PDF
(3028KB)
Abstract
Background: Stem cell transplantation is a promising therapy for degenerative retinal diseases, including age-related macular degeneration (AMD), retinitis pigmentosa (RP), and Stargardt's disease (STGD). This study quantitatively evaluates long-term outcomes of different stem cell treatments.
Methods: A systematic review and outcome prediction analysis were conducted using data published before September 1, 2024. The primary outcome was the change in best-corrected visual acuity (BCVA), expressed as logarithm of the minimum angle of resolution (LogMAR), adjusted for baseline BCVA. Predictions were disease-specific for dry AMD, wet AMD, RP, and STGD, refined through regression analysis while ensuring data standardization across studies.
Results: A meta-analysis of 43 studies (666 eyes) revealed varying BCVA improvements at 6 months post-treatment. For dry AMD, adipose-derived mesenchymal stem cells (ADMSCs) showed the best improvement (0.65, 95% CI: 0.57-0.72 logMAR), exceeding that of human embryonic stem cells (hESCs, 0.49, 95% CI: 0.33-0.65 logMAR). For wet AMD, hESCs improved BCVA by 0.45 logMAR (95% CI: 0.28-0.61 logMAR). For RP, Wharton's jelly-derived mesenchymal stem cells (WJMSCs) achieved the highest improvement (0.50, 95% CI: 0.28-0.73 logMAR), while umbilical cord-derived mesenchymal stem cells (UCMSCs, 0.39, 95% CI: 0.31-0.46 logMAR) showed moderate effects. For STGD, ADMSCs were most effective (0.53, 95% CI: 0.42-0.64 logMAR).
Conclusions: Stem cell therapy demonstrates significant potential for treating AMD, RP, and STGD, with ADMSCs showing superior benefits in dry AMD and STGD, hESCs being more effective in wet AMD, and WJMSCs outperforming other therapies in RP. These comparative insights highlight disease-specific advantages of different stem cell sources, informing future clinical applications.
Keywords
age-related macular degeneration
/
degenerative retinal diseases
/
retinitis pigmentosa
/
Stargardt's disease
/
stem cell therapy
/
systematic review
/
visual function
Cite this article
Download citation ▾
Hai-Long He, Xuan-Yu Chen, Ming-Xia Du, Yi-Hui Li, Yi-Han Wang, Zi-Bing Jin.
Long-term predictive outcomes of stem cell therapy for degenerative retinal diseases.
Eye & ENT Research, 2025, 2(4): 247-263 DOI:10.1002/eer3.70028
| [1] |
Zarbin M . Cell-based therapy for degenerative retinal disease. Trends Mol Med. 2016; 22 (2): 115- 134.
|
| [2] |
Gehrs KM , Anderson DH , Johnson LV , Hageman GS . Age-related macular degeneration����emerging pathogenetic and therapeutic concepts. Ann Med. 2006; 38 (7): 450- 471.
|
| [3] |
Mitchell P , Liew G , Gopinath B , Wong TY . Age-related macular degeneration. Lancet. 2018; 392 (10153): 1147- 1159.
|
| [4] |
Heath Jeffery RC , Mukhtar SA , McAllister IL , Morgan WH , Mackey DA , Chen FK . Inherited retinal diseases are the Most common cause of blindness in the working-age population in Australia. Ophthalmic Genet. 2021; 42 (4): 431- 439. Epub 2021 May 3. Erratum in: Ophthalmic Genet. 2021 Dec;42(6): 790.
|
| [5] |
Liew G , Michaelides M , Bunce C . A comparison of the causes of blindness certifications in England and Wales in working age adults (16-64 years), 1999-2000 with 2009-2010. BMJ Open. 2014; 4 (2): e004015.
|
| [6] |
Brown DM , Kaiser PK , Michels M , et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med. 2006; 355 (14): 1432- 1444.
|
| [7] |
Jacobson SG , Cideciyan AV , Roman AJ , et al. Improvement and decline in vision with gene therapy in childhood blindness. N Engl J Med. 2015; 372 (20): 1920- 1926.
|
| [8] |
Assawachananont J , Mandai M , Okamoto S , et al. Transplantation of embryonic and induced pluripotent stem cell-derived 3D retinal sheets into retinal degenerative mice. Stem Cell Rep. 2014; 2 (5): 662- 674.
