Recent progress of sulfide electrolytes for all-solid-state lithium batteries

Han Su , Zhao Jiang , Yu Liu , Jingru Li , Changdong Gu , Xiuli Wang , Xinhui Xia , Jiangping Tu

Energy Materials ›› 2022, Vol. 2 ›› Issue (1) : 200005

PDF
Energy Materials ›› 2022, Vol. 2 ›› Issue (1) :200005 DOI: 10.20517/energymater.2022.01
Review

Recent progress of sulfide electrolytes for all-solid-state lithium batteries

Author information +
History +
PDF

Abstract

Solid electrolytes are recognized as being pivotal to next-generation energy storage technologies. Sulfide electrolytes with high ionic conductivity represent some of the most promising materials to realize high-energy-density all-solid-state lithium batteries. Due to their soft nature, sulfides possess good wettability against Li metal and their preparation process is relatively effortless. High cell-level sulfide-based all-solid-state lithium batteries have gradually been realized in recent years. However, there are still several disadvantages that sulfide electrolytes need to overcome, including their sensitivity to humid air and instability to electrodes. Herein, the recent progress for sulfide electrolytes, with particular attention given to electrolyte synthesis mechanisms, electrochemical and chemical stability, interphase stabilization and all-solid-state lithium batteries with high cell-level energy density, is presented.

Keywords

Sulfide electrolytes / electrochemical stability / interphase stabilization / all-solid-state lithium batteries

Cite this article

Download citation ▾
Han Su, Zhao Jiang, Yu Liu, Jingru Li, Changdong Gu, Xiuli Wang, Xinhui Xia, Jiangping Tu. Recent progress of sulfide electrolytes for all-solid-state lithium batteries. Energy Materials, 2022, 2(1): 200005 DOI:10.20517/energymater.2022.01

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armand M.Building better batteries.Nature2008;451:652-7

[2]

Zhang Q,Ma Y,Aurora P.Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries.Adv Mater2019;31:e1901131

[3]

Xu R,Wang X.Recent developments of all-solid-state lithium secondary batteries with sulfide inorganic electrolytes.Chemistry2018;24:6007-18

[4]

Chen S,Liu G.Sulfide solid electrolytes for all-solid-state lithium batteries: structure, conductivity, stability and application.Energy Stor Mater2018;14:58-74

[5]

Banerjee A,Fang C,Meng YS.Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes.Chem Rev2020;120:6878-933

[6]

Zhang Z,Lotsch B.New horizons for inorganic solid state ion conductors.Energy Environ Sci2018;11:1945-76

[7]

Gao Z,Fu L.Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries.Adv Mater2018;30:e1705702

[8]

Jiang Z,Liu Y.Improved ionic conductivity and Li dendrite suppression capability toward Li7P3S11-based solid electrolytes triggered by Nb and O cosubstitution.ACS Appl Mater Interfaces2020;12:54662-70

[9]

Hayashi A,Ohtomo T,Tatsumisago M.Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles.J Mater Chem A2013;1:6320

[10]

Kato Y,Saito T.High-power all-solid-state batteries using sulfide superionic conductors.Nat Energy2016;1

[11]

Zhou L,Zhang Q,Nazar LF.New family of argyrodite thioantimonate lithium superionic conductors.J Am Chem Soc2019;141:19002-13

[12]

Patel SV,Liu H.Tunable lithium-ion transport in mixed-halide argyrodites Li6-xPS5-xClBrx: an unusual compositional space.Chem Mater2021;33:1435-43

[13]

Wu J,Han F,Wang C.Lithium/sulfide all-solid-state batteries using sulfide electrolytes.Adv Mater2021;33:e2000751

[14]

Bachman JC,Grimaud A.Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction.Chem Rev2016;116:140-62

[15]

Zhu Y.Materials design principles for air-stable lithium/sodium solid electrolytes.Angew Chem Int Ed Engl2020;59:17472-6

[16]

Minami K,Hayashi A.Lithium ion conductivity of the Li2S-P2S5 glass-based electrolytes prepared by the melt quenching method.Solid State Ionics2007;178:837-41

