Advanced low-temperature solid oxide fuel cells based on a built-in electric field

Yuzheng Lu , Bin Zhu , Jing Shi , Sining Yun

Energy Materials ›› 2021, Vol. 1 ›› Issue (1) : 100007

PDF
Energy Materials ›› 2021, Vol. 1 ›› Issue (1) :100007 DOI: 10.20517/energymater.2021.06
Research Highlight

Advanced low-temperature solid oxide fuel cells based on a built-in electric field

Author information +
History +
PDF

Cite this article

Download citation ▾
Yuzheng Lu, Bin Zhu, Jing Shi, Sining Yun. Advanced low-temperature solid oxide fuel cells based on a built-in electric field. Energy Materials, 2021, 1(1): 100007 DOI:10.20517/energymater.2021.06

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fan L,Su P.Nanomaterials and technologies for low temperature solid oxide fuel cells: recent advances, challenges and opportunities.Nano Energy2018;45:148-76

[2]

Zhang Y,Sunarso J.Recent progress on advanced materials for solid-oxide fuel cells operating below 500 °C.Adv Mater2017;29:1700132

[3]

Meng Y,Xu F.Low-temperature fuel cells using a composite of redox-stable perovskite oxide La0.7Sr0.3Cr0.5Fe0.5O3-δ and ionic conductor.J Power Sources2017;366:259-64

[4]

Li J,Li D,Yu L.Effects of P-N and N-N heterostructures and band alignment on the performance of low-temperature solid oxide fuel cells.Int J Hydrogen Energy2021;46:9790-8

[5]

Wang B,Fan L.Preparation and characterization of Sm and Ca co-doped ceria-La0.6Sr0.4Co0.2Fe0.8O3-δ semiconductor-ionic composites for electrolyte-layer-free fuel cells.J Mater Chem A2016;4:15426-36

[6]

Zhang W,Wang B.The fuel cells studies from ionic electrolyte Ce0.8Sm0.05Ca0.15O2-δ to the mixture layers with semiconductor Ni0.8Co0.15Al0.05LiO2-δ.Int J Hydrogen Energy2016;41:18761-8

[7]

Nie X,Mushtaq N.The sintering temperature effect on electrochemical properties of Ce0.8Sm0.05Ca0.15O2-δ (SCDC)-La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) heterostructure pellet.Nanoscale Res Lett2019;14:162 PMCID:PMC6517467

[8]

Deng H,Zhang W.The electrolyte-layer free fuel cell using a semiconductor-ionic Sr2Fe1.5Mo0.5O6-δ - Ce0.8Sm0.2O2-δ composite functional membrane.Int J Hydrogen Energy2017;42:25001-7

[9]

Mushtaq N,Dong W.Tuning the energy band structure at interfaces of the SrFe0.75Ti0.25O3-δ-Sm0.25Ce0.75O2-δ heterostructure for fast ionic transport.ACS Appl Mater Interfaces2019;11:38737-45

[10]

Afzal M,Wang B.Fabrication of novel electrolyte-layer free fuel cell with semi-ionic conductor (Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Sm0.2Ce0.8O1.9) and Schottky barrier.J Power Sources2016;328:136-42

[11]

Shah M,Rauf S,Zhu B.The semiconductor SrFe0.2Ti0.8O3-δ-ZnO hetero-structure electrolyte fuel cells.Int J Hydrog Energy2019;44:30319-27

[12]

Xing Y,Li L.Proton shuttles in CeO2/CeO2-δ core-shell structure.ACS Energy Lett2019;4:2601-7

[13]

Chen G,He Y.Electrochemical mechanisms of an advanced low-temperature fuel cell with a SrTiO3 electrolyte.J Mater Chem A2019;7:9638-45

[14]

Islam QA,Akbar N,Wu Y.Nanoparticle exsolution in perovskite oxide and its sustainable electrochemical energy systems.J Power Sources2021;492:229626

[15]

Zhu B,Raza R.A new energy conversion technology based on nano-redox and nano-device processes.Nano Energy2013;2:1179-85

[16]

Zhu B,Fan L.Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle.Nano Energy2016;19:156-64

[17]

Zhu B,Liu Q.A new energy conversion technology joining electrochemical and physical principles.RSC Adv2012;2:5066

[18]

Wang F,Hu E.PN heterostructure interface-facilitated proton conduction in 3C-SiC/Na0.6CoO2 electrolyte for fuel cell application.ACS Appl Energy Mater2021;4:7519-25

[19]

Lu Y,Li J,Yan S.Recent progress in semiconductor-ionic conductor nanomaterial as a membrane for low-temperature solid oxide fuel cells.Nanomaterials (Basel)2021;11:2290 PMCID:PMC8465349

