Regulating the Amount of Graphene Oxide for Enhanced Capacitive Energy Storage of MOF Derived Materials

Yong-Ji Qin , Jing-Quan Yang , Hao Wang , Mei-Ling Lian , Pei-Pei Jia , Jun Luo , Xi-Jun Liu , Jun-Feng Liu

Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (7) : 2503101

PDF (4435KB)
Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (7) : 2503101 DOI: 10.61558/2993-074X.3548
COMMUNICATION
research-article

Regulating the Amount of Graphene Oxide for Enhanced Capacitive Energy Storage of MOF Derived Materials

Author information +
History +
PDF (4435KB)

Abstract

In pursuit of more efficient and stable electrochemical energy storage materials, composite materials consisting of metal oxides and graphene oxide have garnered significant attention due to their unique structures and exceptional properties. Graphene oxide (GO), a two-dimensional material with an extremely high specific surface area and excellent conductivity, offers new possibilities for enhancing the electrochemical performance of metal oxides. In this work, we synthesized metal-organic framework (MOF) and GO composites by regulating the amount of GO, and successfully prepared composites of metal oxides supported by nitrogen-doped carbon frameworks and GO through a simple one-step calcination process. Based on the electrochemical tests, the optimal amount of GO was determined. This research will provide new insights into and directions for designing and synthesizing metal oxide and graphene oxide composite materials with an ideal electrochemical performance.

Keywords

Metal-organic framework / Iron oxide / Graphene oxide / Composite material / Supercapacitor

Cite this article

Download citation ▾
Yong-Ji Qin, Jing-Quan Yang, Hao Wang, Mei-Ling Lian, Pei-Pei Jia, Jun Luo, Xi-Jun Liu, Jun-Feng Liu. Regulating the Amount of Graphene Oxide for Enhanced Capacitive Energy Storage of MOF Derived Materials. Journal of Electrochemistry, 2025, 31(7): 2503101 DOI:10.61558/2993-074X.3548

登录浏览全文

4963

注册一个新账户 忘记密码

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51971157), Shenzhen Science and Technology Program (JCYJ20210324115412035, JCYJ20210324123202008, JCYJ20210324122803009 and ZDSYS20210813095534001), Guangdong Foundation for Basic and Applied Basic Research Program (2021A1515110880).

Data Availability

Data will be made available on resonable request.

Supporting information

Additional data, detailed experimental procedures, and supplementary figures are available free of charge on the journal’s website at https://jelectrochem.xmu.edu.cn/journal/.

Author contribution

Yong-Ji Qin: Conceptualization (Lead), Data curation (Lead), Formal analysis (Lead), Investigation (Lead), Visualization (Lead), Writing - original draft (Lead); Jing-Quan Yang: Writing - review & editing (Supporting); Hao Wang: Writing - review & editing (Supporting); Mei-Ling Lian: Writing - review & editing (Supporting); Pei-Pei Jia: Resources (Supporting); Writing - review & editing (Supporting); Jun Luo: Funding acquisition (Lead), Resources (Supporting), Writing - review & editing (Supporting); Xi-Jun Liu: Writing - review & editing (Supporting); Jun-Feng Liu: Methodology (Lead).

References

[1]

Quan L, Jiang H, Mei G L, Sun Y J, You B. Bifunctional electrocatalysts for overall and hybrid water splitting[J]. Chem. Rev., 2024, 124(7): 3694-3812. https: https://doi.org/10.1021/acs.chemrev.3c00332

[2]

Yao W Q, Liao K, Lai T X, Sul H, Manthiram A. Rechargeable metal-sulfur batteries: key materials to mechanisms[J]. Chem. Rev., 2024, 124(8): 4935-5118. https://doi.org/10.1021/acs.chemrev.3c00919

[3]

Lu G L, Hou X H, Ding J Y, Qin Y J, Luo J, Liu X J. Research progress in electrocatalytic reduction of nitrate to ammonia by copper-based materials[J]. Chin. Sci. Bull., 2024, 69(25): 3728-3747. https://doi.org/10.1360/TB-2023-1349

[4]

Zhang T Y, Shi X H, Li Y, Sangaraju S, Wang F J, Yang L, Ran F. Carboxylic bacterial cellulose fiber-based hydrogel electrolyte with imidazole-type ionic liquid for dendrite-free zinc metal batteries[J]. Mater. R. Energy, 2024, 4(2): 100272. https://doi.org/10.1016/j.matre.2024.100272

