Recent progress and perspective of multifunctional integrated zinc-ion supercapacitors

Yue Li , Wen Yang , Lu Han , Huijun Li , Zhiguo Wen , Yan Li , Xiaoguang Wang , Hengchao Sun , Ting Lu , Min Xu , Likun Pan

Energy Materials ›› 2022, Vol. 2 ›› Issue (3) : 200018

PDF
Energy Materials ›› 2022, Vol. 2 ›› Issue (3) :200018 DOI: 10.20517/energymater.2022.15
Mini Review

Recent progress and perspective of multifunctional integrated zinc-ion supercapacitors

Author information +
History +
PDF

Abstract

Zinc-ion supercapacitors (ZISCs) are recognized as one of the most promising types of energy storage devices with the advantages of high theoretical capacity and safety, nontoxicity, low cost, abundant resources (~300 times higher than lithium), and lightweight. So far, multifunctional integrated ZISCs have greatly broadened their application scenarios. In addition to enhancing the electrochemical performance via the design of advanced electrodes and electrolytes, the complex application scenarios and in-depth development of energy storage devices have resulted in higher requirements for ZISCs with multifunctional integrated applications. However, to the best of our knowledge, there is no relevant review about summarizing advanced multifunctional ZISCs. In this review, various advanced multifunctional ZISCs, including micro, self-powered integrated, antifreezing, and stretchable ZISCs, are comprehensively presented to fully understand the advanced evolution of multifunctional ZISCs. The working principles and challenges of ZISCs are analyzed and the future development directions and expectations of advanced multifunctional ZISCs are discussed. This review provides significant guidance for the multifunctional development of ZISCs for future studies.

Keywords

Zinc-ion supercapacitors / energy storage devices / multifunctional integrated applications

Cite this article

Download citation ▾
Yue Li, Wen Yang, Lu Han, Huijun Li, Zhiguo Wen, Yan Li, Xiaoguang Wang, Hengchao Sun, Ting Lu, Min Xu, Likun Pan. Recent progress and perspective of multifunctional integrated zinc-ion supercapacitors. Energy Materials, 2022, 2(3): 200018 DOI:10.20517/energymater.2022.15

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cui J,Meng J.Supermolecule cucurbituril subnanoporous carbon supercapacitor (SCSCS).Nano Lett2021;21:2156-64

[2]

Li Y,Chen Q,Chen M.Emerging of heterostructure materials in energy storage: a review.Adv Mater2021;33:e2100855

[3]

Chen M,Xing G,Tang Y.Electrochemical energy storage devices working in extreme conditions.Energy Environ Sci2021;14:3323-51

[4]

Liu Z,Gao W.Demonstration of ultrahigh thermoelectric efficiency of ~7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting.Joule2021;5:1196-208

[5]

Song Z,Deng X.Ultra-low-dose pre-metallation strategy served for commercial metal-ion capacitors.Nanomicro Lett2022;14:53 PMCID:PMC8800971

[6]

Han L,Fu X.A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor.Chem Eng J2020;392:123733

[7]

Pan G,Han L.MoS2 nanosheets with expanded interlayer spacing for ultra-stable aqueous Mg-ion hybrid supercapacitor.Inorg Chem Front2022;9:1666-73

[8]

Chen L,Wan L.Carbon-incorporated Fe3O4 nanoflakes: high-performance faradaic materials for hybrid capacitive deionization and supercapacitors.Mater Chem Front2021;5:3480-8

[9]

Chen C,Cai Y.Scalable synthesis of strutted nitrogen doped hierarchical porous carbon nanosheets for supercapacitors with both high gravimetric and volumetric performances.Carbon2021;179:458-68

[10]

Dao V,Yun S.Recent advances and challenges for solar-driven water evaporation system toward applications.Nano Energy2020;68:104324

[11]

Dao V,Thi Dang H.Recent advances and challenges for water evaporation-induced electricity toward applications.Nano Energy2021;85:105979

[12]

Dao V,Choi H.All day Limnobium laevigatum inspired nanogenerator self-driven via water evaporation.J Power Sources2020;448:227388

[13]

