Accelerating perovskite materials discovery and correlated energy applications through artificial intelligence

Jiechun Liang , Tingting Wu , Ziwei Wang , Yunduo Yu , Linfeng Hu , Huamei Li , Xiaohong Zhang , Xi Zhu , Yu Zhao

Energy Materials ›› 2022, Vol. 2 ›› Issue (3) : 200016

PDF
Energy Materials ›› 2022, Vol. 2 ›› Issue (3) :200016 DOI: 10.20517/energymater.2022.14
Review

Accelerating perovskite materials discovery and correlated energy applications through artificial intelligence

Author information +
History +
PDF

Abstract

Perovskites are promising materials applied in new energy devices, from solar cells to battery electrodes. Under traditional experimental conditions in laboratories, the performance improvement of new energy devices is slow and limited. Artificial intelligence (AI) has recently drawn much attention in material properties prediction and new functional materials exploration. With the advent of the AI era, the methods of studying perovskites have been upgraded, thereby benefiting the energy industry. In this review, we summarize the application of AI in perovskite discovery and synthesis and its positive influence on new energy research. First, we list the advantages of AI in perovskite research and the steps of AI application in perovskite discovery, including data availability, the selection of training algorithms, and the interpretation of results. Second, we introduce a new synthesis method with high efficiency in cloud labs and explain how this platform can assist perovskite discovery. We review the use of perovskites in energy applications and illustrate that the efficiency of energy production in these fields can be significantly boosted due to the use of AI in the development process. This review aims to provide the future application prospects of AI in perovskite research and new energy generation.

Keywords

Perovskite solar cells / machine learning / artificial intelligence / new perovskite prediction / accelerated synthesis

Cite this article

Download citation ▾
Jiechun Liang, Tingting Wu, Ziwei Wang, Yunduo Yu, Linfeng Hu, Huamei Li, Xiaohong Zhang, Xi Zhu, Yu Zhao. Accelerating perovskite materials discovery and correlated energy applications through artificial intelligence. Energy Materials, 2022, 2(3): 200016 DOI:10.20517/energymater.2022.14

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Perera ATD,Chen D,Hong T.Quantifying the impacts of climate change and extreme climate events on energy systems.Nat Energy2020;5:150-9

[2]

Capellán-pérez I,de Castro C,Miguel LJ.Fossil fuel depletion and socio-economic scenarios: an integrated approach.Energy2014;77:641-66

[3]

Bashir T,Song Y.A review of the energy storage aspects of chemical elements for lithium-ion based batteries.Energy Mater2021;1:100019

[4]

Xiao Y,Xu L,Huang J.Recent advances on anion-derived sei for fast-charging and stable lithium batteries.Energy Mater2021;1:100013

[5]

Alias N.Advances of aqueous rechargeable lithium-ion battery: A review.J Power Sources2015;274:237-51

[6]

Li C,Zhu Y.Modulating the lithiophilicity at electrode/electrolyte interface for high-energy Li-metal batteries.Energy Mater2021;1:100017

[7]

Zhang L.Electrolyte solvation structure as a stabilization mechanism for electrodes.Energy Mater2021;1:100004

[8]

Ruan J,Song Y.Constructing 1D/2D interwoven carbonous matrix to enable high-efficiency sulfur immobilization in Li-S battery.Energy Mater2021;1:100018

[9]

Chen X,Li G,Li H.Recent advances in photocatalytic renewable energy production.Energy Mater2022;2:200001

[10]

Yahya N,Jamaludin N.A review of integrated photocatalyst adsorbents for wastewater treatment.J Environ Chem Eng2018;6:7411-25

[11]

Wang X,Ozden A.Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag-Ru-Cu catalyst.Nat Energy2022;7:170-6

[12]

Vangari M,Jiang L.Supercapacitors: review of materials and fabrication methods.J Energy Eng2013;139:72-9

[13]

He C,Liu Y,Wang B.Thin-walled hollow fibers for flexible high energy density fiber-shaped supercapacitors.Energy Mater2021;1:100010

