Recent advances in photocatalytic renewable energy production

Xiaolang Chen , Jingjing Zhao , Guisheng Li , Dieqing Zhang , Hexing Li

Energy Materials ›› 2022, Vol. 2 ›› Issue (1) : 200001

PDF
Energy Materials ›› 2022, Vol. 2 ›› Issue (1) :200001 DOI: 10.20517/energymater.2021.24
Review

Recent advances in photocatalytic renewable energy production

Author information +
History +
PDF

Abstract

The development of green and renewable energy is becoming increasingly more important in reducing environmental pollution and controlling CO2 discharge. Photocatalysis can be utilized to directly convert solar energy into chemical energy to achieve both the conversion and storage of solar energy. On this basis, photocatalysis is considered to be a prospective technology to resolve the current issues of energy supply and environmental pollution. Recently, several significant achievements in semiconductor-based photocatalytic renewable energy production have been reported. This review presents the recent advances in photocatalytic renewable energy production over the last three years by summarizing the typical and significant semiconductor-based and semiconductor-like photocatalysts for H2 production, CO2 conversion and H2O2 production. These reactions demonstrate how the basic principles of photocatalysis can be exploited for renewable energy production. Finally, we conclude our review of photocatalytic renewable energy production and provide an outlook for future related research.

Keywords

Photocatalysis / solar energy conversion / renewable energy / semiconductors

Cite this article

Download citation ▾
Xiaolang Chen, Jingjing Zhao, Guisheng Li, Dieqing Zhang, Hexing Li. Recent advances in photocatalytic renewable energy production. Energy Materials, 2022, 2(1): 200001 DOI:10.20517/energymater.2021.24

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Martins F,Smitkova M.Analysis of fossil fuel energy consumption and environmental impacts in European countries.Energies2019;12:964

[2]

Hisatomi T,Domen K.Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.Chem Soc Rev2014;43:7520-35

[3]

Wen M,Kuwahara Y,Yamashita H.Design and architecture of metal organic frameworks for visible light enhanced hydrogen production.Appl Catal B-Environ2017;218:555-69

[4]

Cheng H,Ma X.Hydrogen doped metal oxide semiconductors with exceptional and tunable localized surface plasmon resonances.J Am Chem Soc2016;138:9316-24

[5]

Bhatkhande DS,Beenackers AA.Photocatalytic degradation for environmental applications - a review.J Chem Technol Biotechnol2002;77:102-16

[6]

Fuku K,Takakura S,Mori K.The synthesis of size- and color-controlled silver nanoparticles by using microwave heating and their enhanced catalytic activity by localized surface plasmon resonance.Angew Chem Int Ed Engl2013;52:7446-50

[7]

Cheng H,Kuwahara Y,Yamashita H.A plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions.Adv Mater2015;27:4616-21

[8]

Kamegawa T,Yamashita H.Superhydrophobic surfaces with photocatalytic self-cleaning properties by nanocomposite coating of TiO(2) and polytetrafluoroethylene.Adv Mater2012;24:3697-700

[9]

Hou H,Zhang X.Production of hydrogen peroxide by photocatalytic processes.Angew Chem Int Ed Engl2020;59:17356-76

[10]

Low J,Jaroniec M,Al-Ghamdi AA.Heterojunction photocatalysts.Adv Mater2017;29:1601694

[11]

Wang F,Xu D.Recent progress in semiconductor-based nanocomposite photocatalysts for solar-to-chemical energy conversion.Adv Energy Mater2017;7:1700529

[12]

Zhao W,Yang X.Recent advances in photocatalytic hydrogen evolution with high-performance catalysts without precious metals.Renew Sustain Energy Rev2020;132:110040

[13]

Wang Z,Domen K.Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting.Chem Soc Rev2019;48:2109-25

[14]

Ou M,Chen Y.Formation of noble-metal-free 2D/2D ZnmIn2Sm+3 (m = 1, 2, 3)/MXene Schottky heterojunction as an efficient photocatalyst for hydrogen evolution.Chem Eng J2021;424:130170

[15]

Ou M,Geng M,Wan S.Construction of Z-scheme photocatalyst containing ZnIn2S4, Co3O4-photodeposited BiVO4 (110) facets and rGO electron mediator for overall water splitting into H2 and O2.Catal Lett2021;151:2570-82