Dao VD.An experimental exploration of generating electricity from nature-inspired hierarchical evaporator: the role of electrode materials.Sci Total Environ2021;759:143490

[14]

Tan J,Zhao Y,Tang Q.Generators to harvest ocean wave energy through electrokinetic principle.Nano Energy2018;48:128-33

[15]

Liu S,Wang Y.Magnetic switch structured triboelectric nanogenerator for continuous and regular harvesting of wind energy.Nano Energy2021;83:105851

[16]

Guo Z,Wang Y.Achieving steam and electrical power from solar energy by MoS2-based composites.Chem Eng J2022;427:131008

[17]

Khojasteh D,Tavakoli S.Sea level rise will change estuarine tidal energy: a review.Renew Sust Energ Rev2022;156:111855

[18]

Pérez A,Fuente E,Paniagua S.Pyrolysis technology for Cortaderia selloana invasive species. Prospects in the biomass energy sector.Renew Energ2021;169:178-90

[19]

Pokhrel S,Sainoki A.Field-scale experimental and numerical analysis of a downhole coaxial heat exchanger for geothermal energy production.Renew Energ2022;182:521-35

[20]

Li W,Cao D.Data-driven systematic parameter identification of an electrochemical model for lithium-ion batteries with artificial intelligence.Energy Stor Mater2022;44:557-70

[21]

Liu H,Cai C.Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor.Adv Funct Materials2022;

[22]

Shekhar A,Pol V.Worldwide ubiquitous utilization of lithium-ion batteries: what we have done, are doing, and could do safely once they are dead?.J Power Sources2022;523:231015

[23]

Qin W,Wu C.Mini-review on the redox additives in aqueous electrolyte for high performance supercapacitors.ACS Omega2020;5:3801-8 PMCID:PMC7057331

[24]

Xu X,Qian H.Three-dimensional networked metal-organic frameworks with conductive polypyrrole tubes for flexible supercapacitors.ACS Appl Mater Interfaces2017;9:38737-44

[25]

Zhang Y,Gong Z,Lu T.Nitrogen and sulfur co-doped vanadium carbide MXene for highly reversible lithium-ion storage.J Colloid Interface Sci2021;587:489-98

[26]

Li Y,Wang M.Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization.Carbon2018;130:377-83

[27]

Xu G,Gong Z,Pan L.Three-dimensional hydrated vanadium pentoxide/MXene composite for high-rate zinc-ion batteries.J Colloid Interface Sci2021;593:417-23

[28]

Xu H,Xie T.Li+ assisted fast and stable Mg2+ reversible storage in cobalt sulfide cathodes for high performance magnesium/lithium hybrid-ion batteries.Energy Stor Mater2022;46:583-93

[29]

Ma Z,Vatamanu J.Expanding the low-temperature and high-voltage limits of aqueous lithium-ion battery.Energy Stor Mater2022;45:903-10

[30]

Hubble D,Zhao Y.Liquid electrolyte development for low-temperature lithium-ion batteries.Energy Environ Sci2022;15:550-78

[31]

Wang X,Luo Y.Achieving superior lithium storage performances of CoMoO4 anode for lithium-ion batteries by Si-doping dual vacancies engineering.Acta Mater2022;225:117600

[32]

Xu H,Zhu W.Rational design of high concentration electrolytes and MXene-based sulfur host materials toward high-performance magnesium sulfur batteries.Chem Eng J2022;428:131031

[33]

Dao V.Comment on "Energy storage via polyvinylidene fluoride dielectric on the counter electrode of dye-sensitized solar cells" by Jiang et al.J Power Sources2017;337:125-9

[34]

Wang X,Wang L.An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior.Adv Mater2016;28:4904-11

[35]

Chen P,Xia Y.An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries.Adv Sci (Weinh)2021;8:e2100309 PMCID:PMC8188195

[36]

He L,Li C.A low-cost Zn-based aqueous supercapacitor with high energy density.ACS Appl Energy Mater2019;2:5835-42

[37]

Li B,Xiao Q.Nitrogen-doped activated carbon for a high energy hybrid supercapacitor.Energy Environ Sci2016;9:102-6

[38]