[14]

Zhang L,Wang Z,Dorrell DG.A review of supercapacitor modeling, estimation, and applications: a control/management perspective.Renew Sust Energ Rev2018;81:1868-78

[15]

Yang M,Zhou X,Duan C.Non-fused ring acceptors for organic solar cells.Energy Mater2021;1:100008

[16]

Zhang C,Liu W.Ti1-graphene single-atom material for improved energy level alignment in perovskite solar cells.Nat Energy2021;6:1154-63

[17]

Dodds PE,Hawkes AD.Hydrogen and fuel cell technologies for heating: a review.Int J Hydrog Energ2015;40:2065-83

[18]

Lu Y,Shi J.Advanced low-temperature solid oxide fuel cells based on a built-in electric field.Energy Mater2021;1:100007

[19]

Zhu B,Xia C.Nano-scale view into solid oxide fuel cell and semiconductor membrane fuel cell: material and technology.Energy Mater2021;1:100002

[20]

Zhang X,Zhou K.Enhancing cycle life of nickel-rich LiNi0.9Co0.05Mn0.05O2 via a highly fluorinated electrolyte additive - pentafluoropyridine.Energy Mater2021;1:100005

[21]

Wang Y,Zhong J.Hierarchical Ni/Co-based oxynitride nanoarrays with superior lithiophilicity for high-performance lithium metal anode.Energy Mater2021;1:100012

[22]

Yang C,Wang X.Phosphate boosting stable efficient seawater splitting on porous NiFe (oxy)hydroxide@NiMoO4 Core-Shell micropillar electrode.Energy Mater2021;1:100015

[23]

Guan Z,Wang P.Perovskite photocatalyst CsPbBr3-xIx with a bandgap funnel structure for H2 evolution under visible light.Appl Catal B2019;245:522-7

[24]

Cui P,Zhang Q.Perovskite homojunction solar cells: opportunities and challenges.Energy Mater2021;1:100014

[25]

Mei A,Liu L.A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability.Science2014;345:295-8

[26]

Kim HS,Ahn N.Control of I-V hysteresis in CH3NH3PbI3 perovskite solar cell.J Phys Chem Lett2015;6:4633-9

[27]

Lu J.Perovskite-type Li-ion solid electrolytes: a review.J Mater Sci: Mater Electron2021;32:9736-54

[28]

Choudhary K,Jiang J,Lamoen D.Accelerated discovery of efficient solar-cell materials using quantum and machine-learning methods.Chem Mater2019;31:5900-8 PMCID:PMC7067045

[29]

Glazer AM.Perovskites modern and ancient.Acta Crystallogr B Struct Sci2002;58:1075-1075

[30]

Wang Q,Di Girolamo D,Abate A.Enhancement in lifespan of halide perovskite solar cells.Energy Environ Sci2019;12:865-86

[31]

Srivastava M,Gong T,Leite MS.Machine learning roadmap for perovskite photovoltaics.J Phys Chem Lett2021;12:7866-77

[32]

Pilania G,Uberuaga BP,Gubernatis JE.Machine learning bandgaps of double perovskites.Sci Rep2016;6:19375 PMCID:PMC4726030

[33]

Im J,Ko T,Hyon Y.Identifying Pb-free perovskites for solar cells by machine learning.npj Comput Mater2019;5

[34]

Tao Q,Li M.Machine learning for perovskite materials design and discovery.npj Comput Mater2021;7

[35]

Jain A,Hautier G.Commentary: the materials project: a materials genome approach to accelerating materials innovation.APL Materials2013;1:011002

[36]

Saal JE,Aykol M,Wolverton C.Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD).JOM2013;65:1501-9

[37]

Castelli IE,Thygesen KS.New cubic perovskites for one- and two-photon water splitting using the computational materials repository.Energy Environ Sci2012;5:9034

[38]

Hellenbrandt M.The inorganic crystal structure database (ICSD) - present and future.Crystallography Reviews2014;10:17-22