[16]

Wang L,Zhang Y,Qu Y.Inorganic metal-oxide photocatalyst for H2O2 production.Small2021;

[17]

Hejazi S,Osuagwu B.On the controlled loading of single platinum atoms as a Co-catalyst on TiO2 anatase for optimized photocatalytic H2 generation.Adv Mater2020;32:e1908505

[18]

Cho Y,Padhi DK.Disordered-layer-mediated reverse metal-oxide interactions for enhanced photocatalytic water splitting.Nano Lett2021;21:5247-53

[19]

Méndez-Medrano MG,Ohtani B.Heterojunction of CuO nanoclusters with TiO2 for photo-oxidation of organic compounds and for hydrogen production.J Chem Phys2020;153:034705

[20]

Osuagwu B,Tesler AB.A drastic improvement in photocatalytic H2 production by TiO2 nanosheets grown directly on Ta2O5 substrates.Nanoscale2021;13:12750-6

[21]

Sun L,Yuan Y.Nitrogen-Doped carbon-coated CuO-In2O3 p-n heterojunction for remarkable photocatalytic hydrogen evolution.Adv Energy Mater2019;9:1902839

[22]

Han L,zhang J.Environment friendly and remarkably efficient photocatalytic hydrogen evolution based on metal organic framework derived hexagonal/cubic In2O3 phase-junction.Appl Catal B-Environ2021;282:119602

[23]

Guo L,Marcus K.MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution.Energy Environ Sci2018;11:106-14

[24]

Wang W,Cao Y.Edge-enriched ultrathin MoS2 embedded yolk-shell TiO2 with boosted charge transfer for superior photocatalytic H2 evolution.Adv Funct Mater2019;29:1901958

[25]

Lai G,Huang Y.Few-layer WS2-MoS2 in-plane heterostructures for efficient photocatalytic hydrogen evolution.Nano Energy2021;81:105608

[26]

Xiao S,Liu X.Microwave-induced metal dissolution synthesis of core-shell copper nanowires/ZnS for visible light photocatalytic H2 evolution.Adv Energy Mater2019;9:1900775

[27]

Wang S,Liu M,Yu J.Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity.Appl Catal B-Environ2019;243:19-26

[28]

Dai B,Yu Y.Construction of infrared-light-responsive photoinduced carriers driver for enhanced photocatalytic hydrogen evolution.Adv Mater2020;32:e1906361

[29]

Zhang P,Lou XWD.Fabrication of CdS frame-in-cage particles for efficient photocatalytic hydrogen generation under visible-light irradiation.Adv Mater2020;32:e2004561

[30]

Ong WJ,Ng YH,Chai SP.Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?.Chem Rev2016;116:7159-329

[31]

Ismael M.A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis.J Alloys Compd2020;846:156446

[32]

Gong Y,Wang Y.Carbon nitride in energy conversion and storage: recent advances and future prospects.ChemSusChem2015;8:931-46

[33]

Wang X,Antonietti M.Polymeric graphitic carbon nitride for heterogeneous photocatalysis.ACS Catal2012;2:1596-606

[34]

Zheng Y,Liang J,Qiao SZ.Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis.Energy Environ Sci2012;5:6717

[35]

Mo Z,Chen Z.Construction of MnO2/Monolayer g-C3N4 with Mn vacancies for Z-scheme overall water splitting.Appl Catal B-Environ2019;241:452-60

[36]

Wang Y,Zhang Y.Introducing spin polarization into atomically thin 2D carbon nitride sheets for greatly extended visible-light photocatalytic water splitting.Nano Energy2021;83:105783

[37]

Xu Y,Yang W.Homogeneous carbon/potassium-incorporation strategy for synthesizing red polymeric carbon nitride capable of near-infrared photocatalytic H2 production.Adv Mater2021;33:e2101455

[38]

Yamashita H,Kuwahara Y.Single-site and nano-confined photocatalysts designed in porous materials for environmental uses and solar fuels.Chem Soc Rev2018;47:8072-96

[39]

Chen X,Wang H.MOFs Conferred with transient metal centers for enhanced photocatalytic activity.Angew Chem Int Ed Engl2020;59:17182-6