[17]

Hayashi A,Mizuno F.Formation of Li+ superionic crystals from the Li2S-P2S5 melt-quenched glasses.J Mater Sci2008;43:1885-9

[18]

Seino Y,Takada K,Tatsumisago M.A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries.Energy Environ Sci2014;7:627-31

[19]

Xu R,Yao Z,Gu C.Preparation of Li7P3S11 glass-ceramic electrolyte by dissolution-evaporation method for all-solid-state lithium ion batteries.Electrochimi Acta2016;219:235-40

[20]

Xu R,Zhang S.Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries.J Power Sources2018;374:107-12

[21]

Ito S,Aihara Y,Machida N.A synthesis of crystalline Li7P3S11 solid electrolyte from 1,2-dimethoxyethane solvent.J Power Sources2014;271:342-5

[22]

Liu Z,Payzant EA.Anomalous high ionic conductivity of nanoporous β-Li3PS4.J Am Chem Soc2013;135:975-8

[23]

Yubuchi S,Deguchi M,Tatsumisago M.Lithium-ion-conducting argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes prepared by a liquid-phase technique using ethanol as a solvent.ACS Appl Energy Mater2018;1:3622-9

[24]

Song YB,Kwak H.Tailoring solution-processable Li argyrodites Li6+xP1-xMxS5I (M = Ge, Sn) and their microstructural evolution revealed by cryo-TEM for all-solid-state batteries.Nano Lett2020;20:4337-45

[25]

Jung WD,Choi S.Superionic halogen-rich Li-argyrodites using in situ nanocrystal nucleation and rapid crystal growth.Nano Lett2020;20:2303-9

[26]

Fukushima A,Yamamura H.Mechanochemical synthesis of high lithium ion conducting solid electrolytes in a Li2S-P2S5-Li3N system.Solid State Ionics2017;304:85-9

[27]

Boulineau S,Tarascon J.Mechanochemical synthesis of Li-argyrodite Li6PS5X (X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application.Solid State Ionics2012;221:1-5

[28]

Jiang Z,Liu Y.A Versatile Li6.5In0.25P0.75S5I sulfide electrolyte triggered by ultimate-energy mechanical alloying for all-solid-state lithium metal batteries.Adv Energy Mater2021;11:2101521

[29]

Mizuno F,Tadanaga K.New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses.Adv Mater2005;17:918-21

[30]

Tao Y,Liu D,Yao X.Lithium superionic conducting oxysulfide solid electrolyte with excellent stability against lithium metal for all-solid-state cells.J Electrochem Soc2015;163:A96-101

[31]

Hayashi A,Minami T.Formation of superionic crystals from mechanically milled Li2S-P2S5 glasses.Electrochem commun2003;5:111-4

[32]

Jiang Z,Wang X,Xia X.Robust Li6PS5I interlayer to stabilize the tailored electrolyte Li9.95SnP2S11.95F0.05/Li metal interface.ACS Appl Mater Interfaces2021;13:30739-45

[33]

Adeli P,Park KH.Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution.Angew Chem Int Ed Engl2019;58:8681-6

[34]

Liu Y,Su H.Ultrafast synthesis of I-rich lithium argyrodite glass-ceramic electrolyte with high ionic conductivity.Adv Mater2022;34:e2107346

[35]

Xu R,Wang X,Tu J.Tailored Li2S-P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solid-state lithium-sulfur batteries.J Mater Chem A2017;5:2829-34

[36]

Mercier R,Fahys B.Superionic conduction in Li2S-P2S5-LiI-glasses.Solid State Ionics1981;5:663-6

[37]

Teragawa S,Tadanaga K,Tatsumisago M.Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries.J Mater Chem A2014;2:5095

[38]

Phuc NHH,Morikawa K,Matsuda A.Preparation of Li3PS4 solid electrolyte using ethyl acetate as synthetic medium.Solid State Ionics2016;288:240-3

[39]

Calpa M,Miura A.Instantaneous preparation of high lithium-ion conducting sulfide solid electrolyte Li7P3S11 by a liquid phase process.RSC Adv2017;7:46499-504