Zuo W,Zhou C,Xia J.Battery-supercapacitor hybrid devices: recent progress and future prospects.Adv Sci (Weinh)2017;4:1600539 PMCID:PMC5514976

[39]

Zhang S,Liu X,Gong H.A high energy density aqueous hybrid supercapacitor with widened potential window through multi approaches.Nano Energy2019;59:41-9

[40]

Xu X,Wang M.Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization.Electrochim Acta2016;193:88-95

[41]

Zhang Y,Ma L.Insights into the storage mechanism of 3D nanoflower-like V3S4 anode in sodium-ion batteries.Chem Eng J2022;427:130936

[42]

Liu H,Wang S,Li L.Transition metal based battery-type electrodes in hybrid supercapacitors: a review.Energy Stor Mater2020;28:122-45

[43]

Kim E,Park BJ.Etching-assisted crumpled graphene wrapped spiky iron oxide particles for high-performance Li-Ion hybrid supercapacitor.Small2018;14:e1704209

[44]

Wang J,Zhang X.Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors.Nano Energy2017;39:647-53

[45]

Deng W,Liu C.Li/K mixed superconcentrated aqueous electrolyte enables high-performance hybrid aqueous supercapacitors.Energy Stor Mater2019;20:373-9

[46]

Lim E,Jo C.Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode.ACS Nano2014;8:8968-78

[47]

Wan L,Chen L.In-situ construction of g-C3N4/Mo2CTx hybrid for superior lithium storage with significantly improved Coulombic efficiency and cycling stability.Chem Eng J2021;410:128349

[48]

Aslam MK,Xu M.MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors.Adv Energy Mater2021;11:2000681

[49]

Gao H,Zhao H,Cao Y.A general fabrication approach on spinel MCo2O4 (M = Co, Mn, Fe, Mg and Zn) submicron prisms as advanced positive materials for supercapacitor.Electrochim Acta2018;262:241-51

[50]

Wang Q,Li J.A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode.Adv Funct Mater2006;16:2141-6

[51]

Molinari A,Reitz C.Hybrid supercapacitors for reversible control of magnetism.Nat Commun2017;8:15339 PMCID:PMC5436217

[52]

Qi JL,Wang X.Low resistance VFG-Microporous hybrid Al-based electrodes for supercapacitors.Nano Energy2016;26:657-67

[53]

Wang H,Yang Y,Hu Y.Zn-ion hybrid supercapacitors: achievements, challenges and future perspectives.Nano Energy2021;85:105942

[54]

Wang H,Tang Y.A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications.Energy Stor Mater2018;13:1-7

[55]

Chebrolu VT,Chinnadurai D.Selective growth of Zn-Co-Se nanostructures on various conductive substrates for asymmetric flexible hybrid supercapacitor with enhanced performance.Adv Mater Technol2019;5:1900873

[56]

Xu Y,Huang C.Redox-active p-phenylenediamine functionalized reduced graphene oxide film through covalently grafting for ultrahigh areal capacitance Zn-ion hybrid supercapacitor.J Power Sources2021;488:229426

[57]

Jin J,Chen Q.A better Zn-ion storage device: recent progress for Zn-ion hybrid supercapacitors.Nanomicro Lett2022;14:64 PMCID:PMC8866629

[58]

Yang Y,Wang H.Two-step nitrogen and sulfur doping in porous carbon dodecahedra for Zn-ion hybrid supercapacitors with long term stability.Chem Eng J2022;431:133250

[59]

Li J,Ding Z.In-situ encapsulation of Ni3S2 nanoparticles into N-doped interconnected carbon networks for efficient lithium storage.Chem Eng J2019;378:122108

[60]

Li J,Xie J.Rational design of MoS2-reduced graphene oxide sponges as free-standing anodes for sodium-ion batteries.Chem Eng J2018;332:260-6

[61]

Zhao J.Electrochemical capacitors: performance metrics and evaluation by testing and analysis.Adv Energ Mater2021;11:2002192

[62]

Zhang M,Tan L.From wood to thin porous carbon membrane: ancient materials for modern ultrafast electrochemical capacitors in alternating current line filtering.Energy Stor Mater2021;35:327-33

[63]