[40]

Chen X,Liang R.NH2-UiO-66(Zr) with fast electron transfer routes for breaking down nitric oxide via photocatalysis.Appl Catal B-Environ2020;267:118687

[41]

Wen M,Liu H,An T.Metal-organic framework-based nanomaterials for adsorption and photocatalytic degradation of gaseous pollutants: recent progress and challenges.Environ Sci : Nano2019;6:1006-25

[42]

Wen M,Kuwahara Y.Plasmonic Au@Pd nanoparticles supported on a basic metal-organic framework: synergic boosting of H2 production from formic acid.ACS Energy Lett2017;2:1-7

[43]

Xiao JD,Luo J,Jiang HL.Integration of plasmonic effects and Schottky junctions into metal-organic framework composites: steering charge flow for enhanced visible-light photocatalysis.Angew Chem Int Ed Engl2018;57:1103-7

[44]

Dong D,Huang J.An electron-donating strategy to guide the construction of MOF photocatalysts toward co-catalyst-free highly efficient photocatalytic H2 evolution.J Mater Chem A2019;7:24180-5

[45]

Sun K,Pei J.Incorporating transition-metal phosphides into metal-organic frameworks for enhanced photocatalysis.Angew Chem Int Ed Engl2020;59:22749-55

[46]

Meng X,Tang H,Dong H.Metal-organic framework as nanoreactors to co-incorporate carbon nanodots and CdS quantum dots into the pores for improved H2 evolution without noble-metal cocatalyst.Appl Catal B-Environ2019;244:340-6

[47]

Lin C,Zhang H.Porphyrin-based metal-organic frameworks for efficient photocatalytic H2 production under visible-light irradiation.Inorg Chem2021;60:3988-95

[48]

Lyle SJ,Yaghi OM.Covalent organic frameworks: organic chemistry extended into two and three dimensions.Trends Chem2019;1:172-84

[49]

Geng K,Liu R.Covalent organic frameworks: design, synthesis, and functions.Chem Rev2020;120:8814-933

[50]

Segura JL,Zamora F.Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications.Chem Soc Rev2016;45:5635-71

[51]

Gao C,Yin S.Isostructural three-dimensional covalent organic frameworks.Angew Chem Int Ed Engl2019;58:9770-5

[52]

Jiang L,Sun T.A Crystalline polyimide porous organic framework for selective adsorption of acetylene over ethylene.J Am Chem Soc2018;140:15724-30

[53]

Li LH,Cui XH,Ding SY.Salen-based covalent organic framework.J Am Chem Soc2017;139:6042-5

[54]

Yan S,Li H.Three-dimensional Salphen-based covalent-organic frameworks as catalytic antioxidants.J Am Chem Soc2019;141:2920-4

[55]

Lin G,Yuan D,Wang C.A pyrene-based, fluorescent three-dimensional covalent organic framework.J Am Chem Soc2016;138:3302-5

[56]

Wang P,Zhang C.Ultrathin two-dimensional covalent organic framework nanoprobe for interference-resistant two-photon fluorescence bioimaging.Chem Sci2018;9:8402-8 PMCID:PMC6243647

[57]

Das G,Kandambeth S.Chemical sensing in two dimensional porous covalent organic nanosheets.Chem Sci2015;6:3931-9 PMCID:PMC5707461

[58]

Ding H,Xie G.An AIEgen-based 3D covalent organic framework for white light-emitting diodes.Nat Commun2018;9:5234 PMCID:PMC6286360

[59]

Bessinger D,Auras F.Spectrally switchable photodetection with near-infrared-absorbing covalent organic frameworks.J Am Chem Soc2017;139:12035-42 PMCID:PMC6400431

[60]

Wang S,Shao P.Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries.J Am Chem Soc2017;139:4258-61

[61]

Du Y,Whiteley JM.Ionic covalent organic frameworks with spiroborate linkage.Angew Chem Int Ed Engl2016;55:1737-41

[62]

Mulzer CR,Bisbey RP.Superior charge storage and power density of a conducting polymer-modified covalent organic framework.ACS Cent Sci2016;2:667-73 PMCID:PMC5043428

[63]

Xie J,Ruan Q.Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework.Energy Environ Sci2018;11:1617-24