[40]

Wang Y,Bowden M.Mechanism of formation of Li7P3S11 solid electrolytes through liquid phase synthesis.Chem Mater2018;30:990-7

[41]

Yubuchi S,Aso K,Hayashi A.Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries.J Power Sources2015;293:941-5

[42]

Rosero-navarro NC,Tadanaga K.Preparation of lithium ion conductive Li6PS5Cl solid electrolyte from solution for the fabrication of composite cathode of all-solid-state lithium battery.J Sol-Gel Sci Technol2019;89:303-9

[43]

Zhou L,Sun X.Solvent-engineered design of argyrodite Li6PS5X (X = Cl, Br, I) solid electrolytes with high ionic conductivity.ACS Energy Lett2019;4:265-70

[44]

Yubuchi S,Hotehama C,Hayashi A.An argyrodite sulfide-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol.J Mater Chem A2019;7:558-66

[45]

Hayashi A,Morimoto H,Minami T.Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling.J Am Ceram Soc2001;84:477-79

[46]

Shin BR,Oh DY,Kim JW.Comparative study of TiS2/Li-in all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes.Electrochimica Acta2014;146:395-402

[47]

Yamane H,Shimane Y.Crystal structure of a superionic conductor, Li7P3S11.Solid State Ionics2007;178:1163-7

[48]

Zhao F,Yu C.A versatile Sn-substituted argyrodite sulfide electrolyte for all-solid-state Li metal batteries.Adv Energy Mater2020;10:1903422

[49]

Liang J,Li X.Li10Ge(P1-xSbx)2S12 lithium-ion conductors with enhanced atmospheric stability.Chem Mater2020;32:2664-72

[50]

Yi J,Liu Y,Fan LZ.High capacity and superior cyclic performances of all-solid-state lithium-sulfur batteries enabled by a high-conductivity Li10SnP2S12 solid electrolyte.ACS Appl Mater Interfaces2019;11:36774-81

[51]

Kamaya N,Yamakawa Y.A lithium superionic conductor.Nat Mater2011;10:682-6

[52]

Park KH,Choi YE.Solution-processable glass LiI-Li4SnS4 superionic conductors for all-solid-state Li-ion batteries.Adv Mater2016;28:1874-83

[53]

Zhao BS,Chen P.Congener substitution reinforced Li7P2.9Sb0.1S10.75O0.25 glass-ceramic electrolytes for all-solid-state lithium-sulfur batteries.ACS Appl Mater Interfaces2021;13:34477-85

[54]

Rajagopal R.Structural investigations, visualization, and electrolyte properties of silver halide-doped Li7P3S11 lithium superionic conductors.ACS Sustainable Chem Eng2021;9:1105-17

[55]

Kaib T,Kapitein M.New lithium chalcogenidotetrelates, LiChT: synthesis and characterization of the Li+-conducting tetralithium ortho-sulfidostannate Li4SnS4.Chem Mater2012;24:2211-9

[56]

Sahu G,Li J.A high-conduction Ge substituted Li3AsS4 solid electrolyte with exceptional low activation energy.J Mater Chem A2014;2:10396-403

[57]

Kanno R.Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system.J Electrochem Soc2001;148:A742

[58]

Bron P,Zick K,Dehnen S.Li10SnP2S12: an affordable lithium superionic conductor.J Am Chem Soc2013;135:15694-7

[59]

Bron P,Roling B.Li10Si0.3Sn0.7P2S12 - a low-cost and low-grain-boundary-resistance lithium superionic conductor.J Power Sources2016;329:530-5

[60]

Liu Y,Li M.In situ formation of a Li3N-rich interface between lithium and argyrodite solid electrolyte enabled by nitrogen doping.J Mater Chem A2021;9:13531-9

[61]

Chen T,Zhang L.Sn-O dual-doped Li-argyrodite electrolytes with enhanced electrochemical performance.J Energy Chem2021;59:530-7

[62]

Dietrich C,Sedlmaier SJ.Lithium ion conductivity in Li2S-P2S5 glasses - building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7.J Mater Chem A2017;5:18111-9

