Two-dimensional nanofluidics for blue energy harvesting

Linhan Xie , Jiadong Tang , Runan Qin , Jingbing Liu , Qianqian Zhang , Yuhong Jin , Hao Wang

Energy Materials ›› 2022, Vol. 2 ›› Issue (2) : 200008

PDF
Energy Materials ›› 2022, Vol. 2 ›› Issue (2) :200008 DOI: 10.20517/energymater.2022.04
Review

Two-dimensional nanofluidics for blue energy harvesting

Author information +
History +
PDF

Abstract

Blue energy harvesting based on the ion flow obtained from seas and rivers provides a clean, stable and continuous electric output that is highly dependent on ion-selective membranes (ISMs) that conduct single ions. In recent years, ISMs constructed based on two-dimensional (2D) nanofluidics have demonstrated promising application prospects in blue energy harvesting due to their facile fabrication, excellent ion selectivity and high ion flux. In this review, the principles of 2D nanofluidics in regulating ionic transport are firstly proposed and discussed, including ion selectivity and ultrafast ion transmission, which are considered as two critical factors for achieving highly efficient blue energy harvesting. The advantages of 2D nanofluidics towards blue energy harvesting are analyzed to reveal the necessity of this review. The construction of 2D nanofluidic membranes based on several typical materials and their recent research advances in salinity gradient- and pressure-driven blue energy harvesting are also summarized in detail. Finally, the existing challenges of 2D nanofluidic membranes regarding blue energy harvesting applications are discussed to provide new insights for the development of high-performance blue energy harvesting systems based on 2D nanofluidics.

Keywords

Blue energy harvesting / 2D nanofluidics / ion flow / osmotic energy / pressure-driven power generation

Cite this article

Download citation ▾
Linhan Xie, Jiadong Tang, Runan Qin, Jingbing Liu, Qianqian Zhang, Yuhong Jin, Hao Wang. Two-dimensional nanofluidics for blue energy harvesting. Energy Materials, 2022, 2(2): 200008 DOI:10.20517/energymater.2022.04

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zou C,Zhang G.Energy revolution: from a fossil energy era to a new energy era.Natural Gas Industry B2016;3:1-11

[2]

Sims R.Renewable energy: a response to climate change.Solar Energy2004;76:9-17

[3]

Wang Z,Ting DS,Wang Z.A review of marine renewable energy storage.Int J Energy Res2018;43:6108-50

[4]

Opan M,Özkale C,Saraç .Optimal energy production from wind and hydroelectric power plants.Energ Source Part A2019;41:2219-32

[5]

Zhu X,Bao B.Unique ion rectification in hypersaline environment: a high-performance and sustainable power generator system.Sci Adv2018;4:eaau1665 PMCID:PMC6203222

[6]

Nijmeijer K.Chapter 5 salinity gradient energy.Sustainability Science and Engineering2010;2:95-139

[7]

Yip NY.Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis.Environ Sci Technol2012;46:5230-9

[8]

Economides MJ.The state of natural gas.J Nat Gas Sci Eng2009;1:1-13

[9]

Aslam M,Kalam M,Mahlia T.An experimental investigation of CNG as an alternative fuel for a retrofitted gasoline vehicle.Fuel2006;85:717-24

[10]

Schaetzle O.Salinity gradient energy: current state and new trends.Engineering2015;1:164-6

[11]

Avci AH,Fontananova E,Curcio E.Reverse Electrodialysis for energy production from natural river water and seawater.Energy2018;165:512-21

[12]

Post JW,Buisman CJ.Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system.Environ Sci Technol2008;42:5785-90

[13]

Mei Y.Recent developments and future perspectives of reverse electrodialysis technology: a review.Desalination2018;425:156-74

[14]

Talavera K,Voets T.Neuronal TRP channels: thermometers, pathfinders and life-savers.Trends Neurosci2008;31:287-95

[15]

