Perspective of polymer-based solid-state Li-S batteries

Julen Castillo , Lixin Qiao , Alexander Santiago , Xabier Judez , Amaia Sáenz de Buruaga , Gonzalo Jiménez-Martín , Michel Armand , Heng Zhang , Chunmei Li

Energy Materials ›› 2022, Vol. 2 ›› Issue (1) : 200003

PDF
Energy Materials ›› 2022, Vol. 2 ›› Issue (1) :200003 DOI: 10.20517/energymater.2021.25
Perspective

Perspective of polymer-based solid-state Li-S batteries

Author information +
History +
PDF

Abstract

Li-S batteries, as the most promising post Li-ion technology, have been intensively investigated for more than a decade. Although most previous studies have focused on liquid systems, solid electrolytes, particularly all-solid-state polymer electrolytes (ASSPEs) and quasi-solid-state polymer electrolyte (QSSPEs), are appealing for Li-S cells due to their excellent flexibility and mechanical stability. Such Li-S batteries not only provide significantly improved safety but are also expected to augment the all-inclusive energy density compared to liquid systems. Therefore, this perspective briefly summarizes the recent progress on polymer-based solid-state Li-S batteries, with a special focus on electrolytes, including ASSPEs and QSSPEs. Furthermore, future work is proposed based on the existing development and current challenges.

Keywords

Solid-state Li-S batteries / polymer electrolytes / quasi-solid-state polymer electrolyte / energy-density estimations

Cite this article

Download citation ▾
Julen Castillo, Lixin Qiao, Alexander Santiago, Xabier Judez, Amaia Sáenz de Buruaga, Gonzalo Jiménez-Martín, Michel Armand, Heng Zhang, Chunmei Li. Perspective of polymer-based solid-state Li-S batteries. Energy Materials, 2022, 2(1): 200003 DOI:10.20517/energymater.2021.25

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cano ZP,Ye S.Batteries and fuel cells for emerging electric vehicle markets.Nat Energy2018;3:279-89

[2]

Goodenough JB.How we made the Li-ion rechargeable battery.Nat Electron2018;1:204-204

[3]

Armand M.Building better batteries.Nature2008;451:652-7

[4]

Tarascon JM.Issues and challenges facing rechargeable lithium batteries.Nature2001;414:359-67

[5]

Shen Y,Han S,Peng Z.Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes.Joule2018;2:1674-89

[6]

Zhang H,Judez X,Rodriguez-Martínez LM.Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives.Angew Chem Int Ed Engl2018;57:15002-27

[7]

Choi JW.Promise and reality of post-lithium-ion batteries with high energy densities.Nat Rev Mater2016;1

[8]

Nazar LF,Pang Q.Lithium-sulfur batteries.MRS Bull2014;39:436-42

[9]

Yin YX,Guo YG.Lithium-sulfur batteries: electrochemistry, materials, and prospects.Angew Chem Int Ed Engl2013;52:13186-200

[10]

Bruce PG,Hardwick LJ.Li-O2 and Li-S batteries with high energy storage.Nat Mater2011;11:19-29

[11]

Liu G,Li Q,Ming J.Electrolyte Issues in Lithium-Sulfur batteries: development, prospect, and challenges.Energy Fuels2021;35:10405-27

[12]

Judez X,Li C.Review - solid electrolytes for safe and high energy density lithium-sulfur batteries: promises and challenges.J Electrochem Soc2017;165:A6008-16

[13]

Judez X,Santiago A,Zhang H.Quasi-solid-state electrolytes for lithium sulfur batteries: advances and perspectives.J Power Sources2019;438:226985

[14]

Li S,Zheng J,Song H.Inhibition of polysulfide shuttles in Li-S batteries: modified separators and solid-state electrolytes.Adv Energy Mater2021;11:2000779

[15]

Yang X,Sun X.Towards high-performance solid-state Li-S batteries: from fundamental understanding to engineering design.Chem Soc Rev2020;49:2140-95

[16]

Tang S,Fu Y.Advances in composite polymer electrolytes for lithium batteries and beyond.Adv Energy Mater2021;11:2000802

[17]

Aziz SB,Kadir M.A conceptual review on polymer electrolytes and ion transport models.Journal of Science: Advanced Materials and Devices2018;3:1-17

[18]

Qian J,Li Y,Hou Y.Research progress on gel polymer electrolytes for lithium-sulfur batteries.Journal of Energy Chemistry2021;56:420-37