[63]

Pradel A.Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching.Solid State Ionics1986;18-19:351-5

[64]

Zhang Z.Synthesis and characterization of the B2S3-Li2S, the P2S5-Li2S and the B2S3-P2S5-Li2S glass systems.Solid State Ionics1990;38:217-24

[65]

Tatsumisago M,Minami T,Kondo S.Superionic conduction in rapidly quenched Li2S-SiS2-Li3PO4 glasses.J Ceram Soc Japan1993;101:1315-7

[66]

Tatsumisago M,Hirata T,Minami T.Structure and properties of lithium ion conducting oxysulfide glasses prepared by rapid quenching.Solid State Ionics1996;86-88:487-90

[67]

Wada H,Levasseur A.Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses.Mater Res Bull1983;18:189-93

[68]

Kennedy JH,Eckert H.Ionically conductive sulfide-based lithium glasses.J Non Cryst Solids1990;123:328-38

[69]

Yamauchi A,Hayashi A.Preparation and ionic conductivities of (100-x)(0.75Li2S·0.25P2S5)·xLiBH4 glass electrolytes.J Power Sources2013;244:707-10

[70]

Kudu ÖU,Fleutot B.A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S - P2S5 binary system.J Power Sources2018;407:31-43

[71]

Mizuno F,Tadanaga K.High lithium ion conducting glass-ceramics in the system Li2S-P2S5.Solid State Ionics2006;177:2721-5

[72]

Dietrich C,Culver S.Synthesis, structural characterization, and lithium ion conductivity of the lithium thiophosphate Li2P2S6.Inorg Chem2017;56:6681-7

[73]

Kim J,Lee J.Formation of the high lithium ion conducting phase from mechanically milled amorphous Li2S-P2S5 system.J Power Sources2011;196:6920-3

[74]

Trevey J,Jung YS,Lee S.Glass-ceramic Li2S-P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium-ion batteries.Electrochem commun2009;11:1830-3

[75]

Xu R,Li S,Wang X.All-solid-state lithium-sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor.J Mater Chem A2017;5:6310-7

[76]

Kanno R.Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system.Solid State Ionics2000;130:97-104

[77]

Seo I.Fast lithium ion conducting solid state thin-film electrolytes based on lithium thio-germanate materials.Acta Materialia2011;59:1839-46

[78]

Kwak H,Han D,Kim H.Li+ conduction in air-stable Sb-Substituted Li4SnS4 for all-solid-state Li-Ion batteries.J Power Sources2020;446:227338

[79]

Sahu G,Li J,Dudney N.Air-stable, high-conduction solid electrolytes of arsenic-substituted Li4SnS4.Energy Environ Sci2014;7:1053-8

[80]

Nishino S,Yamasaki H.Nanosecond quantum molecular dynamics simulations of the lithium superionic conductor Li4-xGe1-xPxS4.Phys Rev B2014;90:024303

[81]

Kuhn A,Lotsch BV.Tetragonal Li10GeP2S12 and Li7GePS8 - exploring the Li ion dynamics in LGPS Li electrolytes.Energy Environ Sci2013;6:3548

[82]

Mo Y,Ceder G.First principles study of the Li10GeP2S12 lithium super ionic conductor material.Chem Mater2012;24:15-7

[83]

Malik R,Bazant M.Particle size dependence of the ionic diffusivity.Nano Lett2010;10:4123-7

[84]

Kato Y,Sakano M,Hirayama M.Synthesis, structure and lithium ionic conductivity of solid solutions of Li10(Ge1-M)P2S12 (M = Si, Sn).J Power Sources2014;271:60-4

[85]

Ong SP,Richards WD,Lee HS.Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors.Energy Environ Sci2013;6:148-56

[86]

Whiteley JM,Hu E,Lee S.Empowering the lithium metal battery through a silicon-based superionic conductor.J Electrochem Soc2014;161:A1812-7

[87]

Hori S,Suzuki K,Kato Y.Structure-property relationships in lithium superionic conductors having a Li10GeP2S12-type structure.Acta Crystallogr B Struct Sci Cryst Eng Mater2015;71:727-36

