An overview of aqueous zinc-ion batteries based on conversion-type cathodes

Junming Kang , Zedong Zhao , Huajing Li , Yuhuan Meng , Bo Hu , Hongbin Lu

Energy Materials ›› 2022, Vol. 2 ›› Issue (2) : 200009

PDF
Energy Materials ›› 2022, Vol. 2 ›› Issue (2) :200009 DOI: 10.20517/energymater.2022.05
Review

An overview of aqueous zinc-ion batteries based on conversion-type cathodes

Author information +
History +
PDF

Abstract

The scarcity of lithium resources and the unsafety of organic electrolytes limit the further application of lithium-ion batteries (LIBs) in electric vehicles and grid-scale energy storage. Aqueous zinc-ion batteries (AZIBs) are potential complements for LIBs for large-scale grid energy storage because of their abundant resources, environmental friendliness, intrinsic safety and low cost. However, current AZIBs are mainly based on intercalation-type cathodes and their energy densities are not competitive with LIBs. Fortunately, conversion-type cathodes, with higher specific capacity and lower price, endow AZIBs with excellent potential for practical applications. In this review, the mechanism of energy storage and the progress in developing AZIBs based on conversion-type cathodes are summarized. Perspectives on critical scientific issues and the potential developmental directions of AZIBs are also proposed.

Keywords

Zinc-ion batteries / cathodes / conversion reaction / conductivity / shuttling effect

Cite this article

Download citation ▾
Junming Kang, Zedong Zhao, Huajing Li, Yuhuan Meng, Bo Hu, Hongbin Lu. An overview of aqueous zinc-ion batteries based on conversion-type cathodes. Energy Materials, 2022, 2(2): 200009 DOI:10.20517/energymater.2022.05

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chao D,Xie F.Roadmap for advanced aqueous batteries: from design of materials to applications.Sci Adv2020;6:eaba4098 PMCID:PMC7244306

[2]

Jaumaux P,Zhang B.Localized Water-in-salt electrolyte for aqueous lithium-ion batteries.Angew Chem Int Ed Engl2021;60:19965-73

[3]

Suo L,Wang Y.“Water-in-Salt” Electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting.Adv Energy Mater2017;7:1701189

[4]

Liu T,Wang J.Achievement of a polymer-free KAc gel electrolyte for advanced aqueous K-ion battery.Energy Storage Materials2021;41:133-40

[5]

Tang Y,Lv H.High-energy aqueous magnesium hybrid full batteries enabled by carrier-hosting potential compensation.Angew Chem Int Ed Engl2021;60:5443-52

[6]

Tang X,Zhang B.A universal strategy towards high-energy aqueous multivalent-ion batteries.Nat Commun2021;12:2857 PMCID:PMC8128864

[7]

Zhao Z,Peng C.Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries.Nat Commun2021;12:6606 PMCID:PMC8595410

[8]

Dong T,Wang Y,Azimi G.Solid electrolyte interphase engineering for aqueous aluminum metal batteries: a critical evaluation.Adv Energy Mater2021;11:2100077

[9]

Yuan L,Kao C.Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries.Energy Environ Sci2021;14:5669-89

[10]

Song J,Liu N,Li X.Crossroads in the renaissance of rechargeable aqueous zinc batteries.Materials Today2021;45:191-212

[11]

Fang G,Pan A.Recent advances in aqueous zinc-ion batteries.ACS Energy Lett2018;3:2480-501

[12]

Wang H,Fu C.Recent advances in conversion-type electrode materials for post lithium-ion batteries.ACS Materials Lett2021;3:956-77

[13]

Wang Y,Wang W.Chalcogen cathode and its conversion electrochemistry in rechargeable Li/Na batteries.Sci China Chem2020;63:1402-15

[14]

Zhang Z,Cui Z.Rechargeable magnesium batteries using conversion-type cathodes: a perspective and minireview.Small Methods2018;2:1800020

[15]

Kim J,Kang K.Conversion-based cathode materials for rechargeable sodium batteries.Adv Energy Mater2018;8:1702646

[16]

Xin S,Zhang X.Progress of rechargeable lithium metal batteries based on conversion reactions.National Science Review2017;4:54-70

[17]

Wu F.Conversion cathodes for rechargeable lithium and lithium-ion batteries.Energy Environ Sci2017;10:435-59

[18]

Kraytsberg A.A critical review-promises and barriers of conversion electrodes for Li-ion batteries.J Solid State Electrochem2017;21:1907-23

[19]

Liang G,Li H.A universal principle to design reversible aqueous batteries based on deposition-dissolution mechanism.Adv Energy Mater2019;9:1901838

[20]

Chao D,Ye C.An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage.Angew Chem Int Ed Engl2019;58:7823-8

[21]

Zhong C,Ding J.Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries.Nat Energy2020;5:440-9

[22]