|
| [9] |
Shirai H , Mandai M , Matsushita K , et al. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc Natl Acad Sci U S A. 2016; 113 (1): E81- E90. Epub 2015 Dec 22.
|
| [10] |
Iraha S , Tu HY , Yamasaki S , et al. Establishment of immunodeficient retinal degeneration model mice and functional maturation of human ESC-derived retinal sheets after transplantation. Stem Cell Rep. 2018; 10 (3): 1059- 1074.
|
| [11] |
Jin ZB , Gao ML , Deng WL , et al. Stemming retinal regeneration with pluripotent stem cells. Prog Retin Eye Res. 2019; 69: 38- 56.
|
| [12] |
Sugita S , Mandai M , Kamao H , Takahashi M . Immunological aspects of RPE cell transplantation. Prog Retin Eye Res. 2021; 84: 100950.
|
| [13] |
Lin TC , Seiler MJ , Zhu D , et al. Assessment of safety and functional efficacy of stem cell-based therapeutic approaches using retinal degenerative animal models. Stem Cell Int. 2017; 2017: 9428176- 9428219.
|
| [14] |
Page MJ , Moher D , Bossuyt PM , et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021; 372: n160.
|
| [15] |
Siqueira RC , Messias A , Voltarelli JC , Scott IU , Jorge R . Intravitreal injection of autologous bone marrow-derived mononuclear cells for hereditary retinal dystrophy: a phase I trial. Retina. 2011; 31 (6): 1207- 1214.
|
| [16] |
Schwartz SD , Hubschman JP , Heilwell G , et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012; 379 (9817): 713- 720.
|
| [17] |
Limoli PG , Vingolo EM , Morales MU , Nebbioso M , Limoli C . Preliminary study on electrophysiological changes after cellular autograft in age-related macular degeneration. Medicine (Baltim). 2014; 93 (29): e355.
|
| [18] |
Park SS , Bauer G , Abedi M , et al. Intravitreal autologous bone marrow CD34+ cell therapy for ischemic and degenerative retinal disorders: preliminary phase 1 clinical trial findings. Investig Ophthalmol Vis Sci. 2014; 56 (1): 81- 89.
|
| [19] |
Schwartz SD , Regillo CD , Lam BL , et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015; 385 (9967): 509- 516.
|
| [20] |
Song WK , Park KM , Kim HJ , et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: preliminary results in Asian patients. Stem Cell Rep. 2015; 4 (5): 860- 872.
|
| [21] |
Limoli PG , Limoli C , Vingolo EM , Scalinci SZ , Nebbioso M . Cell surgery and growth factors in dry age-related macular degeneration: visual prognosis and morphological study. Oncotarget. 2016; 7 (30): 46913- 46923.
|
| [22] |
Oner A , Gonen ZB , Sinim N , Cetin M , Ozkul Y . Subretinal adipose tissue-derived mesenchymal stem cell implantation in advanced stage retinitis pigmentosa: a phase I clinical safety study. Stem Cell Res Ther. 2016; 7 (1): 178.
|
| [23] |
Mandai M , Kurimoto Y , Takahashi M . Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017; 377 (8): 792- 793.
|
| [24] |
Cotrim CC , Toscano L , Messias A , Jorge R , Siqueira RC . Intravitreal use of bone marrow mononuclear fraction containing CD34+ stem cells in patients with atrophic age-related macular degeneration. Clin Ophthalmol. 2017; 11: 931- 938.
|
| [25] |
Kumar A , Midha N , Mohanty S , et al. Evaluating role of bone marrow-derived stem cells in dry age-related macular degeneration using multifocal electroretinogram and fundus autofluorescence imaging. Int J Ophthalmol. 2017; 10 (10): 1552- 1558.
|
| [26] |
Limoli PG , Vingolo EM , Limoli C , Scalinci SZ , Nebbioso M . Regenerative therapy by suprachoroidal cell autograft in dry age-related macular degeneration: preliminary in vivo report. J Vis Exp. 2018; (132): 56469.
|
| [27] |
da Cruz L , Fynes K , Georgiadis O , et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018; 36 (4): 328- 337.
|
| [28] |
Liu Y , Xu HW , Wang L , et al. Human embryonic stem cell-derived retinal pigment epithelium transplants as a potential treatment for wet age-related macular degeneration. Cell Discov. 2018; 4 (1): 50.