[39]

Curtarolo S,Hart GL.AFLOW: an automatic framework for high-throughput materials discovery.Comput Mater Sci2012;58:218-26

[40]

Groom CR,Lightfoot MP.The cambridge structural database.Acta Crystallogr B Struct Sci Cryst Eng Mater2016;72:171-9 PMCID:PMC4822653

[41]

Gražulis S,Merkys A.Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration.Nucleic Acids Res2012;40:D420-7 PMCID:PMC3245043

[42]

Jain A,Dwaraknath S.The materials project: Accelerating materials design through theory-driven data and tools.In: Andreoni W, Yip S, editors. Handbook of Materials Modeling: Methods: Theory and Modeling. Springer; 2020. pp. 1751-84.

[43]

Oviedo F,Sun S.Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks.npj Comput Mater2019;5

[44]

Xu Q,Liu M.Rationalizing perovskite data for machine learning and materials design.J Phys Chem Lett2018;9:6948-54

[45]

Zhai X,Lu W.Accelerated search for perovskite materials with higher Curie temperature based on the machine learning methods.Comput Mater Sci2018;151:41-8

[46]

Xie T.Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties.Phys Rev Lett2018;120:145301

[47]

Kirman J,Kuntz DA.Machine-learning-accelerated perovskite crystallization.Matter2020;2:938-47

[48]

Saidi WA,Castelli IE.Machine-learning structural and electronic properties of metal halide perovskites using a hierarchical convolutional neural network.npj Comput Mater2020;6

[49]

Vicente N.Methylammonium lead bromide perovskite battery anodes reversibly host high li-ion concentrations.J Phys Chem Lett2017;8:1371-4

[50]

Liu M,Snaith HJ.Efficient planar heterojunction perovskite solar cells by vapour deposition.Nature2013;501:395-8

[51]

He Q,Zhang D,Tian H.Theoretical analysis of effects of doping MAPbI into p-n homojunction on several types of perovskite solar cells.Optical Materials2021;121:111491

[52]

Odabaşı Ç.Performance analysis of perovskite solar cells in 2013-2018 using machine-learning tools.Nano Energy2019;56:770-91

[53]

Ye M,Zhang F.Recent advancements in perovskite solar cells: flexibility, stability and large scale.J Mater Chem A2016;4:6755-71

[54]

Sun S,Ren ZD.Accelerated development of perovskite-inspired materials via high-throughput synthesis and machine-learning diagnosis.Joule2019;3:1437-51

[55]

Li W,Morgan D.Predicting the thermodynamic stability of perovskite oxides using machine learning models.Computational Materials Science2018;150:454-63 PMCID:PMC5992996

[56]

Jacobs R,Booske J.Material discovery and design principles for stable, high activity perovskite cathodes for solid oxide fuel cells.Adv Energy Mater2018;8:1702708

[57]

Schmidt J,Borlido P,Botti S.Predicting the thermodynamic stability of solids combining density functional theory and machine learning.Chem Mater2017;29:5090-103

[58]

Deng Q.Automated machine learning structure-composition-property relationships of perovskite materials for energy conversion and storage.EM2021;

[59]

Priya P.Accelerated design and discovery of perovskites with high conductivity for energy applications through machine learning.npj Comput Mater2021;7

[60]

Shen Z,Cheng X.Designing polymer nanocomposites with high energy density using machine learning.npj Comput Mater2021;7

[61]

Kim C,Ramprasad R.Machine learning assisted predictions of intrinsic dielectric breakdown strength of ABX3 perovskites.J Phys Chem C2016;120:14575-80

[62]

Xu P,Lu T,Li M.Search for ABO3 type ferroelectric perovskites with targeted multi-properties by machine learning strategies.J Chem Inf Model2021;

[63]

Li J,Gaur S.Predictions and strategies learned from machine learning to develop high-performing perovskite solar cells.Adv Energy Mater2019;9:1901891

[64]