[64]

Chen R,Ma Y.Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution.Nat Commun2021;12:1354 PMCID:PMC7921403

[65]

Zhou T,Huang X.PEG-stabilized coaxial stacking of two-dimensional covalent organic frameworks for enhanced photocatalytic hydrogen evolution.Nat Commun2021;12:3934 PMCID:PMC8225615

[66]

Yang J,Ye MY.Protonated imine-linked covalent organic frameworks for photocatalytic hydrogen evolution.Angew Chem Int Ed Engl2021;60:19797-803 PMCID:PMC8457210

[67]

Cheng Z,Pang CH.Recent advances in transition metal nitride-based materials for photocatalytic applications.Adv Funct Materials2021;31:2100553

[68]

Xiao J,Hisatomi T.Simultaneously tuning the defects and surface properties of Ta3N5 nanoparticles by Mg-Zr codoping for significantly accelerated photocatalytic H2 evolution.J Am Chem Soc2021;143:10059-64

[69]

Wang Z,Hisatomi T.Sequential cocatalyst decoration on BaTaO2N towards highly-active Z-scheme water splitting.Nat Commun2021;12:1005 PMCID:PMC7881033

[70]

Wang Y,Chen Z.Construction of Z-scheme MoSe2/CdSe hollow nanostructure with enhanced full spectrum photocatalytic activity.Appl Catal B-Environ2019;244:76-86

[71]

Zhang G.Oxysulfide semiconductors for photocatalytic overall water splitting with visible light.Angew Chem Int Ed Engl2019;58:15580-2

[72]

Pan R,Liu J.Two-dimensional all-in-one sulfide monolayers driving photocatalytic overall water splitting.Nano Lett2021;21:6228-36

[73]

Chen X,Chen Q.Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting.Nano Energy2019;59:644-50

[74]

Lin Y,Wang X,Wang X.LaOCl-coupled polymeric carbon nitride for overall water splitting through a one-photon excitation pathway.Angew Chem Int Ed Engl2020;59:20919-23

[75]

Chen X,Chai Y,Zhu Y.Efficient photocatalytic overall water splitting induced by the giant internal electric field of a g-C3N4/rGO/PDIP Z-scheme heterojunction.Adv Mater2021;33:e2007479

[76]

Wu C,Qin Z.Making g-C3N4 ultra-thin nanosheets active for photocatalytic overall water splitting.Appl Catal B-Environ2021;282:119557

[77]

Zhao D,Dong C.Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting.Nat Energy2021;6:388-97

[78]

Zhang J,Huang H.Metal-organic-framework-based photocatalysts optimized by spatially separated cocatalysts for overall water splitting.Adv Mater2020;32:e2004747

[79]

Hu H,Cao L.Metal-organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting.Nat Chem2021;13:358-66

[80]

Wang Y,Sun K.A quadruple-band metal-nitride nanowire artificial photosynthesis system for high efficiency photocatalytic overall solar water splitting.Mater Horiz2019;6:1454-62

[81]

Pan Z,Wang X.Polymeric carbon nitride/reduced graphene oxide/Fe2O3: all-solid-state Z-scheme system for photocatalytic overall water splitting.Angew Chem Int Ed Engl2019;58:7102-6

[82]

Oshima T,Kikuchi Y.An artificial Z-scheme constructed from dye-sensitized metal oxide nanosheets for visible light-driven overall water splitting.J Am Chem Soc2020;142:8412-20

[83]

Zhao Y,Zhu J.A hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts.Angew Chem Int Ed Engl2020;59:9653-8

[84]

Takata T,Sakata Y.Photocatalytic water splitting with a quantum efficiency of almost unity.Nature2020;581:411-4

[85]

Zhang Z,Fang Y.Near-infrared-plasmonic energy upconversion in a nonmetallic heterostructure for efficient H2 evolution from ammonia borane.Adv Sci (Weinh)2018;5:1800748 PMCID:PMC6145233

[86]

Zhang MY,Wang R,Zang SQ.Construction of core-shell MOF@COF hybrids with controllable morphology adjustment of COF shell as a novel platform for photocatalytic cascade reactions.Adv Sci (Weinh)2021;8:e2101884 PMCID:PMC8498909