[5]

Qin Y J, Luo J. Applications of single-atom catalysts in CO2 conversion[J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. https://doi.org/10.7503/cjcu20220300

[6]

Liu X J, Chen M Y, Ma J J, Liang J Q, Li C S, Chen C J, He H B. Advances in the synthesis strategies of carbon-based single-atom catalysts and their electrochemical applications[J]. China Powder Sci. Technol., 2024, 30(5): 35-45. https://doi.org/10.13732/j.issn.1008-5548.2024.05.004

[7]

Yang J P, Zhang F Z, Chen J. Structural design and application of fiber-based electrocatalytic materials[J]. China Powder Sci. Technol., 2024, 30(4): 161-170. https://doi.org/10.13732/j.issn.1008-5548.2024.04.015

[8]

Chen X, Qin Y J, Feng X C, Yang S Q, Wang H, Lian M L, Zhang D X, Guo Q Q, Luo J, Yang J, Wang X Z. Hierarchical multi-dimensional Mn2GeO4 coupled with CNT for long-cycling lithium-ion battery[J]. Inorg. Chem. Commun., 2024, 164: 112467. https://doi.org/10.1016/j.inoche.2024.112467

[9]

El Aggadi S, Ennouhi M, Boutakiout A, El Hourch A. Progress towards efficient phosphate-based materials for sodium-ion batteries in electrochemical energy storage[J]. Ionics, 2023, 29(6): 2099-2113.

[10]

Alhammadi A S, Yun H J, Choi D. Investigation of LiFePO4/MWCNT cathode-based half-cell lithium-ion batteries in subzero temperature environments[J]. Ionics, 2023, 29(6): 2163-2174. https://doi.org/10.1007/s11581-023-04953-9

[11]

Qin Y J, Cao H J, Liu Q, Yang S Q, Feng X C, Wang H, Lian M L, Zhang D X, Wang H, Luo J, Liu X J. Multi-functional layered double hydroxides supported by nanoporous gold toward overall hydrazine splitting[J]. Front. Chem. Sci. Eng., 2024, 18(1): 6. https://doi.org/10.1007/s11705-023-2373-1

[12]

Zhang H, Luo Y, Chu P K, Liu Q, Liu X J, Zhang S S, Luo J, Wang X Z, Hu G Z. Recent advances in non-noble metal-based bifunctional electrocatalysts for overall seawater splitting[J]. J. Alloys Compd., 2022, 922: 166113. https://doi.org/10.1016/j.jallcom.2022.166113

[13]

Peng X Y, Hou J R, Mi Y Y, Sun J Q, Qi G C, Qin Y J, Zhang S S, Qiu Y, Luo J, Liu X J. Bifunctional single-atomic Mn sites for energy-efficient hydrogen production[J]. Nanoscale, 2021, 13(9): 4767-4773. https://doi.org/10.1039/d0nr09104a

[14]

Liu W J, Liu W X, Hou T, Ding J Y, Wang Z G, Yin R L, San X Y, Feng L G, Luo J, Liu X J. Coupling Co-Ni phosphides for energy-saving alkaline seawater splitting[J]. Nano Res., 2024, 17(6): 4797-4806. https://doi.org/10.1007/s12274-024-6433-8

[15]

Cheng H H, Li J P, Meng T, Shu D. Advances in Mn‐based MOFs and their derivatives for high‐performance supercapacitor[J]. Small, 2024, 20(20): 2308804. https://doi.org/10.1002/smll.202308804

[16]

Han J J, Yan Q R, Chen Z W, Wang Z, Chen C. Application of Cr-metal organic framework (MOF) modified polyaniline/graphene oxide materials in supercapacitors[J]. Ionics, 2022, 28(5): 2349-2362. https://doi.org/10.1007/s11581-022-04443-4

[17]

Jayakumar A, Antony R P, Wang R, Lee J M. MOF‐derived hollow cage NixCo3-xO4 and their synergy with graphene for outstanding supercapacitors[J]. Small, 2017, 13(11): 1603102. https://doi.org/10.1002/smll.2016031024

[18]

Zhu J, Shen X P, Kong L R, Zhu G X, Ji Z Y, Xu K Q, Li B L, Zhou H, Yue X Y. MOF derived CoP-decorated nitrogen-doped carbon polyhedrons/reduced graphene oxide composites for high performance supercapacitors[J]. Dalton T., 2019, 48(28): 10661-10668. https://doi.org/10.1039/c9dt01629e

