Solidification for solid-state lithium batteries with high energy density and long cycle life

Zhijie Bi , Xiangxin Guo

Energy Materials ›› 2022, Vol. 2 ›› Issue (2) : 200011

PDF
Energy Materials ›› 2022, Vol. 2 ›› Issue (2) :200011 DOI: 10.20517/energymater.2022.07
Review

Solidification for solid-state lithium batteries with high energy density and long cycle life

Author information +
History +
PDF

Abstract

Conventional lithium-ion batteries with inflammable organic liquid electrolytes are required to make a breakthrough regarding their bottlenecks of energy density and safety, as demanded by the ever-increasing development of electric vehicles and grids. In this context, solid-state lithium batteries (SSLBs), which replace liquid electrolytes with solid counterparts, have become a popular research topic due to their excellent potential in the realization of improved energy density and safety. However, in practice, the energy density of SSLBs is limited by the cathode mass loading, electrolyte thickness and anode stability. Moreover, the crucial interfacial issues related to the rigid and heterogeneous solid-solid contacts between the electrolytes and electrodes, including inhomogeneous local potential distributions, sluggish ion transport, side reactions, space charge barriers and stability degradation, severely deteriorate the cycle life of SSLBs. Solidification, which converts a liquid into a solid inside a solid battery, represents a powerful tool to overcome the aforementioned obstacles. The liquid precursors fully wet the interfaces and infiltrate the electrodes, followed by in-situ conformal solidification under certain conditions for the all-in-one construction of cells with highly conducting, closely contacted and sustainable electrode/electrolyte interfaces, thereby enabling high energy density and long cycle life. Therefore, in this review, we address the research progress regarding the latest strategies toward the solidification of the electrolyte layers and the interfaces between the electrodes and electrolytes. The critical challenges and future research directions are proposed for the solidification strategies in SSLBs from both science and engineering perspectives.

Keywords

Solid-state lithium batteries (SSLBs) / solid electrolytes / interfaces / solidification / high energy density / long cycle life

Cite this article

Download citation ▾
Zhijie Bi, Xiangxin Guo. Solidification for solid-state lithium batteries with high energy density and long cycle life. Energy Materials, 2022, 2(2): 200011 DOI:10.20517/energymater.2022.07

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen R,Yu X,Li H.Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces.Chem Rev2020;120:6820-77

[2]

Zu C,Li H.Enabling the thermal stability of solid electrolyte interphase in Li-ion battery.InfoMat2021;3:648-61

[3]

Yang C,Liu B.Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework.Proc Natl Acad Sci U S A2018;115:3770-5 PMCID:PMC5899457

[4]

Jia M,Huo H.Comprehensive investigation into garnet electrolytes toward application-oriented solid lithium batteries.Electrochem Energ Rev2020;3:656-89

[5]

Zhao N,Bi Z.Solid garnet batteries.Joule2019;3:1190-9

[6]

Wang L,Wang T.Ameliorating the interfacial problems of cathode and solid-state electrolytes by interface modification of functional polymers.Adv Energy Mater2018;8:1801528

[7]

Hatzell KB,Cobb CL.Challenges in lithium metal anodes for solid-state batteries.ACS Energy Lett2020;5:922-34

[8]

Duan H,Chen WP.Extended electrochemical window of solid electrolytes via heterogeneous multilayered structure for high-voltage lithium metal batteries.Adv Mater2019;31:e1807789

[9]

Yuan S,Zhang Y.Advanced electrolyte design for high-energy-density Li-metal batteries under practical conditions.Angew Chem Int Ed Engl2021;60:25624-38

[10]

Duan H,Fan M.Building an air stable and lithium deposition regulable garnet interface from moderate-temperature conversion chemistry.Angew Chem Int Ed Engl2020;59:12069-75

[11]

Deng T,Zhao Y.Tuning the anode-electrolyte interface chemistry for garnet-based solid-state Li metal batteries.Adv Mater2020;32:e2000030

[12]

Fu X,Shen W.A high-performance carbonate-free lithium|garnet interface enabled by a trace amount of sodium.Adv Mater2020;32:e2000575

[13]