[88]

Deiseroth H,Eckert H.Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility.Angew Chem2008;120:767-70

[89]

Gaudin E,Petricek VV,Evain M.Structures and phase transitions of the A7PSe6 (A = Ag, Cu) argyrodite-type ionic conductors. II. Beta- and gamma-Cu7PSe6.Acta Crystallogr B2000;56:402-8

[90]

Kraft MA,Calderon M.Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I).J Am Chem Soc2017;139:10909-18

[91]

Klerk NJJ, Rosłoń I, Wagemaker M. Diffusion mechanism of Li Argyrodite solid electrolytes for Li-ion batteries and prediction of optimized halogen doping: the effect of Li vacancies, halogens, and halogen disorder.Chem Mater2016;28:7955-63

[92]

Rao RP.Studies of lithium argyrodite solid electrolytes for all-solid-state batteries: studies of lithium argyrodite solid electrolytes.Phys Status Solidi A2011;208:1804-7

[93]

Hanghofer I,Eisbacher SL.Substitutional disorder: structure and ion dynamics of the argyrodites Li6PS5Cl, Li6PS5Br and Li6PS5I.Phys Chem Chem Phys2019;21:8489-507

[94]

Chen HM,Adams S.Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes.Phys Chem Chem Phys2015;17:16494-506

[95]

Morgan BJ.Mechanistic origin of superionic lithium diffusion in anion-disordered Li6PS5X argyrodites.Chem Mater2021;33:2004-18 PMCID:PMC8029578

[96]

Kraft MA,Zinkevich T.Inducing high ionic conductivity in the lithium superionic argyrodites Li6+xP1-xGexS5I for all-solid-state batteries.J Am Chem Soc2018;140:16330-9

[97]

Minafra N,Krauskopf T,Zeier WG.Effect of Si substitution on the structural and transport properties of superionic Li-argyrodites.J Mater Chem A2018;6:645-51

[98]

Wang P,Patel S.Fast ion conduction and its origin in Li6-xPS5-xBr1+x.Chem Mater2020;32:3833-40

[99]

Feng X,Wang Y.Enhanced ion conduction by enforcing structural disorder in Li-deficient argyrodites Li6-xPS5-xCl1+x.Energy Stor Mater2020;30:67-73

[100]

Brinek M,Wilkening HMR.Understanding the origin of enhanced Li-ion transport in nanocrystalline argyrodite-type Li6PS5I.Chem Mater2020;32:4754-66 PMCID:PMC7304077

[101]

Sun Y,Hara K.Oxygen substitution effects in Li10GeP2S12 solid electrolyte.J Power Sources2016;324:798-803

[102]

Bai Y,Li W,Bai Y.New Insight for solid sulfide electrolytes LSiPSI by using Si/P/S as the raw materials and I doping.ACS Sustainable Chem Eng2019;7:12930-7

[103]

Han F,He X,Wang C.Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes.Adv Energy Mater2016;6:1501590

[104]

Han F,Zhu Y,Wang C.A battery made from a single material.Adv Mater2015;27:3473-83

[105]

Richards WD,Wang Y,Ceder G.Interface stability in solid-state batteries.Chem Mater2016;28:266-73

[106]

Zhu Y,Mo Y.Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations.ACS Appl Mater Interfaces2015;7:23685-93

[107]

Zhang Z,Liu Y.Synthesis and characterization of argyrodite solid electrolytes for all-solid-state Li-ion batteries.J Alloys Compounds2018;747:227-35

[108]

Muramatsu H,Ohtomo T,Tatsumisago M.Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere.Solid State Ionics2011;182:116-9

[109]

Hayashi A,Ohtomo T,Tatsumisago M.Improved chemical stability and cyclability in Li2S-P2S5-P2O5-ZnO composite electrolytes for all-solid-state rechargeable lithium batteries.J Alloys Compounds2014;591:247-50

[110]

Xu K.Electrolytes and interphases in Li-ion batteries and beyond.Chem Rev2014;114:11503-618