Xu J.Designing artificial cells to harness the biological ion concentration gradient.Nat Nanotechnol2008;3:666-70 PMCID:PMC2767210

[16]

Sparreboom W,Eijkel JC.Principles and applications of nanofluidic transport.Nat Nanotechnol2009;4:713-20

[17]

Zhu J,Wang J.Precisely tunable ion sieving with an Al13-Ti3C2Tx lamellar membrane by controlling interlayer spacing.ACS Nano2020;14:15306-16

[18]

Peng Y,Ban Y.Two-dimensional metal-organic framework nanosheets for membrane-based gas separation.Angew Chem2017;129:9889-93

[19]

Wang H,Qin X,Li T.Interfacial engineering in metal-organic framework-based mixed matrix membranes using covalently grafted polyimide brushes.J Am Chem Soc2018;140:17203-10

[20]

Ji YL,Xie SJ.Superfast water transport zwitterionic polymeric nanofluidic membrane reinforced by metal-organic frameworks.Adv Mater2021;33:e2102292

[21]

Luan P,Li Q.Compressible ionized natural 3D interconnected loofah membrane for salinity gradient power generation.Small2022;18:e2104320

[22]

Zhang X,Wang L.Asymmetric electrokinetic proton transport through 2D nanofluidic heterojunctions.ACS Nano2019;13:4238-45

[23]

Zhang Q,Kang J.Robust sandwich-structured nanofluidic diodes modulating ionic transport for an enhanced electrochromic performance.Adv Sci (Weinh)2018;5:1800163 PMCID:PMC6145424

[24]

Xiao K,Antonietti M.Ion transport in nanofluidic devices for energy harvesting.Joule2019;3:2364-80

[25]

Xie G,Zhao Z.Light- and electric-field-controlled wetting behavior in nanochannels for regulating nanoconfined mass transport.J Am Chem Soc2018;140:4552-9

[26]

Guo W,Xia J.Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source.Adv Funct Mater2010;20:1339-44

[27]

Zhang Z,Zhang P,Chen G.Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators.Nat Commun2019;10:2920 PMCID:PMC6606750

[28]

Ding L,Liu Y.Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater.Nat Sustain2020;3:296-302

[29]

Zhang Q,Hou X,Zhai J.Light-regulated ion transport through artificial ion channels based on TiO2 nanotubular arrays.Chem Commun (Camb)2012;48:5901-3

[30]

Zhang Q,Wang K.Organic/inorganic hybrid nanochannels based on Polypyrrole-embedded alumina nanopore arrays: pH- and light-modulated ion transport.Adv Funct Mater2015;25:2091-8

[31]

Macha M,Nandigana VVR.2D materials as an emerging platform for nanopore-based power generation.Nat Rev Mater2019;4:588-605

[32]

Li R,Liu Z.Smart Bioinspired nanochannels and their applications in energy-conversion systems.Adv Mater2017;29:1702983

[33]

Liu P,Zhang Y,Lu X.Two-dimensional material membranes for critical separations.Inorg Chem Front2020;7:2560-81

[34]

Gao J,Guo W.Nanofluidics in two-dimensional layered materials: inspirations from nature.Chem Soc Rev2017;46:5400-24

[35]

Koltonow AR.IONIC TRANSPORT. Two-dimensional nanofluidics.Science2016;351:1395-6

[36]

Schoch RB.Ion transport through nanoslits dominated by the effective surface charge.Appl Phys Lett2005;86:253111

[37]

Zhang Q,Xie Z,Liu Z.Highly efficient gating of electrically actuated nanochannels for pulsatile drug delivery stemming from a reversible wettability switch.Adv Mater2018;30:1703323

[38]

Hao Z,Xiao T.Electrochromic nanochannels for visual nanofluidic manipulation in integrated ionic circuits.ACS Appl Mater Interfaces2020;12:57314-21

[39]

Cao L,Feng Y.Anomalous channel-length dependence in nanofluidic osmotic energy conversion.Adv Funct Mater2017;27:1604302