Liang JY,Zhang XD.Mitigating interfacial potential drop of cathode-solid electrolyte via ionic conductor layer to enhance interface dynamics for solid batteries.J Am Chem Soc2018;140:6767-70

[14]

Cao D,Sun X.Processing strategies to improve cell-level energy density of metal sulfide electrolyte-based all-solid-state li metal batteries and beyond.ACS Energy Lett2020;5:3468-89

[15]

Bi Z,Ma L.Surface coating of LiMn2O4 cathodes with garnet electrolytes for improving cycling stability of solid lithium batteries.J Mater Chem A2020;8:4252-6

[16]

Yoon K,Oh K.Challenges and strategies towards practically feasible solid-state lithium metal batteries.Adv Mater2022;34:e2104666

[17]

Liu J,Liu H.Unlocking the failure mechanism of solid state lithium metal batteries.Advanced Energy Materials2022;12:2100748

[18]

Zhao C,Yan C.Liquid phase therapy to solid electrolyte-electrode interface in solid-state Li metal batteries: a review.Energy Storage Materials2020;24:75-84

[19]

Bi Z,Ma L.Interface engineering on cathode side for solid garnet batteries.Chemical Engineering Journal2020;387:124089

[20]

Wu C,Zhang J.Current status and future directions of all-solid-state batteries with lithium metal anodes, sulfide electrolytes, and layered transition metal oxide cathodes.Nano Energy2021;87:106081

[21]

Cao C,Zhang W.Commercialization-driven electrodes design for lithium batteries: basic guidance, opportunities, and perspectives.Small2021;17:e2102233

[22]

Liu Q,Han C.Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries.Journal of Power Sources2018;389:120-34

[23]

Cui G.Reasonable design of high-energy-density solid-state lithium-metal batteries.Matter2020;2:805-15

[24]

Zhu J,Zhao J.Insights into the local structure, microstructure and ionic conductivity of silicon doped nasicon-type solid electrolyte Li1.3Al0.3Ti1.7P3O12.Energy Storage Materials2022;44:190-6

[25]

Liang F,Yuan Y,Hou M.Designing inorganic electrolytes for solid-state Li-ion batteries: a perspective of LGPS and garnet.Materials Today2021;50:418-41

[26]

Wang C,Bai Q.A general method to synthesize and sinter bulk ceramics in seconds.Science2020;368:521-6

[27]

Xu Q,Song D.Insights into the reactive sintering and separated specific grain/grain boundary conductivities of Li1.3Al0.3Ti1.7(PO4)3.Journal of Power Sources2021;492:229631

[28]

Wu J,Zhang W,Xie X.Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries.Energy Environ Sci2021;14:12-36

[29]

Yang X,Gao X.Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries.Energy Environ Sci2021;14:643-71

[30]

Mu S,Gao S.Combination of organic and inorganic electrolytes for composite membranes toward applicable solid lithium batteries.Chem Res Chin Univ2021;37:246-53

[31]

Chen L,Li S,Nan C.PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”.Nano Energy2018;46:176-84

[32]

Zhang X,Zhang S.Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes.J Am Chem Soc2017;139:13779-85

[33]

Jia M,Bi Z.Polydopamine-coated garnet particles homogeneously distributed in poly(propylene carbonate) for the conductive and stable membrane electrolytes of solid lithium batteries.ACS Appl Mater Interfaces2020;12:46162-9

[34]

Jia M,Shi C,Guo X.Polydopamine coated lithium lanthanum titanate in bilayer membrane electrolytes for solid lithium batteries.ACS Appl Mater Interfaces2020;12:46231-8

[35]

Liu L,Yin S.In situ formation of a stable interface in solid-state batteries.ACS Energy Lett2019;4:1650-7

[36]

Cho SM,Cho SH.Quasi-solid-state rechargeable Li-O2 batteries with high safety and long cycle life at room temperature.ACS Appl Mater Interfaces2018;10:15634-41

[37]

Hua S,Han C.A novel titania nanorods-filled composite solid electrolyte with improved room temperature performance for solid-state Li-ion battery.Int J Energy Res2019;

[38]