[19]

Qin Y J, Han X, Li Y P, Han A J, Liu W X, Xu H J, Liu J F. Hollow mesoporous metal-organic frameworks with enhanced diffusion for highly efficient catalysis[J]. ACS Catal., 2020, 10(11): 5973-5978. https://dx.doi.org/10.1021/acscatal.0c01432

[20]

Yang M S, Sun J Q, Qin Y J, Yang H, Zhang S S, Liu X J, Luo J. Hollow CoFe-layered double hydroxide polyhedrons for highly efficient CO2 electrolysis[J]. Sci. China Mater., 2021, 65(2): 536-542. https://doi.org/10.1007/s40843-021-1890-7

[21]

Qin Y L, Wang B Q, Qiu Y, Liu X J, Qi G C, Zhang S S, Han A J, Luo J, Liu J F. Multi-shelled hollow layered double hydroxides with enhanced performance for the oxygen evolution reaction[J]. Chem. Commun., 2021, 57(22): 2752-2755. https://dx.doi.org/10.1039/d0cc07643k

[22]

Yang Y, Zhang W R, Chen K W, Chen Y T, Dai X J, Gong C H, Wang P. Research progress on adsorption mechanism of radioactive iodine by metal-organic framework composites[J]. China Powder Sci. Technol., 2024, 30(4): 151-160. https://dx.doi.org/10.13732/j.issn.1008-5548.2024.04.014

[23]

Wang X G, He Z X, Ding D F, Luo X Q, Dai L, Zhang W Q, Ma Q, Huang Y, Xia F. Highly sensitive detection of strontium ions using metal-organic frameworks functionalized solid-state nanochannels[J]. J. Electrochem., 2024, 30(10): 2414003. https://doi.org/10.61558/2993-074X.3482

[24]

Shi Q Y, Zhao Y, Liu M H, Shi F Y, Chen L X, Xu X R, Gao J, Zhao H B, Lu F P, Qin Y J, Zhang Z, Lian M L. Engineering platelet membrane-coated bimetallic MOFs as biodegradable nanozymes for efficient antibacterial therapy[J]. Small, 2023, 20(23): 2309366. https://doi.org/10.1002/smll.202309366

[25]

Han X, Zhang T Y, Wang X H, Zhang Z D, Li Y P, Qin Y J, Wang B Q, Han A J, Liu J F. Hollow mesoporous atomically dispersed metal-nitrogen-carbon catalysts with enhanced diffusion for catalysis involving larger molecules[J]. Nat. Commun., 2022, 13(1): 2900. https://doi.org/10.1038/s41467-022-30520-3

[26]

Wang H F, Chen L Y, Pang H, Kaskel S, Xu Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions[J]. Chem. Soc. Rev., 2020, 49(5): 1414-1448. https://doi.org/ 10.1039/c9cs00906j

[27]

Qin Y J, Wang F Q, Shang J, Iqbal M, Han A J, Sun X M, Xu H J, Liu J F. Ternary NiCoFe-layered double hydroxide hollow polyhedrons as highly efficient electrocatalysts for oxygen evolution reaction[J]. J. Energy Chem., 2020, 43: 104-107. https://doi.org/10.1016/j.jechem.2019.08.014

[28]

Lu Y, Yu L, Wu M H, Wang Y, Lou X W. Construction of complex Co3O4@Co3V2O8 hollow structures from metal-organic frameworks with enhanced lithium storage properties[J]. Adv. Mater., 2017, 30(1): 1702875. https://doi.org/10.1002/adma.201702875

[29]

He P, Yu X Y, Lou X W. Carbon‐incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution[J]. Angew. Chem. Int. Ed., 2017, 56(14): 3897-3900. http://dx.doi.org/10.1002/anie.201612635

[30]

Hu H, Guan B Y, Lou X W. Construction of complex CoS hollow structures with enhanced electrochemical properties for hybrid supercapacitors[J]. Chem, 2016, 1(1): 102-113.http://dx.doi.org/10.1016/j.chempr.2016.06.001

[31]

He P P, Shi J H, Li X Y, Liu M J, Fang Z, He J, Li Z J, Peng X S, He Q G. A CNT intercalated Co porphyrin-based metal organic framework catalyst for oxygen reduction reaction[J]. J. Electrochem., 2025, 31(1): 2405241. https://doi.org/10.61558/2993-074X.3502