[111]

Xiao Y,Bo S,Miara LJ.Understanding interface stability in solid-state batteries.Nat Rev Mater2020;5:105-26

[112]

Famprikis T,Dawson JA,Masquelier C.Fundamentals of inorganic solid-state electrolytes for batteries.Nat Mater2019;18:1278-91

[113]

Chen B,Ma J.An insight into intrinsic interfacial properties between Li metals and Li10GeP2S12 solid electrolytes.Phys Chem Chem Phys2017;19:31436-42

[114]

Swamy T,Sheldon BW.Lithium metal penetration induced by electrodeposition through solid electrolytes: example in single-crystal Li6La3ZrTaO12 garnet.J Electrochem Soc2018;165:A3648-55

[115]

Nagao M,Tatsumisago M,Tsuda T.In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte.Phys Chem Chem Phys2013;15:18600-6

[116]

Kasemchainan J,Spencer Jolly D.Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells.Nat Mater2019;18:1105-11

[117]

Wenzel S,Krüger D,Janek J.Interphase formation on lithium solid electrolytes - an in situ approach to study interfacial reactions by photoelectron spectroscopy.Solid State Ionics2015;278:98-105

[118]

Wenzel S,Leichtweiß T.Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode.Chem Mater2016;28:2400-7

[119]

Zhang L,Du C.Lithium whisker growth and stress generation in an in situ atomic force microscope-environmental transmission electron microscope set-up.Nat Nanotechnol2020;15:94-8

[120]

Hagopian A,Filhol J.Thermodynamic origin of dendrite growth in metal anode batteries.Energy Environ Sci2020;13:5186-97

[121]

Fan X,Han F.Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery.Sci Adv2018;4:eaau9245 PMCID:PMC6303121

[122]

Kazyak E,Lepage WS.Li penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility.Matter2020;2:1025-48

[123]

Liu H,Huang J.Controlling dendrite growth in solid-state electrolytes.ACS Energy Lett2020;5:833-43

[124]

Shen F,Xiao X.Effect of Pore connectivity on Li dendrite propagation within LLZO electrolytes observed with synchrotron X-ray tomography.ACS Energy Lett2018;3:1056-61

[125]

Han F,Yue J.High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes.Nat Energy2019;4:187-96

[126]

Brissot C,Chazalviel JN.Dendritic growth mechanisms in lithiumrpolymer cells.J Power Sources1999;81-82:925-9

[127]

Cao L,Zhang B,Zhang J.Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries.ACS Nano2020;14:3610-20

[128]

Wang L,Yan X.Engineering of lithium-metal anodes towards a safe and stable battery.Energy Stor Mater2018;14:22-48

[129]

Li Y,Johannessen B.Synergistic Pt doping and phase conversion engineering in two-dimensional MoS2 for efficient hydrogen evolution.Nano Energy2021;84:105898

[130]

Zhao C,Yan C.Liquid phase therapy to solid electrolyte-electrode interface in solid-state Li metal batteries: a review.Energy Stor Mater2020;24:75-84

[131]

Zhang JG,Xiao J,Liu J.Lithium metal anodes with nonaqueous electrolytes.Chem Rev2020;120:13312-48

[132]

Park KH,Kim DH.Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries.Adv Energy Mater2018;8:1800035

[133]

Taklu BW,Nikodimos Y.Dual CuCl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries.Nano Energy2021;90:106542

[134]

Zhao F,Yu C.Ultrastable anode interface achieved by fluorinating electrolytes for all-solid-state Li metal batteries.ACS Energy Lett2020;5:1035-43

[135]

Han F,Zhu X.Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation.Adv Energy Mater2018;8:1703644

[136]

Su Y,Fitzhugh W.A more stable lithium anode by mechanical constriction for solid state batteries.Energy Environ Sci2020;13:908-16

[137]

Ji X,Wang P.Solid-state electrolyte design for lithium dendrite suppression.Adv Mater2020;32:e2002741

[138]

Wan H,Deng T.Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium-sulfur battery.ACS Energy Lett2021;6:862-8

[139]