[87]

Cao S,Wang H.Ultrasmall CoP nanoparticles as efficient cocatalysts for photocatalytic formic acid dehydrogenation.Joule2018;2:549-57

[88]

Zhang S,Zhao J.Plasmonic AuPd-based Mott-Schottky photocatalyst for synergistically enhanced hydrogen evolution from formic acid and aldehyde.Appl Catal B-Environ2019;252:24-32

[89]

Wang C,Zheng Y.Recent progress in visible light photocatalytic conversion of carbon dioxide.J Mater Chem A2019;7:865-87

[90]

Hu Y. Advances in CO2 conversion and utilization. Washington: American Chemical Society; 2010.

[91]

Mao J,Peng T.Recent advances in the photocatalytic CO2 reduction over semiconductors.Catal Sci Technol2013;3:2481

[92]

Shi R,Zhang T.Recent progress in photocatalytic CO2 reduction over perovskite oxides.Sol RRL2017;1:1700126

[93]

Duan X,Wei Z.Metal-free carbon materials for CO2 electrochemical reduction.Adv Mater2017;29:1701784

[94]

Leitner W.The coordination chemistry of carbon dioxide and its relevance for catalysis: a critical survey.Coord Chem Rev1996;153:257-84

[95]

Zhang L,Gong J.Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms.Angew Chem Int Ed Engl2017;56:11326-53

[96]

Shen H,Strunk J.Photocatalytic reduction of CO2 by metal-free-based materials: recent advances and future perspective.Sol RRL2020;4:1900546

[97]

Sun Z,Tao H.Catalysis of carbon dioxide photoreduction on nanosheets: fundamentals and challenges.Angew Chem Int Ed Engl2018;57:7610-27

[98]

Habisreutinger SN,Stolarczyk JK.Photocatalytic reduction of CO2 on TiO2 and other semiconductors.Angew Chem Int Ed Engl2013;52:7372-408

[99]

Inoue T,Konishi S.Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders.Nature1979;277:637-8

[100]

Morris AJ,Fujita E.Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels.Acc Chem Res2009;42:1983-94

[101]

Angamuthu R,Lutz M,Bouwman E.Electrocatalytic CO2 conversion to oxalate by a copper complex.Science2010;327:313-5

[102]

Li J,Geng M,Ou M.Combined Schottky junction and doping effect in CdxZn1-xS@Au/BiVO4 Z-Scheme photocatalyst with boosted carriers charge separation for CO2 reduction by H2O.J Colloid Interface Sci2022;606:1469-76

[103]

Ou M,Yin S.Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3 N4 for enhanced photocatalytic CO2 reduction.Angew Chem Int Ed Engl2018;57:13570-4

[104]

Zhang Q,Hong Y.Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst.Catalysis Today2009;148:335-40

[105]

Xie S,Zhang Q,Wang Y.MgO- and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water.ACS Catal2014;4:3644-53

[106]

Sorcar S,Lee J.CO2, water, and sunlight to hydrocarbon fuels: a sustained sunlight to fuel (Joule-to-Joule) photoconversion efficiency of 1%.Energy Environ Sci2019;12:2685-96

[107]

Li N,Si Y.Toward high-value hydrocarbon generation by photocatalytic reduction of CO2 in water vapor.ACS Catal2019;9:5590-602

[108]

Yuan L,Tang Z,Xiong Y.Dynamic evolution of atomically dispersed Cu species for CO2 photoreduction to solar fuels.ACS Catal2019;9:4824-33

[109]

Wang Q,Rodríguez-jiménez S.Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water.Nat Energy2020;5:703-10

[110]

Wang C,Xu H.Efficient Z-scheme photocatalysts of ultrathin g-C3N4-wrapped Au/TiO2-nanocrystals for enhanced visible-light-driven conversion of CO2 with H2O.Appl Catal B-Environ2020;263:118314

[111]

Wang S,Hisatomi T.Dual Ag/Co cocatalyst synergism for the highly effective photocatalytic conversion of CO2 by H2O over Al-SrTiO3.Chem Sci2021;12:4940-8 PMCID:PMC8179546

[112]

Wang W,Xie S.Photocatalytic C-C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(I)/copper(II).J Am Chem Soc2021;143:2984-93