[40]

Asghar W,Billo JA.Shrinking of solid-state nanopores by direct thermal heating.Nanoscale Res Lett2011;6:372 PMCID:PMC3211463

[41]

Ho C,Heng JB.Electrolytic transport through a synthetic nanometer-diameter pore.Proc Natl Acad Sci U S A2005;102:10445-50 PMCID:PMC1180756

[42]

Apel P.Track etching technique in membrane technology.Radiation Measurements2001;34:559-66

[43]

Zhang B,White HS.The nanopore electrode.Anal Chem2004;76:6229-38

[44]

Martin CR,Jirage K.Investigations of the transport properties of gold nanotubule membranes.J Phys Chem B2001;105:1925-34

[45]

Karahan HE,Zhang CJ.MXene materials for designing advanced separation membranes.Adv Mater2020;32:e1906697

[46]

Childs RF,Kim M.Formation of pore-filled microfiltration membranes using a combination of modified interfacial polymerization and grafting.J Polym Sci A Polym Chem2002;40:242-50

[47]

Dreyer DR,Bielawski CW.Harnessing the chemistry of graphene oxide.Chem Soc Rev2014;43:5288-301

[48]

Xin W,Kong XY.Biomimetic nacre-like silk-crosslinked membranes for osmotic energy harvesting.ACS Nano2020;14:9701-10

[49]

Ding L,Lu Z.Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting.Angew Chem2020;132:8798-804

[50]

Ji J,Zhou Y.Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs.Adv Funct Mater2017;27:1603623

[51]

Chen J,Chen W.Biomimetic nanocomposite membranes with ultrahigh ion selectivity for osmotic power conversion.ACS Cent Sci2021;7:1486-92 PMCID:PMC8461767

[52]

Wu C,Tang J.Biomimetic temperature-gated 2D cationic nanochannels for controllable osmotic power harvesting.Nano Energy2020;76:105113

[53]

Liu J,Yu LJ.Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation.Nat Commun2017;8:2011 PMCID:PMC5722819

[54]

Man Z,Zhang Z.Serosa-mimetic nanoarchitecture membranes for highly efficient osmotic energy generation.J Am Chem Soc2021;143:16206-16

[55]

Wang Y,Wang Y.Graphite phase carbon nitride based membrane for selective permeation.Nat Commun2019;10:2500 PMCID:PMC6555826

[56]

Huang H,Wei N.Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes.Nat Commun2013;4:2979

[57]

Abraham J,Williams CD.Tunable sieving of ions using graphene oxide membranes.Nat Nanotechnol2017;12:546-50

[58]

Ma M,Michaelides A.Fast diffusion of water nanodroplets on graphene.Nat Mater2016;15:66-71

[59]

Hu M.Enabling graphene oxide nanosheets as water separation membranes.Environ Sci Technol2013;47:3715-23

[60]

Joshi RK,Wang FC.Precise and ultrafast molecular sieving through graphene oxide membranes.Science2014;343:752-4

[61]

Yin Z,Xu Y.Supported MXene/GO composite membranes with suppressed swelling for metal ion sieving.Membranes (Basel)2021;11:621 PMCID:PMC8401878

[62]

Guo W,Jiang L.Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.Acc Chem Res2013;46:2834-46

[63]

Bohinc K,Iglič A.Thickness of electrical double layer. Effect of ion size.Electrochimica Acta2001;46:3033-40

[64]

Stein D,Dekker C.Surface-charge-governed ion transport in nanofluidic channels.Phys Rev Lett2004;93:035901

[65]

Hao Q,Sun B.Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer.J Am Chem Soc2018;140:12152-8

[66]

Liu Y,Liu M.Face-to-face growth of wafer-scale 2D semiconducting MOF films on dielectric substrates.Adv Mater2021;33:e2007741

[67]

Wang L,Kidambi PR,Hadjiconstantinou NG.Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes.Nat Nanotechnol2017;12:509-22

[68]