[32]

Dennyson Savariraj A, Justin Raj C, Kale A M, Kim B C. Road map for in situ grown binder‐free MOFs and their derivatives as freestanding electrodes for supercapacitors[J]. Small, 2023, 19(20): 2207713. https://doi.org/10.1002/smll.202207713

[33]

Rashi. Exploring the methods of synthesis, functionalization, and characterization of graphene and graphene oxide for supercapacitor applications[J]. Ceram. Int., 2023, 49(1): 40-47. https://doi.org/10.1016/j.ceramint.2022.10.333

[34]

Mane V A, Dake D V, Raskar N D, Sonpir R B, Gattu K P, Shirsat M D, Dole B N. Harnessing the synergistic effects of graphene oxide based Sn/Fe codoped Bi2O3 nanocomposites for superior supercapacitor performance[J]. J. Energy Storage, 2024, 96: 112636. https://doi.org/10.1016/j.est.2024.112636

[35]

Lin Z H, Han Z J, O'connell G E P, Wan T, Zhang D, Ma Z P, Chu D W, Lu X Y. Graphene and MOF assembly: enhanced fabrication and functional derivative via MOF amorphization[J]. Adv. Mater., 2024, 36(19): 2312797. https://doi.org/10.1002/adma.202312797

[36]

Zhao J W, Wei Z Q, Wang C, Zhou M P, Lu C G. NiCo2S4/rGO composite electrode material derived from Co-based MOFs for hybrid supercapacitors[J]. Ionics, 2024, 30(3): 1723-1733. https://doi.org/10.1007/s11581-024-05399-3

[37]

Liu S A, Jin M M, Sun J Q, Qin Y J, Gao S S, Chen Y, Zhang S S, Luo J, Liu X J. Coordination environment engineering to boost electrocatalytic CO2 reduction performance by introducing boron into single-Fe-atomic catalyst[J]. Chem. Eng. J., 2022, 437: 135294. https://doi.org/10.1016/j.cej.2022.135294

[38]

Cao H J, Wei T R, Liu Q, Zhang S S, Qin Y J, Wang H, Luo J, Liu X J. Hollow carbon cages derived from polyoxometalate-encapsuled metal-organic frameworks for energy-saving hydrogen production[J]. ChemCatChem, 2023, 15(5): 202201615. https://doi.org/10.1002/cctc.202201615

[39]

Wang W X, Liu Y, Yue Y F, Wang H H, Cheng G, Gao C Y, Chen C L, Ai Y J, Chen Z, Wang X K. The confined interlayer growth of ultrathin two-dimensional Fe3O4 nanosheets with enriched oxygen vacancies for peroxymonosulfate activation[J]. ACS Catal., 2021, 11(17): 11256-11265. https://doi.org/10.1021/acscatal.1c03331

[40]

Wang T W, Gao S S, Wei T R, Qin Y J, Zhang S S, Ding J Y, Liu Q, Luo J, Liu X J. Co Nanoparticles confined in mesoporous Mo/N Co-doped polyhedral carbon frameworks towards high-efficiency oxygen reduction[J]. Chem. Eur. J., 2023, 29(23): 202204034. https://doi.org/10.1002/chem.202204034

[41]

Jamadar A S, Sutar R, Patil S, Khandekar R, Yadav J B. Progress in metal oxide-based electrocatalysts for sustainable water splitting[J]. Mater. R. Energy, 2024, 4(3): 100283. https://doi.org/10.1016/j.matre.2024.100283

[42]

Ge S M, Zhang L W, Hou J R, Liu S, Qin Y J, Liu Q, Cai X B, Sun Z Y, Yang M S, Luo J, Liu X J. Cu2O-derived PtCu nanoalloy toward energy-efficient hydrogen production via hydrazine electrolysis under large current density[J]. ACS Appl. Energy Mater., 2022, 5(8): 9487-9494. https://doi.org/10.1021/acsaem.2c01006

[43]

Liu Y F, Guo Y S, Jiang Y R, Feng L Z, Sun Y, Wang Y J. Recent progress in thermodynamic and kinetics modification of magnesium hydride hydrogen storage materials[J]. Mater. R. Energy, 2024, 4(1): 100252. https://doi.org/10.1016/j.matre.2024.100252

AI Summary AI Mindmap
PDF (4435KB)

93

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/