;49:401-8

[132]

Hasvold Ø,Melv˦r E.Sea-water battery for subsea control systems.J Power Sources1997;65:253-61

[133]

Yang W,Sun G. Development and application of magnesium fuel cell. CHIN J Power Sources 2005;29:182-6. Available from: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2005&filename=DYJS200503016&uniplatform=NZKPT&v=_6xHLZPTn7KQ_L4mR5bbwgUe_uVm87EUswW0qD1_FUXTjubNllHPuVXXJUsbKzBw [Last accessed on 24 Jun 2022]

[134]

Cheng C,Xia Y.Atomic Fe-Nx coupled open-mesoporous carbon nanofibers for efficient and bioadaptable oxygen electrode in Mg-air batteries.Adv Mater2018;30:e1802669

PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

/