[19]

Jiang M,Tang B.Polymer electrolytes for Li-S batteries: polymeric fundamentals and performance optimization.Journal of Energy Chemistry2021;58:300-17

[20]

Qiao L,Rojo T,Zhang H.Review - polymer electrolytes for sodium batteries.J Electrochem Soc2020;167:070534

[21]

Long L,Xiao M.Polymer electrolytes for lithium polymer batteries.J Mater Chem A2016;4:10038-69

[22]

Fang R,Xu B,Li Y.Reaction mechanism optimization of solid-state Li-S batteries with a PEO-based electrolyte.Adv Funct Mater2021;31:2001812

[23]

Liu Y,Lin Y.Mechanistic investigation of polymer-based all-solid-state lithium/sulfur battery.Adv Funct Mater2021;31:2104863

[24]

Zhang Z,Zhang S.A mixed electron/ion conducting interlayer enabling ultra-stable cycle performance for solid state lithium sulfur batteries.J Power Sources2021;487:229428

[25]

Zhong L,Xiao M.Addressing interface elimination: boosting comprehensive performance of all-solid-state Li-S battery.Energy Storage Materials2021;41:563-70

[26]

Xue Z,Xie X.Poly(ethylene oxide)-based electrolytes for lithium-ion batteries.J Mater Chem A2015;3:19218-53

[27]

Hong S,Kim N.Polymer-based electrolytes for all-solid-state lithium-sulfur batteries: from fundamental research to performance improvement.J Mater Sci2021;56:8358-82

[28]

Eshetu GG,Li C.Ultrahigh performance all solid-state lithium sulfur batteries: salt Anion's chemistry-induced anomalous synergistic effect.J Am Chem Soc2018;140:9921-33

[29]

Armand M,Andreani R. Proceedings of the 2nd international meeting on polymer electrolytes. In: Scrosati B, editor. London: Elsevier; 1989. p. 91.

[30]

Qiao L,Zhang Y.Trifluoromethyl-free anion for highly stable lithium metal polymer batteries.Energy Storage Materials2020;32:225-33

[31]

Marmorstein D,Striebel K,Hou J.Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes.J Power Sources2000;89:219-26

[32]

Park C,Kim K.Effect of sulfur electrode composition on the electrochemical property of lithium/PEO/sulfur battery.Met Mater Int2004;10:375-9

[33]

Shin J,Ahn H.Electrochemical properties and interfacial stability of (PEO)10LiCF3SO3-TinO2n-1 composite polymer electrolytes for lithium/sulfur battery.Mater Sci Eng B2002;95:148-56

[34]

Ma Q,Tong B.Novel Li[(CF3SO2)(n-C4F9SO2)N]-based polymer electrolytes for solid-state lithium batteries with superior electrochemical performance.ACS Appl Mater Interfaces2016;8:29705-12

[35]

Judez X,Li C.Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) polymer electrolyte for all solid-state Li-S Cell.J Phys Chem Lett2017;8:1956-60

[36]

Younesi R,Johansson P,Vegge T.Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S.Energy Environ Sci2015;8:1905-22

[37]

Xu K.Electrolytes and interphases in Li-ion batteries and beyond.Chem Rev2014;114:11503-618

[38]

Santiago A,Garbayo I.Salt additives for improving cyclability of polymer-based all-solid-state lithium-sulfur batteries.ACS Appl Energy Mater2021;4:4459-64

[39]

Zhang H,Judez X.Designer anion enabling solid-state lithium-sulfur batteries.Joule2019;3:1689-702

[40]

Zhang H,Santiago A.Fluorine-free noble salt anion for high-performance all-solid-state lithium-sulfur batteries.Adv Energy Mater2019;9:1900763

[41]

Xu W,Ding F.Lithium metal anodes for rechargeable batteries.Energy Environ Sci2014;7:513-37

[42]

Zhang S,Dokko K.Recent advances in electrolytes for lithium-sulfur batteries.Adv Energy Mater2015;5:1500117

[43]

Eshetu GG,Li C.Lithium azide as an electrolyte additive for all-solid-state lithium-sulfur batteries.Angew Chem Int Ed Engl2017;56:15368-72

[44]

Gao X,Wang J.Incorporating the nanoscale encapsulation concept from liquid electrolytes into solid-state lithium-sulfur batteries.Nano Lett2020;20:5496-503

[45]