|
| [29] |
Kashani AH , Lebkowski JS , Rahhal FM , et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med. 2018; 10 (435): eaao4097.
|
| [30] |
Weiss JN , Levy S . Stem cell ophthalmology treatment study: bone marrow derived stem cells in the treatment of retinitis pigmentosa. Stem Cell Invest. 2018; 5: 18.
|
| [31] |
Mehat MS , Sundaram V , Ripamonti C , et al. Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration. Ophthalmology. 2018; 125 (11): 1765- 1775.
|
| [32] |
Oner A , Gonen ZB , Sevim DG , Smim Kahraman N , Unlu M . Suprachoroidal adipose tissue-derived mesenchymal stem cell implantation in patients with dry-type age-related macular degeneration and Stargardt's macular dystrophy: 6-month follow-up results of a phase 2 study. Cell Reprogr. 2018; 20 (6): 329- 336.
|
| [33] |
Oner A , Gonen ZB , Sevim DG , Sinim N , Cetin M , Ozkul Y . First-year results of subretinal mesenchymal stem cell implantation in severe retinitis pigmentosa. J Stem Cell Res Ther. 2019; 9: 454.
|
| [34] |
Takagi S , Mandai M , Gocho K , et al. Evaluation of transplanted autologous induced pluripotent stem cell-derived retinal pigment epithelium in exudative age-related macular degeneration. Ophthalmol Retina. 2019; 3 (10): 850- 859.
|
| [35] |
Heier JS , Ho AC , Samuel MA , et al. Safety and efficacy of subretinally administered palucorcel for geographic atrophy of age-related macular degeneration: phase 2b study. Ophthalmol Retina. 2020; 4 (4): 384- 393.
|
| [36] |
Zhao T , Liang Q , Meng X , et al. Intravenous infusion of umbilical cord mesenchymal stem cells maintains and partially improves visual function in patients with advanced retinitis pigmentosa. Stem Cell Dev. 2020; 29 (16): 1029- 1037.
|
| [37] |
Limoli PG , Limoli CSS , Morales MU , Vingolo EM . Mesenchymal stem cell surgery, rescue and regeneration in retinitis pigmentosa: clinical and rehabilitative prognostic aspects. Restor Neurol Neurosci. 2020; 38 (3): 223- 237.
|
| [38] |
Kahraman NS , Oner A . Umbilical cord derived mesenchymal stem cell implantation in retinitis pigmentosa: a 6-month follow-up results of a phase 3 trial. Int J Ophthalmol. 2020; 13 (9): 1423- 1429.
|
| [39] |
Özmert E , Arslan U . Management of retinitis pigmentosa by Wharton's jelly derived mesenchymal stem cells: preliminary clinical results. Stem Cell Res Ther. 2020; 11 (1): 25.
|
| [40] |
Özmert E , Arslan U . Management of retinitis pigmentosa by Wharton's jelly-derived mesenchymal stem cells: prospective analysis of 1-year results. Stem Cell Res Ther. 2020; 11 (1): 353.
|
| [41] |
Cotrim CC , Vieira Messias AM , Jorge R , Siqueira RC . Intravitreal use of a bone marrow mononuclear fraction (BMMF) containing CD34+ cells in patients with Stargardt type macular dystrophy. Stem Cell Int. 2020; 2020: 8828256- 8828258.
|
| [42] |
Nittala MG , Uji A , Velaga SB , et al. Effect of human central nervous system stem cell subretinal transplantation on progression of geographic atrophy secondary to nonneovascular age-related macular degeneration. Ophthalmol Retina. 2021; 5 (1): 32- 40.
|
| [43] |
Weiss JN , Levy S . Stem cell ophthalmology treatment study (SCOTS): bone marrow-derived stem cells in the treatment of Stargardt disease. Medicines (Basel). 2021; 8 (2): 10.
|
| [44] |
Sung Y , Lee MJ , Choi J , et al. Long-term safety and tolerability of subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium in Asian Stargardt disease patients. Br J Ophthalmol. 2021; 105 (6): 829- 837.
|
| [45] |
Wiącek MP , Gosƚawski W , Grabowicz A , et al. Long-term effects of adjuvant intravitreal treatment with autologous bone marrow-derived lineage-negative cells in retinitis pigmentosa. Stem Cell Int. 2021; 2021: 6631921.