[113]

Lu M,Li Q.Rational design of crystalline covalent organic frameworks for efficient CO2 photoreduction with H2O.Angew Chem Int Ed Engl2019;58:12392-7

[114]

Fang ZB,Liu J.Boosting interfacial charge-transfer kinetics for efficient overall CO2 photoreduction via rational design of coordination spheres on metal-organic frameworks.J Am Chem Soc2020;142:12515-23

[115]

Dong LZ,Liu J.Stable heterometallic cluster-based organic framework catalysts for artificial photosynthesis.Angew Chem Int Ed Engl2020;59:2659-63

[116]

Feng X,Song Y.Metal-organic frameworks significantly enhance photocatalytic hydrogen evolution and CO2 reduction with earth-abundant copper photosensitizers.J Am Chem Soc2020;142:690-5

[117]

Jiang Z,Ma Y.Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction.Nature2020;586:549-54

[118]

Yu F,Wang Y,Duan C.Hierarchically porous metal-organic framework/MoS2 interface for selective photocatalytic conversion of CO2 with H2O into CH3COOH.Angew Chem Int Ed Engl2021;60:24849-53

[119]

Wu H,Wen X.Metal-organic framework decorated cuprous oxide nanowires for long-lived charges applied in selective photocatalytic CO2 reduction to CH4.Angew Chem Int Ed Engl2021;60:8455-9

[120]

Li L,Yao G.Visible/infrared light-driven high-efficiency CO2 conversion into ethane based on a B-Co synergistic catalyst.J Mater Chem A2020;8:22327-34

[121]

Li R,Richter MH.Unassisted highly selective gas-phase CO2 reduction with a plasmonic Au/p-GaN photocatalyst using H2O as an electron donor.ACS Energy Lett2021;6:1849-56

[122]

Wang Y,Zhang L.Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@2D-MoS2 heterostructure.J Am Chem Soc2018;140:14595-8

[123]

Ren X,Zhang Y.Photocatalytic reduction of CO2 on BiOX: effect of halogen element type and surface oxygen vacancy mediated mechanism.Appl Catal B-Environ2020;274:119063

[124]

Wu CY,Yu YH.Efficacious CO2 photoconversion to C2 and C3 hydrocarbons on upright SnS-SnS2 heterojunction nanosheet frameworks.ACS Appl Mater Interfaces2021;13:4984-92

[125]

Thampi KR,Grätzel M.Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure.Nature1987;327:506-8

[126]

Ahmed N,Taniguchi T.Photocatalytic conversion of carbon dioxide into methanol using zinc-copper-M(III) (M=aluminum, gallium) layered double hydroxides.J Catal2011;279:123-35

[127]

Jelle AA,O’brien PG.Highly efficient ambient temperature CO2 photomethanation catalyzed by nanostructured RuO2 on silicon photonic crystal support.Adv Energy Mater2018;8:1702277

[128]

Wang L,Wang H.Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure.Joule2018;2:1369-81

[129]

Yan T,Liang Y.Polymorph selection towards photocatalytic gaseous CO2 hydrogenation.Nat Commun2019;10:2521 PMCID:PMC6555785

[130]

Yan T,Wang L.Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation.Nat Commun2020;11:6095 PMCID:PMC7705729

[131]

Huang H,Zhang Q.Solar-light-driven CO2 reduction by CH4 on silica-cluster-modified Ni nanocrystals with a high solar-to-fuel efficiency and excellent durability.Adv Energy Mater2018;8:1702472

[132]

Zhou L,Finzel J.Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts.Nat Energy2020;5:61-70

[133]

Shoji S,Yamaguchi A.Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems.Nat Catal2020;3:148-53

[134]

Zhao YX,Li HF.Photoassisted selective steam and dry reforming of methane to syngas catalyzed by rhodium-vanadium bimetallic oxide cluster anions at room temperature.Angew Chem Int Ed Engl2020;59:21216-23

[135]

Wang X,Zhang D,Li H.Microwave irradiation induced UIO-66-NH2 anchored on graphene with high activity for photocatalytic reduction of CO2.Appl Catal B-Environ2018;228:47-53

[136]