Cai P,Li M.Functional carbon materials processed by NH3 plasma for advanced full-carbon sodium-ion capacitors.Chem Eng J2021;420:129647

[64]

Platek-mielczarek A,Fic K.Specific carbon/iodide interactions in electrochemical capacitors monitored by EQCM technique.Energy Environ Sci2021;14:2381-93

[65]

Zhang M,Saeedi Garakani S.Bridged carbon fabric membrane with boosted performance in AC line-filtering capacitors.Adv Sci (Weinh)2022;9:e2105072 PMCID:PMC8895147

[66]

Hu X,Li J.Significant contribution of single atomic Mn implanted in carbon nanosheets to high-performance sodium-ion hybrid capacitors.Energy Environ Sci2021;14:4564-73

[67]

Chen J,Chen M,Tian Q.Nacre-inspired surface-engineered MXene/nanocellulose composite film for high-performance supercapacitors and zinc-ion capacitors.Chem Eng J2022;428:131380

[68]

Ando Y,Yamada A.Capacitive versus pseudocapacitive storage in MXene.Adv Funct Mater2020;30:2000820

[69]

Wen Y,Wu M.Vertically oriented MXene bridging the frequency response and capacity density gap for AC-filtering pseudocapacitors.Adv Funct Materials2022;32:2111613

[70]

Mainka J,He N,Lottin O.A General Equivalent Electrical Circuit Model for the characterization of MXene/graphene oxide hybrid-fiber supercapacitors by electrochemical impedance spectroscopy - impact of fiber length.Electrochim Acta2022;404:139740

[71]

Li F,Wang G.3D porous H-Ti3C2T films as free-standing electrodes for zinc ion hybrid capacitors.Chem Eng J2022;435:135052

[72]

Yang B,Chen J.Realizing high-performance lithium ion hybrid capacitor with a 3D MXene-carbon nanotube composite anode.Chem Eng J2022;429:132392

[73]

Cui F,Ma D.Polyarylimide and porphyrin based polymer microspheres for zinc ion hybrid capacitors.Chem Eng J2021;405:127038

[74]

Wang L,Xu Y.Tetrabutylammonium-intercalated 1T-MoS2 nanosheets with expanded interlayer spacing vertically coupled on 2D delaminated MXene for high-performance lithium-ion capacitors.Adv Funct Mater2021;31:2104286

[75]

Yuan T,Soule L.A hierarchical Ti2Nb10O29 composite electrode for high-power lithium-ion batteries and capacitors.Mater Today2021;45:8-19

[76]

Li Z,Zheng X.Continuous PEDOT:PSS nanomesh film: towards aqueous AC line filtering capacitor with ultrahigh energy density.Chem Eng J2022;430:133012

[77]

Sappia LD,Azzaroni O.PEDOT-based stackable paper electrodes for metal-free supercapacitors.ACS Appl Energy Mater2021;4:9283-93

[78]

Feng X,Wang M.Novel PEDOT dispersion by in-situ polymerization based on sulfated nanocellulose.Chem Eng J2021;418:129533

[79]

Seo S,Park J.Growth of transition metal dichalcogenide heterojunctions with metal oxides for metal-insulator-semiconductor capacitors.ACS Appl Nano Mater2021;4:12017-23

[80]

Hu P,Liu H,Liu B.MnCo2O4 nanosheet/NiCo2S4 nanowire heterostructures as cathode materials for capacitors.ACS Appl Nano Mater2021;4:2183-9

[81]

Gao L,Zhang L,Yang X.Engineering pseudocapacitive MnMoO4@C microrods for high energy sodium ion hybrid capacitors.Electrochim Acta2021;379:138185

[82]

Hussain S, Vamsi Krishna B, Nagaraju G, Chandra Sekhar S, Narsimulu D, Yu JS. Porous Co-MoS2@Cu2MoS4 three-dimensional nanoflowers via in situ sulfurization of Cu2O nanospheres for electrochemical hybrid capacitors.Chem Eng J2021;403:126319

[83]

Ma Y,Liu R.Molecular tailoring of MnO2 by bismuth doping to achieve aqueous zinc-ion battery with capacitor-level durability.Energy Stor Mater2022;48:212-22