Yang H,Chen D.The origin of capacity fluctuation and rescue of dead Mn-based Zn-ion batteries: a Mn-based competitive capacity evolution protocol.Energy Environ Sci2022;15:1106-18

[23]

Zhong Z,Li L.Improving performance of zinc-manganese battery via efficient deposition/dissolution chemistry.Energy Storage Materials2022;46:165-74

[24]

Li W,Li P.Synergistic effect between s and se enhancing the electrochemical behavior of Se.Adv Funct Mater31:2101237

[25]

Li W,Ma Y.Phosphorus-doped carbon sheets decorated with SeS2 as a cathode for aqueous Zn-SeS2 battery.Chemical Engineering Journal2021;420:129920

[26]

Wu X,Ma L.A four-electron sulfur electrode hosting a Cu2+ /Cu+ redox charge carrier.Angew Chem Int Ed Engl2019;58:12640-5

[27]

Ma L,Chen S.Electrocatalytic iodine reduction reaction enabled by aqueous Zinc-Iodine battery with improved power and energy densities.Angew Chem Int Ed Engl2021;60:3791-8

[28]

Shang W,Liu Y.Establishing high-performance quasi-solid Zn/I2 batteries with alginate-based hydrogel electrolytes.ACS Appl Mater Interfaces2021;13:24756-64

[29]

Yang H,Chang Z,He P.A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries.Adv Mater2020;32:e2004240

[30]

Lee JH,Jeong GH.High-energy efficiency membraneless flowless Zn-Br battery: utilizing the electrochemical-chemical growth of polybromides.Adv Mater2019;31:e1904524

[31]

Li X,Huang Z.Confining aqueous Zn-Br halide redox chemistry by Ti3C2TX MXene.ACS Nano2021;15:1718-26

[32]

Gao L,Zou Y.A high-performance aqueous Zinc-Bromine static battery.iScience2020;23:101348 PMCID:PMC7387827

[33]

Liu J,Zhao R.Sulfur-based aqueous batteries: electrochemistry and strategies.J Am Chem Soc2021;143:15475-89

[34]

Xing M,Zhang Y,Cui G.Advances and issues in developing metal-iodine batteries.Materials Today Energy2020;18:100534

[35]

Pei Z,Sun D.Review of the I-/I3- redox chemistry in Zn-iodine redox flow batteries.Materials Research Bulletin2021;141:111347

[36]

Ma J,He Y.Iodine Redox Chemistry in Rechargeable Batteries.Angew Chem Int Ed Engl2021;60:12636-47

[37]

Li P,Guo X,Zhi C.Metal-Iodine and Metal-Bromine batteries: a review.BCSJ2021;94:2036-42

[38]

Zou Y,Du Q.A four-electron Zn-I2 aqueous battery enabled by reversible I-/I2/I+ conversion.Nat Commun2021;12:170 PMCID:PMC7794333

[39]

Li X,Huang Z.Activating the I 0 /I + redox couple in an aqueous I 2 -Zn battery to achieve a high voltage plateau.Energy Environ Sci2021;14:407-13

[40]

Dai C,Jin X,Qu L.The emerging of aqueous Zinc-Based dual electrolytic batteries.Small2021;17:e2008043

[41]

Luo LW,Wu X.A Zn-S aqueous primary battery with high energy and flat discharge plateau.Chem Commun (Camb)2021;57:9918-21

[42]

Dai C,Ma H.Maximizing energy storage of flexible aqueous batteries through decoupling charge carriers.Adv Energy Mater2021;11:2003982

[43]

Zhao Y,Li X.Initiating a reversible aqueous Zn/Sulfur battery through a “liquid film”.Adv Mater2020;32:e2003070

[44]

Li W,Jiang K.A low cost aqueous Zn-S battery realizing ultrahigh energy density.Adv Sci (Weinh)2020;7:2000761 PMCID:PMC7709974

[45]

Pan H,Mei D.Controlling solid-liquid conversion reactions for a highly reversible aqueous Zin-Iodine battery.ACS Energy Lett2017;2:2674-80

[46]

Bai C,Wang L,Liu X.A sustainable aqueous Zn-I2 battery.Nano Res2018;11:3548-54

[47]

Lu K,Song B.Sulfur and nitrogen enriched graphene foam scaffolds for aqueous rechargeable zinc-iodine battery.Electrochimica Acta2019;296:755-61

[48]

Li W,Jiang K.A high energy efficiency and long life aqueous Zn-I 2 battery.J Mater Chem A2020;8:3785-94

[49]

Sonigara KK,Machhi HK,Soni SS.Self-assembled solid-state gel catholyte combating iodide diffusion and self-discharge for a stable flexible aqueous Zn-I 2 battery.Adv Energy Mater2020;10:2001997

[50]