Gracia I,Judez X.S-containing copolymer as cathode material in poly(ethylene oxide)-based all-solid-state Li-S batteries.J Power Sources2018;390:148-52

[46]

Manthiram A,Su YS.Challenges and prospects of lithium-sulfur batteries.Acc Chem Res2013;46:1125-34

[47]

Evers S.New approaches for high energy density lithium-sulfur battery cathodes.Acc Chem Res2013;46:1135-43

[48]

Pan H,He P.A review of solid-state lithium-sulfur battery: ion transport and polysulfide chemistry.Energy Fuels2020;34:11942-61

[49]

Suzuki K,Hara K.Composite sulfur electrode prepared by high-temperature mechanical milling for use in an all-solid-state lithium-sulfur battery with a Li3.25Ge0.25P0.75S4 electrolyte.Electrochimica Acta2017;258:110-5

[50]

Nagao M,Tatsumisago M.Sulfur-carbon composite electrode for all-solid-state Li/S battery with Li2S-P2S5 solid electrolyte.Electrochimica Acta2011;56:6055-9

[51]

Nagata H.A lithium sulfur battery with high power density.J Power Sources2014;264:206-10

[52]

Zhang C,Zhu Y,Liu J.Improved lithium-ion and electrically conductive sulfur cathode for all-solid-state lithium-sulfur batteries.RSC Adv2017;7:19231-6

[53]

Tamate R,Nakanishi A.Excellent dispersibility of single-walled carbon nanotubes in highly concentrated electrolytes and application to gel electrode for Li-S batteries.Electrochem commun2019;109:106598

[54]

Ruan J,Song Y.Constructing 1D/2D interwoven carbonous matrix to enable high-efficiency sulfur immobilization in Li-S battery.Energy Mater2021;1:100018

[55]

Zhou C,He T,Thangadurai V.A 20 °C operating high capacity solid-state Li-S battery with an engineered carbon support cathode structure.Applied Materials Today2020;19:100585

[56]

Liu R,He P.A self-standing, UV-cured semi-interpenetrating polymer network reinforced composite gel electrolytes for dendrite-suppressing lithium ion batteries.Journal of Materiomics2019;5:185-94

[57]

D'angelo AJ.Decoupling the ionic conductivity and elastic modulus of Gel electrolytes: fully zwitterionic copolymer scaffolds in lithium salt/ionic liquid solutions.Adv Energy Mater2018;8:1801646

[58]

Tian X,Yang P.High-charge density polymerized ionic networks boosting high ionic conductivity as quasi-solid electrolytes for high-voltage batteries.ACS Appl Mater Interfaces2019;11:4001-10

[59]

Guo X,Chen F.Performance Improvement of PVDF-HFP-based gel polymer electrolyte with the dopant of octavinyl-polyhedral oligomeric silsesquioxane.Materials (Basel)2021;14:2701 PMCID:PMC8196579

[60]

Liu M,He Y.Novel gel polymer electrolyte for high-performance lithium-sulfur batteries.Nano Energy2016;22:278-89

[61]

Wang Q,Jin J.A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries.Chem Commun (Camb)2016;52:1637-40

[62]

Baloch M,Chellappan RK.Application of gel polymer electrolytes based on ionic liquids in lithium-sulfur batteries.J Electrochem Soc2016;163:A2390-8

[63]

Agostini M,Sadd M.Stabilizing the performance of high-capacity sulfur composite electrodes by a New Gel polymer electrolyte configuration.ChemSusChem2017;10:3490-6

[64]

Gao S,Wang R.Poly(vinylidene fluoride)-based hybrid gel polymer electrolytes for additive-free lithium sulfur batteries.J Mater Chem A2017;5:17889-95

[65]

Safa M,Chamaani A.Capacity fading mechanism in lithium-sulfur battery using poly(ionic liquid) gel electrolyte.Electrochimica Acta2017;258:1284-92

[66]

Han D,Liu Y,Li G.Lithiophilic gel polymer electrolyte to stabilize the lithium anode for a quasi-solid-state lithium-sulfur battery.J Mater Chem A2018;6:18627-34

[67]

Du H,Qu H.Stable cycling of lithium-sulfur battery enabled by a reliable gel polymer electrolyte rich in ester groups.Journal of Membrane Science2018;550:399-406

[68]

M. Shanthi P, J. Hanumantha P, Albuquerque T, Gattu B, Kumta PN. Novel composite polymer electrolytes of PVdF-HFP derived by electrospinning with enhanced Li-ion conductivities for rechargeable lithium-sulfur batteries.ACS Appl Energy Mater2018;1:483-94