Ren CE,Byles BW.Voltage-gated ions sieving through 2D MXene Ti3C2Tx membranes.ACS Appl Nano Mater2018;1:3644-52

[69]

Kim KS,Jang H.Large-scale pattern growth of graphene films for stretchable transparent electrodes.Nature2009;457:706-10

[70]

Shams SS,Zhu J.Graphene synthesis: a review.Mater Sci Pol2015;33:566-78

[71]

Li X,An J.Large-area synthesis of high-quality and uniform graphene films on copper foils.Science2009;324:1312-4

[72]

Hernandez Y,Lotya M.High-yield production of graphene by liquid-phase exfoliation of graphite.Nat Nanotechnol2008;3:563-8

[73]

Edwards RS.Graphene synthesis: relationship to applications.Nanoscale2013;5:38-51

[74]

Jayasena B.A novel mechanical cleavage method for synthesizing few-layer graphenes.Nanoscale Res Lett2011;6:95 PMCID:PMC3212245

[75]

Hummers WS.Preparation of graphitic oxide.J Am Chem Soc1958;80:1339

[76]

Marcano DC,Berlin JM.Improved synthesis of graphene oxide.ACS Nano2010;4:4806-14

[77]

Roth WJ,Morris RE.Two-dimensional zeolites: current status and perspectives.Chem Rev2014;114:4807-37

[78]

Přech J,Serrano DP.From 3D to 2D zeolite catalytic materials.Chem Soc Rev2018;47:8263-306

[79]

Hong M,Wang Y.Heavy metal adsorption with zeolites: the role of hierarchical pore architecture.Chemical Engineering Journal2019;359:363-72

[80]

Li S,Falconer JL.Separation of 1,3-propanediol from aqueous solutions using pervaporation through an X-type zeolite membrane.Ind Eng Chem Res2001;40:1952-9

[81]

Agrawal KV,Jiang Z.Solution-processable exfoliated zeolite nanosheets purified by density gradient centrifugation.AIChE J2013;59:3458-67

[82]

Roth WJ,Morris RE.A family of zeolites with controlled pore size prepared using a top-down method.Nat Chem2013;5:628-33

[83]

Mazur M,Navarro M.Synthesis of ‘unfeasible’ zeolites.Nat Chem2016;8:58-62

[84]

Lu P,Zhou T,Li Y.Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations.J Membr Sci2018;567:89-103

[85]

Konch TJ,Neog AB,Raidongia K.Uphill anion pumping through triangular nanofluidic device of reconstructed layered double hydroxide.J Phys Chem C2021;125:17939-49

[86]

Liu J,Zhang Y.Fabrication and characterization of positively charged hybrid ultrafiltration and nanofiltration membranes via the in-situ exfoliation of Mg/Al hydrotalcite.Desalination2014;335:78-86

[87]

Shao JJ,Koltonow AR.Self-assembled two-dimensional nanofluidic proton channels with high thermal stability.Nat Commun2015;6:7602

[88]

Gogoi RK.Intercalating cation specific self-repairing of vermiculite nanofluidic membrane.J Mater Chem A2018;6:21990-8

[89]

Huang M,Yan X,Dong L.Two-dimensional Montmorillonite membranes with efficient water filtration.J Membr Sci2020;614:118540

[90]

Xiao T,Zhang Q,Zhai J.Temperature and voltage dual-responsive ion transport in bilayer-intercalated layered membranes with 2D nanofluidic channels.J Phys Chem C2017;121:18954-61

[91]

Naguib M,Barsoum MW.25th anniversary article: MXenes: a new family of two-dimensional materials.Adv Mater2014;26:992-1005

[92]

Naguib M,Carle J.Two-dimensional transition metal carbides.ACS Nano2012;6:1322-31

[93]

Lipatov A,Lukatskaya MR,Gogotsi Y.Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes.Adv Electron Mater2016;2:1600255

[94]

Qian HL,Yan XP.Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation.Nat Commun2016;7:12104 PMCID:PMC4945876

