Numerical Simulation of the Pitting Corrosion Behavior of Stainless Steel Bellows Influenced by Varying Liquid Film Thicknesses

Lu-Jun Ren , Guo-Min Li , Zhen-Xiao Zhu , Hai-Yan Xiong , Bing Li

Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (7) : 2502161

PDF (10080KB)
Journal of Electrochemistry ›› 2025, Vol. 31 ›› Issue (7) : 2502161 DOI: 10.61558/2993-074X.3539
ARTICLE
research-article

Numerical Simulation of the Pitting Corrosion Behavior of Stainless Steel Bellows Influenced by Varying Liquid Film Thicknesses

Author information +
History +
PDF (10080KB)

Abstract

To advance the understanding of the corrosion behavior of stainless steel bellows in marine atmospheric environments and enhance the precision of service life predictions, this study employs finite element simulations to investigate the pitting corrosion rates and pit morphologies of bellows peaks and troughs under varying electrolyte film thicknesses. The model incorporates localized electrochemical reactions, oxygen concentration, and homogeneous solution reactions. For improved computational accuracy, the fitted polarization curve data were directly applied as nonlinear boundary conditions on the electrode surface via interpolation functions. Simulation results reveal that the peak regions exhibit faster corrosion rates than the trough regions. With increasing electrolyte film thickness (from 10 μm to 500 μm), corrosion rates at both peaks and troughs decrease progressively,and after 120 hours of simulation, the maximum corrosion rate at the peaks declines from 0.720 mm/a to 0.130 mm/a, and at the troughs from 0.520 mm/a to 0.120 mm/a, with the disparity in corrosion rates diminishing over time. Furthermore, as corrosion progresses, pits propagate deeper into the substrate, exhibiting both vertical penetration and lateral expansion along the passive film interface, ultimately breaching the substrate. This research offers valuable insights into designing corrosion mitigation strategies for stainless steel bellows in marine environments.

Keywords

Finite element method / Pitting corrosion / Stainless steel bellows / Electrolyte film thickness

Cite this article

Download citation ▾
Lu-Jun Ren, Guo-Min Li, Zhen-Xiao Zhu, Hai-Yan Xiong, Bing Li. Numerical Simulation of the Pitting Corrosion Behavior of Stainless Steel Bellows Influenced by Varying Liquid Film Thicknesses. Journal of Electrochemistry, 2025, 31(7): 2502161 DOI:10.61558/2993-074X.3539

登录浏览全文

4963

注册一个新账户 忘记密码

Statements & Declarations
Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No.52074130) and Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, 200237 Shanghai, PR China.

Conflict of Interests

The authors declare that they have no competing interests.

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Author Contributions

All authors contributed to the study conception and design. Bing Li and Lu-Jun Ren carried out material preparation, data collection, experiments, and data analysis. Guo-Min Li, Zhen-Xiao Zhu, and Hai-Yan Xiong contributed to partial experiments and data analysis. The first draft of the manuscript was written by Lu-Jun Ren and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

References

[1]

Faraji G, Besharati M K, Mosavi M, Kashanizadeh H. Experimental and finite element analysis of parameters in manufacturing of metal bellows[J]. Int. J. Adv. Manuf. Technol., 2007, 38(7-8): 641-648. https://doi.org/10.1007/s00170-007-1122-9

[2]

Igi S, Katayama H, Kawahara M. Evaluation of mechanical behavior of new type bellows with two-directional convolutions[J]. Nucl. Eng. Des., 2000, 197(1-2): 107-114. https://doi.org/10.1016/S0029-5493(99)00260-5

[3]

K. Kowal, J.Detuccia, J. Y. Josefowicz, C. Laird, G. C. Farringto. In situ atomic force microscopy observations of the corrosion behavior of aluminum‐copper alloys[J]. J. Electrochem. Soc., 1996, 143(8): 2471-2481. https://doi.org/10.1149/1.1837033

[4]

Rynders R M, Paik C H, Ke R, Alkire R C. Use of in situ atomic force microscopy to image corrosion at inclusions[J]. J. Electrochem. Soc., 1994, 141 (6): 1439-1445. https://doi.org/10.1149/1.2054943

[5]

Wang B, Lan H X, Lei B B. Analysis on fracture toughness of the l360QS/N08825 bimetallic composite pipe welded joint[J]. Adv. Mater. Sci. Eng., 2019, 2019: 1-13. https://doi.org/10.1155/2019/2983506

[6]

Zhang S X, Xie F Q, Li X M, Luo J H, Su G G, Zhu L X, Chen Q G. Failure analysis of the leakage in girth weld of bimetal composite pipe[J]. Eng. Fail. Anal., 2023, 143: 106917. https://doi.org/10.1016/j.engfailanal.2022.106917