[69]

Huang H,Zhong H.Nano-SiO2-embedded poly(propylene carbonate)-based composite gel polymer electrolyte for lithium-sulfur batteries.J Mater Chem A2018;6:9539-49

[70]

Wang X,Xia Y,Xia X.A polyacrylonitrile (PAN)-based double-layer multifunctional gel polymer electrolyte for lithium-sulfur batteries.Journal of Membrane Science2019;582:37-47

[71]

Xia Y,Xie D.A poly (vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium-sulfur batteries.Chem Eng J2019;358:1047-53

[72]

Deng N,Wang L.Designing of a Phosphorus, Nitrogen, and Sulfur Three-Flame Retardant Applied in a Gel Poly-m-phenyleneisophthalamide nanofiber membrane for advanced safety lithium-sulfur batteries.ACS Appl Mater Interfaces2019;11:36705-16

[73]

Shen Y,Zhou X.A novel permselective organo-polysulfides/PVDF gel polymer electrolyte enables stable lithium anode for lithium-sulfur batteries.Journal of Energy Chemistry2020;48:267-76

[74]

Ye B,Wang D,Wang G.A novel poly(vinyl carbonate-co-butyl acrylate) quasi-solid-state electrolyte as a strong catcher for lithium polysulfide in Li-S batteries.Electrochimica Acta2020;332:135463

[75]

Zhou D,Tkacheva A,Wang G.Polymer electrolytes for lithium-based batteries: advances and prospects.Chem2019;5:2326-52

[76]

Ma C,Liu X,Wang Y.In situ preparation of gel polymer electrolyte for lithium batteries: progress and perspectives.InfoMat

[77]

Cheng H,Jin H.In situ initiator-free gelation of highly concentrated lithium bis(fluorosulfonyl)imide-1,3-dioxolane solid polymer electrolyte for high performance lithium-metal batteries.Materials Today Energy2021;20:100623

[78]

Kim SH,Cho SJ,Park S.Printable solid-state lithium-ion batteries: a new route toward shape-conformable power sources with aesthetic versatility for flexible electronics.Nano Lett2015;15:5168-77

[79]

Wang X,Cai D,Xia X.An ultraviolet polymerized 3D gel polymer electrolyte based on multi-walled carbon nanotubes doped double polymer matrices for lithium-sulfur batteries.Chem Eng J2020;382:122714

[80]

Hao X,Wang X,Tu J.A gel polymer electrolyte based on PVDF-HFP modified double polymer matrices via ultraviolet polymerization for lithium-sulfur batteries.J Colloid Interface Sci2020;558:145-54

[81]

Zhao X,Li Z,Abdul Razzaq A.Sulfurized polyacrylonitrile for high-performance lithium sulfur batteries: advances and prospects.J Mater Chem A2021;9:19282-97

[82]

Zhang S.Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery.Energies2014;7:4588-600

[83]

Liu Y,Yan W.Synergy of sulfur/polyacrylonitrile composite and gel polymer electrolyte promises heat-resistant lithium-sulfur batteries.iScience2019;19:316-25 PMCID:PMC6700433

[84]

Wu ZJ,Ren YH,Zhao X.Superior cycling performance of sulfurized polyacrylonitrile cathode assembled with in situ polymerized gel polymer electrolyte.AMR2014;1070-1072:553-8

[85]

Zhang X,Sun Z.Structure-related electrochemical performance of organosulfur compounds for lithium-sulfur batteries.Energy Environ Sci2020;13:1076-95

[86]

Yan W,Kuang G.Fluorinated quinone derived organosulfur copolymer cathodes for long-cycling, thermostable and flexible lithium-sulfur batteries.Chem Eng J2021;424:130316

[87]

Cheng X,Huang J.The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection.Energy Storage Materials2017;6:18-25

[88]

Shi L,Shadike Z.Reaction heterogeneity in practical high-energy lithium-sulfur pouch cells.Energy Environ Sci2020;13:3620-32

[89]

Kong L,Huang J.Nonuniform redistribution of sulfur and lithium upon cycling: probing the origin of capacity fading in lithium-sulfur pouch cells.Energy Technol2019;7:1900111

[90]

Chen PY,Chen P.Selective permeable lithium-ion channels on lithium metal for practical lithium-sulfur pouch cells.Angew Chem Int Ed Engl2021;60:18031-6