[95]

Pang ZF,Liang RR,Zhao X.Regulating the topology of 2D covalent organic frameworks by the rational introduction of substituents.Chem Sci2017;8:3866-70 PMCID:PMC5465550

[96]

Wan S,Kim J,Jiang D.A belt-shaped, blue luminescent, and semiconducting covalent organic framework.Angew Chem Int Ed Engl2008;47:8826-30

[97]

Shinde DB,Pachfule P,Banerjee R.Bifunctional covalent organic frameworks with two dimensional organocatalytic micropores.Chem Commun (Camb)2015;51:310-3

[98]

Dalapati S,Gao J,Nagai A.An azine-linked covalent organic framework.J Am Chem Soc2013;135:17310-3

[99]

Dalapati S,Addicoat M,Jiang D.Highly emissive covalent organic frameworks.J Am Chem Soc2016;138:5797-800

[100]

Jin S,Kowalczyk T.Two-dimensional tetrathiafulvalene covalent organic frameworks: towards latticed conductive organic salts.Chemistry2014;20:14608-13

[101]

Dalapati S,Jin S.Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies.Nat Commun2015;6:7786 PMCID:PMC4518282

[102]

Jin S,Feng X.Charge Dynamics in a donor-acceptor covalent organic framework with periodically ordered bicontinuous heterojunctions.Angew Chem2013;125:2071-5

[103]

Jin S,Addicoat M.Large pore donor-acceptor covalent organic frameworks.Chem Sci2013;4:4505

[104]

Calik M,Salonen LM.Extraction of photogenerated electrons and holes from a covalent organic framework integrated heterojunction.J Am Chem Soc2014;136:17802-7 PMCID:PMC4706362

[105]

Chandra S,Biswal BP.Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination.J Am Chem Soc2013;135:17853-61

[106]

Berlanga I,González-Calbet JM,Mas-Ballesté R.Delamination of layered covalent organic frameworks.Small2011;7:1207-11

[107]

Dey K,Rout KC.Selective molecular separation by interfacially crystallized covalent organic framework thin films.J Am Chem Soc2017;139:13083-91

[108]

Wang T,Zhao S.Interfacial polymerized and pore-variable covalent organic framework composite membrane for dye separation.Chem Eng J2020;384:123347

[109]

Zhao M,Wang Y.Metal-organic frameworks as selectivity regulators for hydrogenation reactions.Nature2016;539:76-80

[110]

Hao Z,Zhao Q.Functional separators regulating ion transport enabled by metal-organic frameworks for dendrite-free lithium metal anodes.Adv Funct Mater2021;31:2102938

[111]

Gallego A,Castillo O.Solvent-induced delamination of a multifunctional two dimensional coordination polymer.Adv Mater2013;25:2141-6

[112]

Wang X,Zhang K.Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation.Nat Commun2017;8:14460 PMCID:PMC5316892

[113]

Peng Y,Ban Y.Membranes. Metal-organic framework nanosheets as building blocks for molecular sieving membranes.Science2014;346:1356-9

[114]

Makiura R,Umemura Y,Sakata O.Surface nano-architecture of a metal-organic framework.Nat Mater2010;9:565-71

[115]

Acerce M,Chhowalla M.Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials.Nat Nanotechnol2015;10:313-8

[116]

Li XL,Huang S,Pam ME.Controllable synthesis of two-dimensional molybdenum disulfide (MoS2) for energy-storage applications.ChemSusChem2020;13:1379-91

[117]

Zhu C,Niu B.Metallic two-dimensional MoS2 composites as high-performance osmotic energy conversion membranes.J Am Chem Soc2021;143:1932-40

[118]

Cheng D,Liu B.Dielectric properties and energy-storage performance of two-dimensional molybdenum disulfide nanosheets/polyimide composite films.J Appl Polym Sci2019;136:47991

[119]