Peng J,Song F.High current density and long cycle life enabled by sulfide solid electrolyte and dendrite-free liquid lithium anode.Adv Funct Materials2022;32:2105776

[140]

Ye L.A dynamic stability design strategy for lithium metal solid state batteries.Nature2021;593:218-22

[141]

Wang Z,Wu J.Doping effects of metal cation on sulfide solid electrolyte/lithium metal interface.Nano Energy2021;84:105906

[142]

Zhao R,Hu G.Lithium thiosilicophosphate glassy solid electrolytes synthesized by high-energy ball-milling and melt-quenching: improved suppression of lithium dendrite growth by Si doping.ACS Appl Mater Interfaces2020;12:2327-37

[143]

Zhang Z,Yan X.All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune.J Power Sources2019;410-411:162-70

[144]

Liu G,Zhang Z,Yang J.Densified Li6PS5Cl nanorods with high ionic conductivity and improved critical current density for all-solid-state lithium batteries.Nano Lett2020;20:6660-5

[145]

Zhao Q,Zhao C.Designing solid-state electrolytes for safe, energy-dense batteries.Nat Rev Mater2020;5:229-52

[146]

Zhu Y,Mo Y.First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries.J Mater Chem A2016;4:3253-66

[147]

Lepley ND.Modeling interfaces between solids: application to Li battery materials.Phys Rev B2015;92:214201

[148]

Peng Z,Zhang Z.Stabilizing Li/electrolyte interface with a transplantable protective layer based on nanoscale LiF domains.Nano Energy2017;39:662-72

[149]

Sakuma M,Hirayama M.Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li-M (M = Sn, Si) alloy electrodes and sulfide-based solid electrolytes.Solid State Ionics2016;285:101-5

[150]

Liang X,Kochetkov IR.A facile surface chemistry route to a stabilized lithium metal anode.Nat Energy2017;2-17119

[151]

Santhosha AL,Buchheim JR.The Indium-lithium electrode in solid-state lithium-ion batteries: phase formation, redox potentials, and interface stability.Batteries Supercaps2019;2:524-9

[152]

Il’ina EA,Plekhanov MS.Investigation of Li-In alloy application as anode for all-solid-state batteries.J Phys Conf Ser2021;1967:012012

[153]

Nagao M,Tatsumisago M.Bulk-type lithium metal secondary battery with indium thin layer at interface between Li electrode and Li2S-P2S5 solid electrolyte.Electrochemistry2012;80:734-6

[154]

Lee Y,Jung C.High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes.Nat Energy2020;5:299-308

[155]

Tan DHS,Yang H.Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes.Science2021;373:1494-9

[156]

Choi HJ,Park JW.In situ formed Ag-Li intermetallic layer for stable cycling of all-solid-state lithium batteries.Adv Sci (Weinh)2022;9:e2103826 PMCID:PMC8728838

[157]

Yamada Y,Ko S,Yamada A.Advances and issues in developing salt-concentrated battery electrolytes.Nat Energy2019;4:269-80

[158]

Zhang Z,Yang J.Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life.ACS Appl Mater Interfaces2018;10:2556-65

[159]

Liang J,Zhao Y.An air-stable and dendrite-free Li anode for highly stable all-solid-state sulfide-based Li batteries.Adv Energy Mater2019;9:1902125

[160]

Yang M,Nolan AM.Interfacial atomistic mechanisms of lithium metal stripping and plating in solid-state batteries.Adv Mater2021;33:e2008081

[161]

Chen Y,Sun C.Sustained release-driven formation of ultrastable SEI between Li6PS5Cl and lithium anode for sulfide-based solid-state batteries.Adv Energy Mater2021;11:2002545

[162]

Li J,Li M.Fluorinated interface layer with embedded zinc nanoparticles for stable lithium-metal anodes.ACS Appl Mater Interfaces2021;13:17690-8

[163]

Klerk NJJ, Wagemaker M. Space-charge layers in all-solid-state batteries; important or negligible?.ACS Appl Energy Mater2018;1:5609-18 PMCID:PMC6199673

[164]