[7]

Kim H J, Jeon S H, Kim S T, Lee I S, Park Y S, Kim K T, Kim Y S. Investigation of the sensitization and intergranular corrosion of tube-to-tubesheet welds of hyper duplex stainless steel using an electrochemical reactivation method[J]. Corros. Sci., 2014, 87: 60-70. https://doi.org/10.1016/j.corsci.2014.06.005

[8]

Boag A, Taylor R J, Muster T H, Goodman N, McCulloch D, Ryan C, Rout B, Jamieson D, Hughes A E. Stable pit formation on AA2024-T3 in a NaCl environment[J]. Corros. Sci., 2010, 52(1): 90-103. https://doi.org/10.1016/j.corsci.2009.08.043

[9]

Boag A, Hughes A E, Glenn A M, Muster T H, McCulloch D. Corrosion of AA2024-T3 Part I: Localised corrosion of isolated IM particles[J]. Corros. Sci., 2011, 53(1): 17-26. https://doi.org/10.1016/j.corsci.2010.09.009

[10]

A.M. Glenn, T.H. Muster, C. Luo, X. Zhou, G.E. Thompson, A. Boag, A.E. Hughes. Corrosion of AA2024-T3 Part III: Propagation[J]. Corros. Sci., 2011, 53(1): 40-50. https://doi.org/10.1016/j.corsci.2010.09.035

[11]

Sharland S M. A mathematical model of crevice and pitting corrosion-II. The mathematical solution[J]. Corros. Sci., 1988, 28(6): 621-630. https://doi.org/10.1016/0010-938X(88)90028-5

[12]

Sharland S M, Tasker P W. A mathematical model of crevice and pitting corrosion-I. The physical model[J]. Corros. Sci., 1988, 28(6): 603-620. https://doi.org/10.1016/0010-938X(88)90027-3

[13]

Sharland S M. A review of the theoretical modeling of crevice and pitting corrosion[J]. Corros. Sci., 1987, 27(3): 289-323. https://doi.org/10.1016/0010-938X(87)90024-2

[14]

Sharland S M, Jackson C P, Diver A J. A finite-element model of the propagation of corrosion crevices and pits[J]. Corros. Sci., 1989, 29(9): 1149-1166. https://doi.org/10.1016/0010-938X(89)90051-6

[15]

Frankel G S, Li T, Scully J R. Perspective-localized corrosion: passive film breakdown vs pit growth stability[J]. J. Electrochem. Soc, 2017, 164(4): C180-C181. https://doi.org/10.1149/2.1381704jes

[16]

Mai W, Soghrati S, Buchheit R G. A phase field model for simulating the pitting corrosion[J]. Corros. Sci., 2016, 110: 157-166. https://doi.org/10.1016/j.corsci.2016.04.001

[17]

Wang H T, Han E H. Computational simulation of corrosion pit interactions under mechanochemical effects using a cellular automaton/finite element model[J]. Corros. Sci., 2016, 103: 305-311. https://doi.org/10.1016/j.corsci.2015.11.034

[18]

Fatoba O O, Leiva-Garcia R, Lishchuk S V, Larrosa N O, Akid R. Simulation of stress-assisted localised corrosion using a cellular automaton finite element approach[J]. Corros. Sci., 2018, 137: 83-97. https://doi.org/10.1016/j.corsci.2018.03.029

[19]

Cao X F, Hu X J. The investigation of micro-galvanic corrosion of SAF 2205 duplex stainless steel based on numerical simulation model and immersion test[J]. Corros. Sci., 2022, 207: 110601. https://doi.org/10.1016/j.corsci.2022.110601

[20]

Deshpande K B. Numerical modeling of micro-galvanic corrosion[J]. Electrochim. Acta, 2011, 56(4): 1737-1745. https://doi.org/10.1016/j.electacta.2010.09.044

[21]

Liu J, Liu Y, Li L Y, Li X, Yang S F, Geng Y H, Liu F Y. Springback analysis of thin-walled stainless steel bellow in hydroforming[J]. Adv. Mat. Res., 2015, 1095: 855-858. https://doi.org/10.4028/www.scientific.net/AMR.1095.855

[22]

Hao Z L, Luo J T, Jin Y.B, Wei W, Liu L. Failure analysis of corrugated metal hose under ultimate repeated bending process[J]. Eng. Fail. Anal., 2020, 109: 104295. https://doi.org/10.1016/j.engfailanal.2019.104295

[23]

Wang M Y, Yan M, Yang C Y, Liu Y, Huang H G. A study on the evolution mechanism of small diameter thin-walled stainless steel bellows during a bending process[J]. Eng. Fail. Anal., 2023, 152: 107462. https://doi.org/10.1016/j.engfailanal.2023.107462