Hou S,Chen J,Wen L.Free-standing covalent organic framework membrane for high-efficiency salinity gradient energy conversion.Angew Chem2021;133:10013-8

[120]

Mijatovic D,van den Berg A.Technologies for nanofluidic systems: top-down vs. bottom-up--a review.Lab Chip2005;5:492-500

[121]

Sun P,Zhu M.Realizing synchronous energy harvesting and ion separation with graphene oxide membranes.Sci Rep2014;4:5528 PMCID:PMC4078314

[122]

Cheng H,Feng Y.Electrokinetic energy conversion in self-assembled 2D nanofluidic channels with Janus nanobuilding blocks.Adv Mater2017;29:1700177

[123]

Hong S,Shi Y.Two-dimensional Ti3C2Tx MXene membranes as nanofluidic osmotic power generators.ACS Nano2019;13:8917-25

[124]

Wu Y,Kong X.Enhanced ion transport by graphene oxide/cellulose nanofibers assembled membranes for high-performance osmotic energy harvesting.Mater Horiz2020;7:2702-9

[125]

Zhang Z,Lin L.Vertically transported graphene oxide for high-performance osmotic energy conversion.Adv Sci (Weinh)2020;7:2000286 PMCID:PMC7312320

[126]

Liu P,Zhu C.Neutralization reaction assisted chemical-potential-driven ion transport through layered titanium carbides membrane for energy harvesting.Nano Lett2020;20:3593-601

[127]

Xin W,Huang X.High-performance silk-based hybrid membranes employed for osmotic energy conversion.Nat Commun2019;10:3876 PMCID:PMC6713777

[128]

Zhang Z,Yang S.Oxidation promoted osmotic energy conversion in black phosphorus membranes.Proc Natl Acad Sci U S A2020;117:13959-66 PMCID:PMC7321993

[129]

Li R,Liu Q,Zhai J.Hybrid nanochannel membrane based on polymer/MOF for high-performance salinity gradient power generation.Nano Energy2018;53:643-9

[130]

Xiao K,Wen L,Antonietti M.Nanofluidic ion transport and energy conversion through ultrathin free-standing polymeric carbon nitride membranes.Angew Chem Int Ed Engl2018;57:10123-6

[131]

Gao Z,Ahmad M.Increased ion transport and high-efficient osmotic energy conversion through aqueous stable graphitic carbon nitride/cellulose nanofiber composite membrane.Carbohydr Polym2022;280:119023

[132]

Guo W,Wu Y.Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane.Adv Mater2013;25:6064-8

[133]

Yang G,Chen C.Ultrathin Ti3C2Tx (MXene) membrane for pressure-driven electrokinetic power generation.Nano Energy2020;75:104954

[134]

Qu R,Lin L.Vertically-oriented Ti3C2Tx MXene membranes for high performance of electrokinetic energy conversion.ACS Nano2020:16654-62

[135]

Qin S,Chen Y.Nanofluidic electric generators constructed from boron nitride nanosheet membranes.Nano Energy2018;47:368-73

[136]

Tollefson J.Power from the oceans: blue energy.Nature2014;508:302-4

[137]

Wang ZL,Xu L.Toward the blue energy dream by triboelectric nanogenerator networks.Nano Energy2017;39:9-23

[138]

Jie Y,Zou J.Natural leaf made triboelectric nanogenerator for harvesting environmental mechanical energy.Adv Energy Mater2018;8:1703133

[139]

Lin ZH,Lin L,Wang ZL.Water-solid surface contact electrification and its use for harvesting liquid-wave energy.Angew Chem Int Ed Engl2013;52:12545-9

[140]

Wen X,Jing Q.Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves.ACS Nano2014;8:7405-12

[141]

Zhao Y,Kong XY.Corrigendum to Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion.Natl Sci Rev2020;7:1793 PMCID:PMC8288818

[142]

Hou S,Zhang Z.Charged porous asymmetric membrane for enhancing salinity gradient energy conversion.Nano Energy2021;79:105509

PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

/