Yu D,Nguyen TA,Yasin G.High-voltage and ultrastable aqueous Zinc-Iodine battery enabled by N-Doped carbon materials: revealing the contributions of nitrogen configurations.ACS Sustainable Chem Eng2020;8:13769-76

[51]

Zeng X,Jiang W.Anchoring polyiodide to conductive polymers as cathode for high-performance aqueous Zinc-Iodine batteries.ACS Sustainable Chem Eng2020;8:14280-5

[52]

Li X,Huang Z.Enhanced redox kinetics and duration of aqueous I2 /I- conversion chemistry by MXene confinement.Adv Mater2021;33:e2006897

[53]

Machhi HK,Bariya SN,Soni SS.Hierarchically porous metal-organic gel hosting catholyte for limiting iodine diffusion and self-discharge control in sustainable Aqueous Zinc-I2 Batteries.ACS Appl Mater Interfaces2021;13:21426-35

[54]

Yu F,Wang X.Aqueous alkaline-acid hybrid electrolyte for zinc-bromine battery with 3V voltage window.Energy Storage Materials2019;19:56-61

[55]

Chen S.Redox reactions of halogens for reversible electrochemical energy storage.Dalton Trans2020;49:9929-34

[56]

Yang Y,Zhou J.Progress and prospect of the zinc-iodine battery.Current Opinion in Electrochemistry2021;30:100761

[57]

Dai C,Jin X.A cascade battery: coupling two sequential electrochemical reactions in a single battery.Adv Mater2021;33:e2105480

[58]

Li Y,Li H,Chen J.Rechargeable aqueous zinc-iodine batteries: pore confining mechanism and flexible device application.Chem Commun (Camb)2018;54:6792-5

[59]

Lin D,Chiovoloni S.Prototypical study of double-layered cathodes for aqueous rechargeable static Zn-I2 batteries.Nano Lett2021;21:4129-35

[60]

Wang F,Liu Z.A stimulus-responsive Zinc-Iodine battery with smart overcharge self-protection function.Adv Mater2020;32:e2000287

[61]

Tian H,Meng Z,Han W.Rechargeable Aluminum/Iodine Battery Redox Chemistry in Ionic Liquid Electrolyte.ACS Energy Lett2017;2:1170-6

[62]

Meng Z,Zhang S.Polyiodide-Shuttle Restricting Polymer Cathode for Rechargeable Lithium/Iodine Battery with Ultralong Cycle Life.ACS Appl Mater Interfaces2018;10:17933-41

[63]

Zhang Y,Xu F.A low-cost and high-performance rechargeable magnesium battery based on povidone iodine cathode.Chemical Engineering Journal2022;427:131592

[64]

Hong JJ,Chen C.A Dual plating battery with the Iodine/[ZnIx (OH2 )4-x ]2-x cathode.Angew Chem Int Ed Engl2019;58:15910-5

[65]

Wang J,Zhao Z.Anti-corrosive hybrid electrolytes for rechargeable aqueous Zinc batteries.Chem Res Chin Univ2021;37:328-34

[66]

Yan M,Zhao X,Pan H.Tailoring the Stability and Kinetics of Zn Anodes through Trace Organic Polymer Additives in Dilute Aqueous Electrolyte.ACS Energy Lett2021;6:3236-43

[67]

Tangthuam P,Mohamad AA.Carboxymethyl cellulose-based polyelectrolyte as cationic exchange membrane for zinc-iodine batteries.Heliyon2020;6:e05391 PMCID:PMC7599124

[68]

Biswas S,Mohr R.Minimal architecture zinc–bromine battery for low cost electrochemical energy storage.Energy Environ Sci2017;10:114-20

[69]

Liu B,Wang Z.Novel 3D Nanoporous Zn-Cu alloy as long-life anode toward high-voltage double electrolyte aqueous Zinc-Ion batteries.Small2020;16:e2001323

[70]

Li Y.Material design and structure optimization for rechargeable lithium-sulfur batteries.Matter2021;4:1142-88

[71]

Chen Y,Tian H,Zhang Q.Advances in Lithium-Sulfur Batteries: from academic research to commercial viability.Adv Mater2021;33:e2003666

[72]

Li H,Zhang L.Designing principles of advanced sulfur cathodes toward practical lithium-sulfur batteries.SusMat2022;2:34-64

[73]

Chen Z,Wang T.Zinc/selenium conversion battery: a system highly compatible with both organic and aqueous electrolytes.Energy Environ Sci2021;14:2441-50

[74]

Chen Z,Mo F.Aqueous Zinc-Tellurium batteries with ultraflat discharge plateau and high volumetric capacity.Adv Mater2020;32:e2001469

[75]

Hao J,Johannessen B.Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zinc-Ion Batteries.Angew Chem Int Ed Engl2021;60:25114-21

[76]

Dong H,Guo J.Insights on flexible Zinc-Ion batteries from lab research to commercialization.Adv Mater2021;33:e2007548

PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

/