Chen H,Han C.A novel organic/inorganic composite solid electrolyte with functionalized layers for improved room-temperature rate performance of solid-state lithium battery.Int J Energy Res2019;43:5912-21

[39]

Zhang J,Wen H.High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery.J Mater Chem A2017;5:4940-8

[40]

Bonizzoni S,Berbenni V,Mustarelli P.NASICON-type polymer-in-ceramic composite electrolytes for lithium batteries.Phys Chem Chem Phys2019;21:6142-9

[41]

Liu W,Sun J.Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers.Nano Lett2015;15:2740-5

[42]

Zhang J,Zhang M.Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide.Nano Energy2016;28:447-54

[43]

Chen H,Boyle DT.Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries.Nat Energy2021;6:790-8

[44]

Ye Y,Zhao T.An antipulverization and high-continuity lithium metal anode for high-energy lithium batteries.Adv Mater2021;:e2105029

[45]

Sun Y,Hou P.Research progress on the interfaces of solid-state lithium metal batteries.J Mater Chem A2021;9:9481-505

[46]

Li C,Zhu Y.Modulating the lithiophilicity at electrode/electrolyte interface for high-energy Li-metal batteries.EM2021;

[47]

Ruan Y,Huang X.Acid induced conversion towards a robust and lithiophilic interface for Li-Li7La3Zr2O12 solid-state batteries.J Mater Chem A2019;7:14565-74

[48]

Ruan Y,Li Y.A 3D Cross-linking lithiophilic and electronically insulating interfacial engineering for garnet-type solid-state lithium batteries.Adv Funct Mater2021;31:2007815

[49]

Pan X,Wang Z.High Voltage stable polyoxalate catholyte with cathode coating for all-solid-state Li-metal/nmc622 batteries.Adv Energy Mater2020;10:2002416

[50]

Zhu Y,Mo Y.First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries.J Mater Chem A2016;4:3253-66

[51]

Nolan AM,Mo Y.Computation-guided discovery of coating materials to stabilize the interface between lithium garnet solid electrolyte and high-energy cathodes for all-solid-state lithium batteries.Energy Storage Materials2021;41:571-80

[52]

Stegmaier S,Povstugar I.Nano-scale complexions facilitate li dendrite-free operation in LATP solid-state electrolyte.Adv Energy Mater2021;11:2100707

[53]

Mu S,Sun W.Heterogeneous electrolyte membranes enabling double-side stable interfaces for solid lithium batteries.Journal of Energy Chemistry2021;60:162-8

[54]

Jiang T,Liang Y.All-dry synthesis of self-supporting thin Li10GeP2S12 membrane and interface engineering for solid state lithium metal batteries.Chemical Engineering Journal2021;421:129965

[55]

Wang C,Duan H.Solvent-free approach for interweaving freestanding and ultrathin inorganic solid electrolyte membranes.ACS Energy Lett2022;7:410-6

[56]

Han F,Yue J.High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes.Nat Energy2019;4:187-96

[57]

Han F,Chen C.Interphase engineering enabled all-ceramic lithium battery.Joule2018;2:497-508

[58]

Wang C,Liu Y.Boosting the performance of lithium batteries with solid-liquid hybrid electrolytes: interfacial properties and effects of liquid electrolytes.Nano Energy2018;48:35-43

[59]

Liu B,Fu K.Garnet solid electrolyte protected li-metal batteries.ACS Appl Mater Interfaces2017;9:18809-15

[60]

Randau S,Kötz O.Benchmarking the performance of all-solid-state lithium batteries.Nat Energy2020;5:259-70

[61]

Zhou W,Pu Y.Double-layer polymer electrolyte for high-voltage all-solid-state rechargeable batteries.Adv Mater2019;31:e1805574

[62]

Kim JH,Lee KJ.Improved performance of all-solid-state lithium metal batteries via physical and chemical interfacial control.Adv Sci (Weinh)2022;9:e2103433 PMCID:PMC8805574

[63]

Liu W,Li L.Designing polymer-in-salt electrolyte and fully infiltrated 3d electrode for integrated solid-state lithium batteries.Angew Chem Int Ed Engl2021;60:12931-40