[20]

Xu D,Xu S.Self-Assembled Triple (H+/O2-/e-) conducting nanocomposite of Ba-Co-Ce-Y-O into an electrolyte for semiconductor ionic fuel cells.Nanomaterials (Basel)2021;11:2365 PMCID:PMC8472293

[21]

Zhu B,Xia C.Nano-scale view into solid oxide fuel cell and semiconductor membrane fuel cell: material and technology.Energy Mater2021;1:2

[22]

Fang Y,Shao Y,Huang J.Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination.Nature Photon2015;9:679-86

[23]

Assadi M,Saidur R.Recent progress in perovskite solar cells.Renew Sustain Energy Rev2018;81:2812-22

[24]

Choi S,Liang Y.Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells.Nat Energy2018;3:202-10

[25]

Qiao Z,Cai Y.Electrochemical and electrical properties of doped CeO2-ZnO composite for low-temperature solid oxide fuel cell applications.J Power Sources2018;392:33-40

[26]

Wang L,Chen B.In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries.Nat Commun2020;11:5889 PMCID:PMC7674427

[27]

Yun S,Uhl AR.New-generation integrated devices based on dye-sensitized and perovskite solar cells.Energy Environ Sci2018;11:476-526

[28]

Yun S,Even J.Theoretical treatment of CH3NH3PbI3 perovskite solar cells.Angew Chem Int Ed Engl2017;56:15806-17

[29]

Zhu B,Raza R.Schottky junction effect on high performance fuel cells based on nanocomposite materials.Adv Energy Mater2015;5:1401895

[30]

Xia C,Wang B,Chen G.Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3-δ into an electrolyte for low-temperature solid oxide fuel cells.Nat Commun2019;10:1707 PMCID:PMC6461657

[31]

Mushtaq N,Xia C.Promoted electrocatalytic activity and ionic transport simultaneously in dual functional Ba0.5Sr0.5Fe0.8Sb0.2O3-δ-Sm0.2Ce0.8O2-δ heterostructure.Applied Catalysis B: Environmental2021;298:120503

[32]

Cai Y,Wang Y.Validating the technological feasibility of yttria-stabilized zirconia-based semiconducting-ionic composite in intermediate-temperature solid oxide fuel cells.J Power Sources2018;384:318-27

[33]

Cai Y,Akbar M.A bulk-heterostructure nanocomposite electrolyte of Ce0.8Sm0.2O2-δ-SrTiO3 for low-temperature solid oxide fuel cells.Nanomicro Lett2021;13:46 PMCID:PMC8187505

[34]

Zhang Y,Singh M.Superionic conductivity in ceria-based heterostructure composites for low-temperature solid oxide fuel cells.Nanomicro Lett2020;12:178 PMCID:PMC7770899

[35]

Hu E,Fan L.Junction and energy band on novel semiconductor-based fuel cells.iScience2021;24:102191 PMCID:PMC7930592

[36]

Baur E.Über brennstoff-ketten mit festleitern.Elektrochem1937;43:727-32

[37]

Zhu B,Mushtaq N.Semiconductor electrochemistry for clean energy conversion and storage.Electrochemical Energy Reviews2021;

[38]

Liu L,Li L,Singh M.The composite electrolyte with an insulation Sm2O3 and semiconductor NiO for advanced fuel cells.Int J Hydrogen energy Energy2018;43:12739-47

[39]

Ganesh KS,Kim J.Ionic conducting properties and fuel cell performance developed by band structures.J Phys Chem C2019;123:8569-77

[40]

Lu Y,Xia C.Catalytic membrane with high ion-electron conduction made of strongly correlated perovskite LaNiO3 and Ce0.8Sm0.2O2-δ for fuel cells.Journal of Catalysis2020;386:117-25

[41]

Shah MAKY,Zhu B.Semiconductor Nb-doped SrTiO3−δ perovskite electrolyte for a ceramic fuel cell.ACS Appl Energy Mater2021;4:365-75

[42]

Rauf S,Zhu B.Electrochemical properties of a dual-ion semiconductor-ionic Co0.2Zn0.8O-Sm0.20Ce0.80O2−δ composite for a high-performance low-temperature solid oxide fuel cell.ACS Appl Energy Mater2021;4:194-207

[43]

Rauf S,Shah MY.Tailoring triple charge conduction in BaCo0.2Fe0.1Ce0.2Tm0.1Zr0.3Y0.1O3−δ semiconductor electrolyte for boosting solid oxide fuel cell performance.Renewable Energy2021;172:336-49

PDF

52

Accesses

0

Citation

Detail

Sections
Recommended

/