[91]

Dörfler S,Härtel P,Schumm B.Challenges and key parameters of lithium-sulfur batteries on pouch cell level.Joule2020;4:539-54

[92]

Zhao M,Zhang XQ,Zhang Q.A perspective toward practical lithium-sulfur batteries.ACS Cent Sci2020;6:1095-104 PMCID:PMC7379100

[93]

Liu W,Zhan B.Artificial solid electrolyte interphase layer for lithium metal anode in high-energy lithium secondary pouch cells.ACS Appl Energy Mater2018;1:1674-9

[94]

Wang W,Meng J.Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries.Energy Storage Materials2019;18:414-22

[95]

Yang Q,Chen J,Kang W.The recent research progress and prospect of gel polymer electrolytes in lithium-sulfur batteries.Chem Eng J2021;413:127427

[96]

Angulakshmi N,Sathya S,Stephan AM.Understanding the electrolytes of lithium-sulfur batteries.2021;4:1064-95

[97]

Qian J,Xu W.High rate and stable cycling of lithium metal anode.Nat Commun2015;6:6362 PMCID:PMC4346622

[98]

Shin ES,Oh SH.Polysulfide dissolution control: the common ion effect.Chem Commun (Camb)2013;49:2004-6

[99]

Suo L,Li H,Chen L.A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries.Nat Commun2013;4:1481

[100]

Cuisinier M,Adams BD,Balasubramanian M.Unique behaviour of nonsolvents for polysulphides in lithium-sulphur batteries.Energy Environ Sci2014;7:2697-705

[101]

Lee CW,Ha S.Directing the lithium-sulfur reaction pathway via sparingly solvating electrolytes for high energy density batteries.ACS Cent Sci2017;3:605-13 PMCID:PMC5492412

[102]

Shyamsunder A,Klose P.Inhibiting polysulfide shuttle in lithium-sulfur batteries through low-ion-pairing salts and a triflamide solvent.Angew Chem Int Ed Engl2017;56:6192-7

[103]

Nakanishi A,Watanabe D.Sulfolane-based highly concentrated electrolytes of lithium bis(trifluoromethanesulfonyl)amide: ionic transport, Li-ion coordination, and Li-S battery performance.J Phys Chem C2019;123:14229-38

[104]

Liu J,Marium M.Towards practical cells: combined use of titanium black as a cathode additive and sparingly solvating electrolyte for high-energy-density lithium-sulfur batteries.Sustainable Energy Fuels2021;5:1821-31

[105]

Weller C,Dörfler S,Kaskel S.Polysulfide shuttle suppression by electrolytes with low-density for high-energy lithium-sulfur batteries.Energy Technol2019;7:1900625

[106]

Kensy C,Dörfler S,Kaskel S.Impact of carbon porosity on sulfur conversion in Li-S battery cathodes in a sparingly polysulfide solvating electrolyte.2021;4:823-33

[107]

Piwko M,Hippauf F,Althues H.Symmetric lithium sulfide - sulfur cells: a method to study degradation mechanisms of cathode, separator and electrolyte concepts for lithium-sulfur batteries.J Electrochem Soc2018;165:A1084-91

[108]

Liang J,Zhao Y.Stabilization of all-solid-state Li-S batteries with a polymer-ceramic sandwich electrolyte by atomic layer deposition.J Mater Chem A2018;6:23712-9

[109]

Liu J,Wang M,Xu N.Use of tween polymer to enhance the compatibility of the Li/electrolyte interface for the high-performance and high-safety quasi-solid-state lithium-sulfur battery.Nano Lett2018;18:4598-605

[110]

Wan Z,Zeng X.Peach gum as an efficient binder for high-areal-capacity lithium-sulfur batteries.Sustainable Materials and Technologies2021;30:e00334

[111]

Huang Y,Gamot TD.A saccharide-based binder for efficient polysulfide regulations in Li-S batteries.Nat Commun2021;12:5375 PMCID:PMC8433142

[112]

Yuan Z,Hou TZ.Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts.Nano Lett2016;16:519-27

[113]

He J,Manthiram A.High-energy-density, long-life lithium-sulfur batteries with practically necessary parameters enabled by low-cost Fe-Ni nanoalloy catalysts.ACS Nano2021;15:8583-91

[114]

Du Z,Hu W.Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries.J Am Chem Soc2019;141:3977-85

PDF

70

Accesses

0

Citation

Detail

Sections
Recommended

/