Wang Y,Lou XWD.Dispersed nickel cobalt oxyphosphide nanoparticles confined in multichannel hollow carbon fibers for photocatalytic CO2 reduction.Angew Chem Int Ed Engl2019;58:17236-40

[137]

Wang G,Huang R,Wang D.Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to Liquid fuels.J Am Chem Soc2020;142:19339-45

[138]

Yang W,Liu RR.Tailoring crystal facets of metal-organic layers to enhance photocatalytic activity for CO2 reduction.Angew Chem Int Ed Engl2021;60:409-14

[139]

Li J,Xue W.Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4.Nat Catal2021;4:719-29

[140]

Qi X,Chen M.Single Metal-organic cage decorated with an Ir(III) complex for CO2 photoreduction.ACS Catal2021;11:7241-8

[141]

Liu J,Sun J.Ferrocene-functionalized polyoxo-titanium cluster for CO2 photoreduction.ACS Catal2021;11:4510-9

[142]

Zhu S,Li Z.Cooperation between inside and outside of TiO2: Lattice Cu+ accelerates carrier migration to the surface of metal copper for photocatalytic CO2 reduction.Appl Catal B-Environ2020;264:118515

[143]

Campos-Martin JM,Fierro JL.Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process.Angew Chem Int Ed Engl2006;45:6962-84

[144]

Sato K,Noyori R.A “Green” route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide.Science1998;281:1646-7

[145]

Zhan W,Ge Z,Li R.A continuous-flow synthesis of primary amides from hydrolysis of nitriles using hydrogen peroxide as oxidant.Tetrahedron2018;74:1527-32

[146]

Ksibi M.Chemical oxidation with hydrogen peroxide for domestic wastewater treatment.Chem Eng J2006;119:161-5

[147]

Gurram RN,Lecher NJ,Singsaas EL.Bioconversion of paper mill sludge to bioethanol in the presence of accelerants or hydrogen peroxide pretreatment.Bioresour Technol2015;192:529-39

[148]

Yamazaki S,Senoh H,Fujiwara N.A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel.J Power Sources2008;178:20-5

[149]

Chen X,Kuwahara Y,Louis C.Metal-organic framework-based nanomaterials for photocatalytic hydrogen peroxide production.Phys Chem Chem Phys2020;22:14404-14

[150]

Haider Z,Moon G.Minireview: Selective production of hydrogen peroxide as a clean oxidant over structurally tailored carbon nitride photocatalysts.Catalysis Today2019;335:55-64

[151]

Su J.A place in the sun for artificial photosynthesis?.ACS Energy Lett2016;1:121-35

[152]

Lewis NS.Developing a scalable artificial photosynthesis technology through nanomaterials by design.Nat Nanotechnol2016;11:1010-9

[153]

Faunce TA,Rutherford AW.Energy and environment policy case for a global project on artificial photosynthesis.Energy Environ Sci2013;6:695

[154]

Yang Y,Zeng G.Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production.Appl Catal B-Environ2019;258:117956

[155]

Wu S,Chen S.Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering.ACS Catal2020;10:14380-9

[156]

Xie Y,Huang Z.Two types of cooperative nitrogen vacancies in polymeric carbon nitride for efficient solar-driven H2O2 evolution.Appl Catal B-Environ2020;265:118581

[157]

Zhang P,Liu Y.Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride.Angew Chem Int Ed Engl2020;59:16209-17

[158]

Zhou L,Wang F.Carbon nitride nanotubes with in situ grafted hydroxyl groups for highly efficient spontaneous H2O2 production.Appl Catal B-Environ2021;288:119993

[159]

Chen L,Yang Z,Chu C.Simultaneously tuning band structure and oxygen reduction pathway toward high-efficient photocatalytic hydrogen peroxide production using cyano-rich graphitic carbon nitride.Adv Funct Mater2021;31:2105731

[160]

Isaka Y,Kawase Y,Mori K.Photocatalytic production of hydrogen peroxide through selective two-electron reduction of dioxygen utilizing amine-functionalized MIL-125 deposited with nickel oxide nanoparticles.Chem Commun (Camb)2018;54:9270-3

[161]

Chen X,Mori K,Yamashita H.Introduction of a secondary ligand into titanium-based metal-organic frameworks for visible-light-driven photocatalytic hydrogen peroxide production from dioxygen reduction.J Mater Chem A2021;9:2815-21