[64]

Bi Z,Zhao N,Huang W.Cathode supported solid lithium batteries enabling high energy density and stable cyclability.Energy Storage Materials2021;35:512-9

[65]

Alarco PJ,Abouimrane A.The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors.Nat Mater2004;3:476-81

[66]

Xin C,Xue C.Composite cathodes with succinonitrile-based ionic conductors for long-cycle-life solid-state lithium metal batteries.2022;5:e202100162

[67]

Xiao Y,Narla A.Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries.Nat Mater2021;20:984-90

[68]

Kerman K,Viswanathan V,Chen Z.Review - practical challenges hindering the development of solid state li ion batteries.J Electrochem Soc2017;164:A1731-44

[69]

Chai J,Ma J.In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 Lithium Batteries.Adv Sci (Weinh)2017;4:1600377 PMCID:PMC5323859

[70]

Bi Z,Mu S,Zhao N.Dual-interface reinforced flexible solid garnet batteries enabled by in-situ solidified gel polymer electrolytes.Nano Energy2021;90:106498

[71]

Choi K,Kim S,Kim JY.Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries.Adv Funct Mater2014;24:44-52

[72]

Lv Z,Zhang S.Cyano-reinforced in-situ polymer electrolyte enabling long-life cycling for high-voltage lithium metal batteries.Energy Storage Materials2021;37:215-23

[73]

Liu X,Zhou X.An interpenetrating network poly(diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries.J Mater Chem A2017;5:11124-30

[74]

Cho YG,Cheong DS,Song HK.Gel/solid polymer electrolytes characterized by in situ gelation or polymerization for electrochemical energy systems.Adv Mater2019;31:e1804909

[75]

Zhang J,Wu H.Research progress of in situ generated polymer electrolyte for rechargeable batteries.Acta Polymerica Sinica2019;50:890-914

[76]

Nolan AM,Mo Y.Solid-state chemistries stable with high-energy cathodes for lithium-ion batteries.ACS Energy Lett2019;4:2444-51

[77]

Goodenough JB.Challenges for rechargeable Li batteries.Chem Mater2010;22:587-603

[78]

Zhou Q,Dong S,Cui G.Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries.Adv Mater2019;31:e1902029

[79]

Hou J,Wang D.Fundamentals and challenges of lithium ion batteries at temperatures between -40 and 60 °C.Adv Energy Mater2020;10:1904152

[80]

Gao Y,Li YC,Mallouk TE.Salt-based organic-inorganic nanocomposites: towards a stable lithium metal/Li10 GeP2S12 solid electrolyte interface.Angew Chem Int Ed Engl2018;57:13608-12

[81]

Umeshbabu E,Zhu J,Li Y.Stable cycling lithium-sulfur solid batteries with enhanced Li/Li10GeP2S12 solid electrolyte interface stability.ACS Appl Mater Interfaces2019;11:18436-47

[82]

Caradant L,Foran G.Extrusion of polymer blend electrolytes for solid-state lithium batteries: a study of polar functional groups.ACS Appl Polym Mater2021;3:6694-704

[83]

Li L,Duan H,Chen G.LiF and LiNO3 as synergistic additives for PEO-PVDF/LLZTO-based composite electrolyte towards high-voltage lithium batteries with dual-interfaces stability.Journal of Energy Chemistry2022;65:319-28

[84]

Qiu J,Chen R.Enabling stable cycling of 4.2 V high-voltage all-solid-state batteries with PEO-based solid electrolyte.Adv Funct Mater2020;30:1909392

[85]

Liang J,Li S.Stabilizing and understanding the interface between nickel-rich cathode and PEO-based electrolyte by lithium niobium oxide coating for high-performance all-solid-state batteries.Nano Energy2020;78:105107

[86]

Chen X,Ding L,Wang H.Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework.Energy Environ Sci2019;12:938-44

[87]

Lin Y,Sun J,Jian Q.A high-capacity, long-cycling all-solid-state lithium battery enabled by integrated cathode/ultrathin solid electrolyte.Adv Energy Mater2021;11:2101612

[88]