[24]

Guo H S, Wang L, Yin J M, Yao C G, Zhang C X, Luo J T. Finite element simulation prediction of repeated bending failure zone of roll-welded bellows based on an equivalent welding model[J]. Eng. Fail. Anal., 2023, 151: 107371. https://doi.org/10.1016/j.engfailanal.2023.107371

[25]

Li Z H, Tian W F, Wang J M, Yan J H, Zhang L, Wang X X. Simulation analysis of three-dimensional finite element model about the corrosion defect of pipeline[C]// Proceedings Of 2019 14th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Changsha, Peoples R China, 01-03, November, 2019: 1105-1111. https://doi.org/10.1109/icemi46757.2019.9101473

[26]

Chen M C, Wen Q Q. Simulation of corrosion process for structure with the cellular automata method[C]// 2nd International Conference on Civil Engineering and Materials Science (ICCEMS) Seoul, South Korea, 26-28 May, 2017, 216: 012012. https://doi.org/10.1088/1757-899X/216/1/012012

[27]

Zhang Y D, Wong R C K. Effect of corrosion on buried pipe responses under external load: Experimental and numerical study[J]. Tunn. Underdr. Sp. Tech., 2023, 132: 104934. https://doi.org/10.1016/j.tust.2022.104934

[28]

Dai M. In situ mathematically simulation for CO2 internal corrosion in wet natural gas gathering pipelines system by HYSYS[J]. Eng. Fail. Anal., 2021, 122: 105265. https://doi.org/10.1016/j.engfailanal.2021.105265

[29]

Guan X R, Zhang D L, Wang J J, Jin Y H, Li Y. Numerical and electrochemical analyses on carbon dioxide corrosion of X80 pipeline steel under different water film thicknesses in NACE solution[J] Nat. Gas Sci. Eng., 2017, 37: 199-216. https://doi.org/10.1016/j.jngse.2016.11.047

[30]

Yin L T, Jin Y, Leygraf C, Pan J S. A FEM model for investigation of micro-galvanic corrosion of Al alloys and effects of deposition of corrosion products[J]. Electrochim. Acta, 2016, 192: 310-318. https://doi.org/10.1016/j.electacta.2016.01.179

[31]

Fattah-alhosseini A, Golozar M A, Saatchi A, Raeissi K. Effect of solution concentration on semiconducting properties of passive films formed on austenitic stainless steels[J]. Corros. Sci., 2010, 52(1): 205-209. https://doi.org/10.1016/j.corsci.2009.09.003

[32]

Krawiec H, Vignal V, Akid R. Numerical modelling of the electrochemical behaviour of 316L stainless steel based upon static and dynamic experimental microcapillary-based techniques[J]. Electrochim. Acta, 2008, 53(16): 5252-5259. https://doi.org/10.1016/j.electacta.2008.02.063

[33]

Walton J C, Cragnolino G, Kalandros S K. A numerical model of crevice corrosion for passive and active metals[J]. Corros. Sci., 1996, 38(1): 1-18. https://doi.org/10.1016/0010-938X(96)00107-2

[34]

Sun W, Wang L D, Wu T T, Liu G C. An arbitrary lagrangian-eulerian model for modelling the time-dependent evolution of crevice corrosion[J]. Corros. Sci., 2014, 78: 233-243. https://doi.org/10.1016/j.corsci.2013.10.003

[35]

Heppner K L, Evitts R W, Postlethwaite J. Prediction of the crevice corrosion incubation period of passive metals at elevated temperatures: part ii — model verification and simulation[J]. Can. J. Chem. Eng., 2002, 80(5): 857-864. https://doi.org/10.1002/cjce.5450800509

[36]

Xia D H, Deng C M, Chen Z G, Li T S, Hu W B. Modeling localized corrosion propagation of metallic materials by peridynamics: progresses and challenges[J]. Acta. Metall. Sin., 2022, 58(9): 1094-1107. https://doi.org/10.11900/0412.1961.2022.00249

[37]

Gomes da Silva M J, Fragoso H A P, Barrio R C A G, Cardoso J L. Stress corrosion of an austenitic stainless steel expansion joint, a case study[J]. Eng. Fail. Anal., 2019, 97: 300-310. https://doi.org/10.1016/j.engfailanal.2019.01.021

[38]

Dolgikh O, Bastos A C, Oliveira A, Dan C, Deconinck J. Influence of the electrolyte film thickness and NaCl concentration on the oxygen reduction current on platinum[J]. Corros. Sci., 2016, 102: 338-347. https://doi.org/10.1016/j.corsci.2015.10.025

AI Summary AI Mindmap
PDF (10080KB)

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/