[162]

Krishnaraj C,Bourda L.Strongly Reducing (Diarylamino)benzene-based covalent organic framework for metal-free visible light photocatalytic H2O2 generation.J Am Chem Soc2020;142:20107-16 PMCID:PMC7705891

[163]

Mal DD,Pradhan D.Efficient and selective oxidation of toluene to benzaldehyde on manganese tungstate nanobars: a noble metal-free approach.Green Chem2018;20:2279-89

[164]

Isaka Y,Kuwahara Y,Yamashita H.Two-phase system utilizing hydrophobic metal-organic frameworks (MOFs) for photocatalytic synthesis of hydrogen peroxide.Angew Chem Int Ed Engl2019;58:5402-6

[165]

Kawase Y,Kuwahara Y,Yamashita H.Ti cluster-alkylated hydrophobic MOFs for photocatalytic production of hydrogen peroxide in two-phase systems.Chem Commun (Camb)2019;55:6743-6

[166]

Chen X,Mori K,Yamashita H.A hydrophobic titanium doped zirconium-based metal organic framework for photocatalytic hydrogen peroxide production in a two-phase system.J Mater Chem A2020;8:1904-10

[167]

Huang Y,Liu C,Zhang B.Boosting hydrogen production by anodic oxidation of primary amines over a nise nanorod electrode.Angew Chem Int Ed Engl2018;57:13163-6

[168]

Martin A.Heterogeneously catalyzed ammoxidation: a valuable tool for one-step synthesis of nitriles.ChemCatChem2010;2:1504-22

[169]

Łuczak T.Electrochemical behaviour of benzylamine, 2-phenylethylamine and 4-hydroxyphenylethylamine at gold. A comparative study.J Appl Electrochem2007;38:43-50

[170]

Fleming FF,Ravikumar PC,Shook BC.Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore.J Med Chem2010;53:7902-17 PMCID:PMC2988972

[171]

Wang T.Direct approaches to nitriles via highly efficient nitrogenation strategy through C-H or C-C bond cleavage.Acc Chem Res2014;47:1137-45

[172]

Yan G,Wang J.Recent advances in the synthesis of aryl nitrile compounds.Adv Synth Catal2017;359:4068-105

[173]

Liu RY,Buchwald SL.Mechanistic insight facilitates discovery of a mild and efficient copper-catalyzed dehydration of primary amides to nitriles using hydrosilanes.J Am Chem Soc2018;140:1627-31 PMCID:PMC5803397

[174]

Tian Z,Zhao Y.Efficient photocatalytic hydrogen peroxide generation coupled with selective benzylamine oxidation over defective ZrS3 nanobelts.Nat Commun2021;12:2039 PMCID:PMC8016833

[175]

Shiraishi Y,Kofuji Y.Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts.Angew Chem Int Ed Engl2014;53:13454-9

[176]

Ma R,Wang H.Solid acids accelerate the photocatalytic hydrogen peroxide synthesis over a hybrid catalyst of titania nanotube with carbon dot.Appl Catal B-Environ2019;244:594-603

[177]

Zeng X,Kang Y.Simultaneously tuning charge separation and oxygen reduction pathway on graphitic carbon nitride by polyethylenimine for boosted photocatalytic hydrogen peroxide production.ACS Catal2020;10:3697-706

[178]

Zhao Y,Cao J.Efficient production of H2O2 via two-channel pathway over ZIF-8/C3N4 composite photocatalyst without any sacrificial agent.Appl Catal B-Environ2020;278:119289

[179]

Zhao Y,Wang Z.Carbon nitride assisted 2D conductive metal-organic frameworks composite photocatalyst for efficient visible light-driven H2O2 production.Appl Catal B-Environ2021;289:120035

[180]

Wu Q,Wang X.A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater.Nat Commun2021;12:483 PMCID:PMC7817682

[181]

Teng Z,Yang H.Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide.Nat Catal2021;4:374-84

[182]

Ye YX,Xie F.Highly efficient photosynthesis of hydrogen peroxide in ambient conditions.Proc Natl Acad Sci U S A2021;118:e2103964118 PMCID:PMC8072241

PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

/