Lin Y,Wu M,Zhao T.Enabling solid-state li metal batteries by in situ forming ionogel interlayers.ACS Appl Energy Mater2020;3:5712-21

[89]

Wei Z,Wang J.Superior lithium ion conduction of polymer electrolyte with comb-like structure via solvent-free copolymerization for bipolar all-solid-state lithium battery.J Mater Chem A2018;6:13438-47

[90]

Wei Z,Wang J.A large-size, bipolar-stacked and high-safety solid-state lithium battery with integrated electrolyte and cathode.Journal of Power Sources2018;394:57-66

[91]

Nie K,Qiu J.Increasing poly(ethylene oxide) stability to 4.5 v by surface coating of the cathode.ACS Energy Lett2020;5:826-32

[92]

Lu J,Chen R.4.2 V poly(ethylene oxide)-based all-solid-state lithium batteries with superior cycle and safety performance.Energy Storage Materials2020;32:191-8

[93]

Ma J,Chen B.A strategy to make high voltage LiCoO2 compatible with polyethylene oxide electrolyte in all-solid-state lithium ion batteries.J Electrochem Soc2017;164:A3454-61

[94]

Kim DH,Park KH.Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries.Nano Lett2017;17:3013-20

[95]

Xiao Y,Xu L,Huang J.Recent advances on anion-derived SEI for fast-charging and stable lithium batteries.Energy Mater2021;1:100013

[96]

Zhang Q,Jia M.Ionic liquid additive stabilized cathode/electrolyte interface in LiCoO2 based solid-state lithium metal batteries.Electrochimica Acta2021;368:137593

[97]

Chen Y,Chen S,Zhang S.In-built quasi-solid-state poly-ether electrolytes enabling stable cycling of high-voltage and wide-temperature Li metal batteries.Adv Funct Mater2021;31:2102347

[98]

Feng W,Dong X.A Low temperature soldered all ceramic lithium battery.ACS Appl Mater Interfaces2022;14:1149-56

[99]

Qiu J,Sun G,Li H.A stabilized PEO-based solid electrolyte via a facile interfacial engineering method for a high voltage solid-state lithium metal battery.Chem Commun (Camb)2020;56:5633-6

[100]

Huang W,Zhao N,Guo X.Chemical interface engineering of solid garnet batteries for long-life and high-rate performance.Chemical Engineering Journal2021;424:130423

[101]

Zhao CZ,Liu X.Rechargeable lithium metal batteries with an in-built solid-state polymer electrolyte and a high voltage/loading Ni-rich layered cathode.Adv Mater2020;32:e1905629

[102]

Zhang S,Zhai W,Chen L.Bifunctional in situ polymerized interface for stable LAGP-based lithium metal batteries.Adv Materials Inter2021;8:2100072

[103]

Zeng XX,Li NW,Guo YG.Reshaping lithium plating/stripping behavior via bifunctional polymer electrolyte for room-temperature solid Li metal batteries.J Am Chem Soc2016;138:15825-8

[104]

Duan H,Shi Y.Dendrite-free li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers.J Am Chem Soc2018;140:82-5

[105]

Chai J,Xian F.Dendrite-free lithium deposition via flexible-rigid coupling composite network for LiNi0.5Mn1.5O4 /Li metal batteries.Small2018;14:e1802244

[106]

Zhang X,Hou L.Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries.ACS Energy Lett2019;4:411-6

[107]

Zheng B,Wang H.Stabilizing Li10SnP2S12/Li interface via an in situ formed solid electrolyte interphase layer.ACS Appl Mater Interfaces2018;10:25473-82

[108]

Tong Z,Jena A.Matchmaker of marriage between a Li metal anode and NASICON-structured solid-state electrolyte: plastic crystal electrolyte and three-dimensional host structure.ACS Appl Mater Interfaces2020;12:44754-61

[109]

Zhu X,Yang H,Zhou H.Highly safe and stable lithium-metal batteries based on a quasi-solid-state electrolyte.J Mater Chem A2022;10:651-63

[110]

Cao W,Deng J,Cui C.Localization of electrons within interlayer stabilizes NASICON-type solid-state electrolyte.Materials Today Energy2021;22:100875

[111]