Gok EC,Haris MPU.Predicting perovskite bandgap and solar cell performance with machine learning.Solar RRL2022;6:2100927

[65]

Jiang S,Li F.Machine learning (ML)-assisted optimization doping of KI in MAPbI3 solar cells.Rare Met2021;40:1698-707

[66]

Zhao Y,Xu Z.Discovery of temperature-induced stability reversal in perovskites using high-throughput robotic learning.Nat Commun2021;12:2191 PMCID:PMC8044090

[67]

Xu X.Perovskite nano-heterojunctions: synthesis, structures, properties, challenges, and prospects.Small Structures2020;1:2000009

[68]

Braham EJ,Forlano KM,Arròyave R.Machine learning-directed navigation of synthetic design space: a statistical learning approach to controlling the synthesis of perovskite halide nanoplatelets in the quantum-confined regime.Chem Mater2019;31:3281-92

[69]

Yang Z,Zhang Y.Machine learning accelerates the discovery of light-absorbing materials for double perovskite solar cells.J Phys Chem C2021;125:22483-92

[70]

Sun S,Oviedo F.A data fusion approach to optimize compositional stability of halide perovskites.Matter2021;4:1305-22

[71]

Ahmadi M,Zhou Y,Kalinin SV.Machine learning for high-throughput experimental exploration of metal halide perovskites.Joule2021;5:2797-822

[72]

Häse F,Aspuru-guzik A.Next-generation experimentation with self-driving laboratories.Trends in Chemistry2019;1:282-91

[73]

Li Z,Alves L.Robot-accelerated perovskite investigation and discovery.Chem Mater2020;32:5650-63

[74]

Chen S,Chen H.Exploring the stability of novel wide bandgap perovskites by a robot based high throughput approach.Adv Energy Mater2018;8:1701543

[75]

Gu E,Langner S.Robot-based high-throughput screening of antisolvents for lead halide perovskites.Joule2020;4:1806-22

[76]

Higgins K,Ziatdinov M,Ahmadi M.Chemical robotics enabled exploration of stability in multicomponent lead halide perovskites via machine learning.ACS Energy Lett2020;5:3426-36

[77]

Higgins K,Kalinin SV.High-throughput study of antisolvents on the stability of multicomponent metal halide perovskites through robotics-based synthesis and machine learning approaches.J Am Chem Soc2021;143:19945-55

[78]

Epps RW,Volk AA.Artificial chemist: an autonomous quantum dot synthesis bot.Adv Mater2020;32:e2001626

[79]

MacLeod BP,Morrissey TD.Self-driving laboratory for accelerated discovery of thin-film materials.Sci Adv2020;6:eaaz8867 PMCID:PMC7220369

[80]

Langner S,Perea JD.Beyond ternary OPV: high-throughput experimentation and self-driving laboratories optimize multicomponent systems.Adv Mater2020;32:e1907801

[81]

Wang L,Younge A.Cloud computing: a perspective study.New Gener Comput2010;28:137-46

[82]

Mell P and Grance T,2011 . Available from: http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf [Last accessed on 13 May 2022]

[83]

Hayden E. The automated lab.Nature2014;516:131-2

[84]

Li J,Liu R.Autonomous discovery of optically active chiral inorganic perovskite nanocrystals through an intelligent cloud lab.Nat Commun2020;11:2046 PMCID:PMC7184584

[85]

Li J,Xu Y.AIR-chem: authentic intelligent robotics for chemistry.J Phys Chem A2018;122:9142-8

[86]

Dillon T.Cloud computing: issues and challenges.2010 24th IEEE International Conference on Advanced Information Networking and Applications2010;27-33

[87]

Liang J.Phillips-inspired machine learning for band gap and exciton binding energy prediction.J Phys Chem Lett2019;10:5640-6

[88]

Pun GPP,Ramprasad R.Physically informed artificial neural networks for atomistic modeling of materials.Nat Commun2019;10:2339 PMCID:PMC6538760

PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

/