[84]

Soltani H,Ghasemi S.Effect of electrodeposition time on the super-capacitive performance of electrodeposited MnO2 on g-C3N4 nanosheets.J Alloy Compd2022;904:163565

[85]

Wang S,Yin Y,Zhang H.High-energy-density aqueous zinc-based hybrid supercapacitor-battery with uniform zinc deposition achieved by multifunctional decoupled additive.Nano Energy2022;96:107120

[86]

Liu P,Ouyang B.A Zn-ion hybrid capacitor with enhanced energy density for anode-free.J Power Sources2022;518:230740

[87]

Cao Y,Liu M.Thin-walled porous carbon tile-packed paper for high-rate Zn-ion capacitor cathode.Chem Eng J2022;431:133241

[88]

Yi Z,Hou F,Liang J.Strategies for the stabilization of Zn metal anodes for Zn-ion batteries.Adv Energy Mater2021;11:2003065

[89]

Dong L,Li Y.Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors.Energy Stor Mater2018;13:96-102

[90]

Chao D,Xie F.Roadmap for advanced aqueous batteries: from design of materials to applications.Sci Adv2020;6:eaba4098 PMCID:PMC7244306

[91]

Liu Z,Zheng W.Untying the bundles of solution-synthesized graphene nanoribbons for highly capacitive micro-supercapacitorsrs.Adv Funct Mater2022;32:2109543

[92]

Cao Z,Wu M,Hu H.Synchronously manipulating Zn2+ transfer and hydrogen/oxygen evolution kinetics in MXene host electrodes toward symmetric Zn-ions micro-supercapacitor with enhanced areal energy density.Energy Stor Mater2021;40:10-21

[93]

Zhu M,Luo Y.A mechanically interlocking strategy based on conductive microbridges for stretchable electronics.Adv Mater2022;34:e2101339

[94]

Gu C,Liang Y.Small molecule-based supramolecular-polymer double-network hydrogel electrolytes for ultra-stretchable and waterproof Zn-air batteries working from -50 to 100 °C.Energy Environ Sci2021;14:4451-62

[95]

Jin X,Yang H.Stretchable supercapacitor at -30 °C.Energy Environ Sci2021; 14:3075-85

[96]

Ma L,Ji X.A usage scenario independent "air chargeable" flexible zinc ion energy storage device.Adv Energy Mater2019;9:1900509

[97]

Deka BK,Kwak M.Triboelectric nanogenerator-integrated structural supercapacitor with in situ MXene-dispersed N-doped Zn-Cu selenide nanostructured woven carbon fiber for energy harvesting and storage.Energy Stor Mater2021;43:402-10

[98]

Zhang C,Huang C.High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems.Nano Energy2021;81:105609

[99]

Shi B,Chen A,Liu X.Continuous fabrication of Ti3C2Tx MXene-based braided coaxial zinc-ion hybrid supercapacitors with improved performance.Nanomicro Lett2021;14:34 PMCID:PMC8671578

[100]

Zhang P,Wang G.Zn-ion hybrid micro-supercapacitors with ultrahigh areal energy density and long-term durability.Adv Mater2019;31:e1806005

[101]

Liu W, Jiang K, Chen D, Qu F, Shen G. In-situ annealed Ti3C2Tx MXene based all-solid-state flexible Zn-ion hybrid micro supercapacitor array with enhanced stability.Nanomicro Lett2021;13:100

[102]

Cheng W,Hu H.Interlayer structure engineering of MXene-based capacitor-type electrode for hybrid micro-supercapacitor toward battery-level energy density.Adv Sci (Weinh)2021;8:e2100775 PMCID:PMC8373094

[103]

Tian W,Zhou J.Implantable and biodegradable micro-supercapacitor based on a superassembled three-dimensional network Zn@PPy hybrid electrode.ACS Appl Mater Interfaces2021;13:8285-93

[104]

Mu C,Ma Z,Li W.Redox and conductive underwater adhesive: an innovative electrode material for convenient construction of flexible and stretchable supercapacitors.J Mater Chem A2022;10:7207-17

[105]