Liu Q,Li S.Safe LAGP-based all solid-state Li metal batteries with plastic super-conductive interlayer enabled by in-situ solidification.Energy Storage Materials2020;25:613-20

[112]

Wang C,Liang J.Solid-state plastic crystal electrolytes: effective protection interlayers for sulfide-based all-solid-state lithium metal batteries.Adv Funct Mater2019;29:1900392

[113]

Ma C,Liu X,Wang Y.In situ preparation of gel polymer electrolyte for lithium batteries: progress and perspectives.InfoMat2022;4:e1223

[114]

Castillo J,Santiago A.Perspective of polymer-based solid-state Li-S batteries.Energy Mater2022;2:200003

[115]

Lin Z,Wang Z.A wide-temperature superior ionic conductive polymer electrolyte for lithium metal battery.Nano Energy2020;73:104786

[116]

Wang P,Zhang Z.An intricately designed poly(vinylene carbonate-acrylonitrile) copolymer electrolyte enables 5 V lithium batteries.J Mater Chem A2019;7:5295-304

[117]

Ma Y,Chai J.Two players make a formidable combination: in situ generated poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) cross-linking gel polymer electrolyte toward 5 V high-voltage batteries.ACS Appl Mater Interfaces2017;9:41462-72

[118]

Li Z,Guo X.High-performance lithium metal batteries with ultraconformal interfacial contacts of quasi-solid electrolyte to electrodes.Energy Storage Materials2020;29:149-55

[119]

Zhou D,Cai Q.Investigation of cyano resin-based gel polymer electrolyte: in situ gelation mechanism and electrode-electrolyte interfacial fabrication in lithium-ion battery.J Mater Chem A2014;2:20059-66

[120]

Sun M,Peng L.Ultrathin polymer electrolyte film prepared by in situ polymerization for lithium metal batteries.Materials Today Energy2021;21:100785

[121]

Liu Q,Li S.Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte.J Mater Chem A2020;8:7197-204

[122]

Zhao Q,Stalin S,Archer LA.Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries.Nat Energy2019;4:365-73

[123]

Cheng H,Jin H.In situ initiator-free gelation of highly concentrated lithium bis(fluorosulfonyl)imide-1,3-dioxolane solid polymer electrolyte for high performance lithium-metal batteries.Materials Today Energy2021;20:100623

[124]

Liu FQ,Yin YX.Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries.Sci Adv2018;4:eaat5383 PMCID:PMC6173527

[125]

Wu H,Du X.LiDFOB initiated in situ polymerization of novel eutectic solution enables room-temperature solid lithium metal batteries.Adv Sci (Weinh)2020;7:2003370 PMCID:PMC7709999

[126]

Ju J,Chen B.Integrated interface strategy toward room temperature solid-state lithium batteries.ACS Appl Mater Interfaces2018;10:13588-97

[127]

Li Z,Zhang X.In situ thermally polymerized solid composite electrolytes with a broad electrochemical window for all-solid-state lithium metal batteries.J Mater Chem A2020;8:3892-900

[128]

Tan S,Tian Y.In-situ encapsulating flame-retardant phosphate into robust polymer matrix for safe and stable quasi-solid-state lithium metal batteries.Energy Storage Materials2021;39:186-93

[129]

Fan W,Zhang X.A dual-salt gel polymer electrolyte with 3D cross-linked polymer network for dendrite-free lithium metal batteries.Adv Sci (Weinh)2018;5:1800559 PMCID:PMC6145227

[130]

Wu J,Yang Q,Xu X.Forming solid electrolyte interphase in situ in an ionic conducting Li1.5Al0.5Ge1.5(PO4)3 -polypropylene (PP) based separator for Li-ion batteries.Chinese Phys B2016;25:078204

[131]

Liu J,Wang M,Qian T.A functional-gradient-structured ultrahigh modulus solid polymer electrolyte for all-solid-state lithium metal batteries.J Mater Chem A2019;7:24477-85

[132]

Wang WP,Yin YX.A rational reconfiguration of electrolyte for high-energy and long-life lithium-chalcogen batteries.Adv Mater2020;32:e2000302

PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

/