Yu C,de Klerk NJ.Unravelling Li-ion transport from picoseconds to seconds: bulk versus interfaces in an argyrodite Li6PS5Cl-Li2S all-solid-state Li-ion battery.J Am Chem Soc2016;138:11192-201

[165]

Wang L,Chen B.In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries.Nat Commun2020;11:5889 PMCID:PMC7674427

[166]

Yu C,Eck ERHV.Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface.Nat Commun2017;8:1086 PMCID:PMC5651852

[167]

Walther F,Fuchs T.Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries using time-of-flight secondary-ion mass spectrometry.Chem Mater2019;31:3745-55

[168]

Koerver R,Leichtweiß T.Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes.Chem Mater2017;29:5574-82

[169]

Zhang J,Li L.Unraveling the intra and intercycle interfacial evolution of Li6PS5Cl-based all-solid-state lithium batteries.Adv Energy Mater2020;10:1903311

[170]

Auvergniot J,Ledeuil J,Seznec V.Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries.Chem Mater2017;29:3883-90

[171]

Zheng B,Zhu J.Unraveling (electro)-chemical stability and interfacial reactions of Li10SnP2S12 in all-solid-state Li batteries.Nano Energy2020;67:104252

[172]

Zhang W,Culver SP.The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries.ACS Appl Mater Interfaces2017;9:35888-96

[173]

Liu X,Zhao J.Electrochemo-mechanical effects on structural integrity of Ni-rich cathodes with different microstructures in all solid-state batteries.Adv Energy Mater2021;11:2003583

[174]

Ohno S,Dewald G.Observation of chemomechanical failure and the influence of cutoff potentials in all-solid-state Li-S batteries.Chem Mater2019;31:2930-40

[175]

Wang S,Chen X.Influence of crystallinity of lithium thiophosphate solid electrolytes on the performance of solid-state batteries.Adv Energy Mater2021;11:2100654

[176]

Minnmann P,Burkhardt S,Janek J.Editors’ choice-quantifying the impact of charge transport bottlenecks in composite cathodes of all-solid-state batteries.J Electrochem Soc2021;168:040537

[177]

Li X,Song D.LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 cathode with high discharge capacity and rate performance for all-solid-state lithium battery.J Energy Chem2020;40:39-45

[178]

Peng L,Zhang J.LiNbO3-coated LiNi0.7Co0.1Mn0.2O2 and chlorine-rich argyrodite enabling high-performance solid-state batteries under different temperatures.Energy Stor Mater2021;43:53-61

[179]

Banerjee A,Wang X.Revealing nanoscale solid-solid interfacial phenomena for long-life and high-energy all-solid-state batteries.ACS Appl Mater Interfaces2019;11:43138-45

[180]

Li X,Cai D.Single-crystal-layered Ni-rich oxide modified by phosphate coating boosting interfacial stability of Li10SnP2S12-based all-solid-state Li batteries.Small2021;17:e2103830

[181]

Wang Y,Su Y,Li H.5V-class sulfurized spinel cathode stable in sulfide all-solid-state batteries.Nano Energy2021;90:106589

[182]

Randau S,Kötz O.Benchmarking the performance of all-solid-state lithium batteries.Nat Energy2020;5:259-70

[183]

Wang S,Liu S.High-conductivity free-standing Li6PS5Cl/poly(vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries.J Materiomics2020;6:70-6

[184]

Liu G,Zhu M.Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries.Energy Stor Mater2021;38:249-54

[185]

Zhu G,Peng H.A self-limited free-standing sulfide electrolyte thin film for all-solid-state lithium metal batteries.Adv Funct Mater2021;31:2101985

[186]

Zhang Z,Zhou D,Yao X.Flexible sulfide electrolyte thin membrane with ultrahigh ionic conductivity for all-solid-state lithium batteries.Nano Lett2021;21:5233-9

[187]

Xu J,Lu P.Water-stable sulfide solid electrolyte membranes directly applicable in all-solid-state batteries enabled by superhydrophobic Li+-conducting protection layer.Adv Energy Mater2022;12:2102348

PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

/