Kang MS,Cho KG.Coarsening-induced hierarchically interconnected porous carbon polyhedrons for stretchable ionogel-based supercapacitors.Energy Stor Mater2022;45:380-8

[106]

Sun Q,Ren G.Smart band-aid: multifunctional and wearable electronic device for self-powered motion monitoring and human-machine interaction.Nano Energy2022;92:106840

[107]

Lu Z,Wang C,Wallace GG.Superelastic hybrid CNT/graphene fibers for wearable energy storage.Adv Energy Mater2018;8:1702047

[108]

Chen X,Ren J.Novel electric double-layer capacitor with a coaxial fiber structure.Adv Mater2013;25:6436-41

[109]

Li H,Sun H.Ultrastretchable and superior healable supercapacitors based on a double cross-linked hydrogel electrolyte.Nat Commun2019;10:536 PMCID:PMC6358613

[110]

Tian Z,Sheng G.Printable magnesium ion quasi-solid-state asymmetric supercapacitors for flexible solar-charging integrated units.Nat Commun2019;10:4913 PMCID:PMC6820525

[111]

Paolella A,Bertoni G.Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries.Nat Commun2017;8:14643 PMCID:PMC5394232

[112]

Boruah BD,Wen B,Deschler F.Photo-rechargeable zinc-ion capacitor using 2D graphitic carbon nitride.Nano Lett2020;20:5967-74

[113]

Zhao J,Hu J.Regulating zinc electroplating chemistry to achieve high energy coaxial fiber Zn ion supercapacitor for self-powered textile-based monitoring system.Nano Energy2022;93:106893

[114]

Zhang D,Liu Y.A general crosslinker strategy to realize intrinsic frozen resistance of hydrogels.Adv Mater2021;33:e2104006

[115]

Mo F,Meng Q.A flexible rechargeable aqueous zinc manganese-dioxide battery working at -20 °C.Energy Environ Sci2019;12:706-15

[116]

Xu Z,Wang X.Ultrafast, long-life, high-loading, and wide-temperature zinc ion supercapacitors.Energy Stor Mater2022;46:233-42

[117]

Yang G,Wan X.A low cost, wide temperature range, and high energy density flexible quasi-solid-state zinc-ion hybrid supercapacitors enabled by sustainable cathode and electrolyte design.Nano Energy2021;90:106500

[118]

Li Z,An Y.Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon.Energy Stor Mater2020;28:307-14

[119]

Jiang Y,Sun M,Liu J.All-climate stretchable dendrite-free Zn-ion hybrid supercapacitors enabled by hydrogel electrolyte engineering.Energy Environ Mater2022;

[120]

Liu J,Ahmed S,Wang H.Flexible antifreeze Zn-ion hybrid supercapacitor based on gel electrolyte with graphene electrodes.ACS Appl Mater Interfaces2021;13:16454-68

[121]

Lv J,Jiang L.Bio-inspired strategies for anti-icing.ACS Nano2014;8:3152-69

[122]

He Z,Hua M.Bioinspired multifunctional anti-icing hydrogel.Matter2020;2:723-34

[123]

Raymond JA.Adsorption inhibition as a mechanism of freezing resistance in polar fishes.Proc Natl Acad Sci U S A1977;74:2589-93 PMCID:PMC432219

[124]

Mo F,Liang G.A self-healing crease-free supramolecular all-polymer supercapacitor.Adv Sci (Weinh)2021;8:2100072 PMCID:PMC8224449

[125]

Zhang N,Yu M,Cheng F.Materials chemistry for rechargeable zinc-ion batteries.Chem Soc Rev2020;49:4203-19

[126]

Zheng J,Tang T.Reversible epitaxial electrodeposition of metals in battery anodes.Science2019;366:645-8

[127]

Li Z,Wang D,Sun H.Exploration of Metal/Ti3C2 MXene-derived composites as anode for high-performance zinc-ion supercapacitor.J Power Sources2021;506:230197

[128]

Xu Z,Zhang N,Seo MH.Efficient Zn metal anode enabled by O,N-codoped carbon microflowers.Nano Lett2022;22:1350-7

PDF

66

Accesses

0

Citation

Detail

Sections
Recommended

/