|
| [46] |
Li SY , Liu Y , Wang L , et al. A phase I clinical trial of human embryonic stem cell-derived retinal pigment epithelial cells for early-stage Stargardt macular degeneration: 5-Years' follow-up. Cell Prolif. 2021; 54 (9): e13100.
|
| [47] |
Kashani AH , Lebkowski JS , Rahhal FM , et al. One-year follow-up in a phase 1/2a clinical trial of an allogeneic RPE cell bioengineered implant for advanced dry age-related macular degeneration. Transl Vis Sci Technol. 2021; 10 (10): 13.
|
| [48] |
Tuekprakhon A , Sangkitporn S , Trinavarat A , et al. Intravitreal autologous mesenchymal stem cell transplantation: a nonrandomized phase I clinical trial in patients with retinitis pigmentosa. Stem Cell Res Ther. 2021; 12 (1): 52.
|
| [49] |
Nor KS , Nor Fariza N , Roslin AAZ , Angelina T . Subtenon implantation of Wharton's jelly-derived mesenchymal stromal cells in retinitis pigmentosa. Med J Malaysia. 2022; 77 (5): 564- 568.
|
| [50] |
Oner A , Kahraman NS . Suprachoroidal umbilical cord derived mesenchymal stem cell implantation for the treatment of retinitis pigmentosa in pediatric patients. Am J Stem Cells. 2023; 5 (1): 1- 7.
|
| [51] |
Brant Fernandes RA , Lojudice FH , Zago Ribeiro L , et al. Transplantation of subretinal stem cell-derived retinal pigment epithelium for stargardt disease: a phase I clinical trial. Retina. 2023; 43 (2): 263- 274.
|
| [52] |
Ozmert E , Arslan U . Management of retinitis pigmentosa via Wharton's jelly-derived mesenchymal stem cells or combination with magnovision: 3-year prospective results. Stem Cells Transl Med. 2023; 12 (10): 631- 650.
|
| [53] |
Hirami Y , Mandai M , Sugita S , et al. Safety and stable survival of stem-cell-derived retinal organoid for 2 years in patients with retinitis pigmentosa. Cell Stem Cell. 2023; 30 (12): 1585- 1596.e6.
|
| [54] |
Humayun MS , Clegg DO , Dayan MS , et al. Long-term follow-up of a phase 1/2a clinical trial of a stem cell-derived bioengineered retinal pigment epithelium implant for geographic atrophy. Ophthalmology. 2024; 131 (6): 682- 691.
|
| [55] |
Ucgun NI , Zeki Fikret C , Sahin HM . Bone marrow-derived mesenchymal stem cell therapy in retinitis pigmentosa. Curr Stem Cell Res Ther. 2024.
|
| [56] |
da Cruz L , Soomro T , Georgiadis O , et al. The fate of RPE cells following hESC-RPE patch transplantation in haemorrhagic wet AMD: pigmentation, extension of pigmentation, thickness of transplant, assessment for proliferation and visual function-A 5 year-follow up. Diagnostics (Basel). 2024; 14 (10): 1005.
|
| [57] |
Wells GA , Shea B , O'Connell D , et al. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Accessed 2023..
|
| [58] |
Beck RW , Moke PS , Turpin AH , et al. A computerized method of visual acuity testing: adaptation of the early treatment of diabetic retinopathy study testing protocol. Am J Ophthalmol. 2003; 135 (2): 194- 205.
|
| [59] |
Chen X , Xu N , Li J , Zhao M , Huang L . Stem cell therapy for inherited retinal diseases: a systematic review and meta-analysis. Stem Cell Res Ther. 2023; 14 (1): 286.
|
| [60] |
Mataftsi A , Koutsimpogeorgos D , Brazitikos P , Ziakas N , Haidich AB . Is conversion of decimal visual acuity measurements to logMAR values reliable? Graefes Arch Clin Exp Ophthalmol. 2019; 257 (7): 1513- 1517.
|
| [61] |
Bonnet D . Biology of human bone marrow stem cells. Clin Exp Med. 2003; 3 (3): 140- 149.
|
| [62] |
Rix B , Maduro AH , Bridge KS , Grey W . Markers for human haematopoietic stem cells: the disconnect between an identification marker and its function. Front Physiol. 2022; 13: 1009160.
|
| [63] |
Khaboushan AS , Ebadpour N , Moghadam MMJ , Rezaee Z , Kajbafzadeh AM , Zolbin MM . Cell therapy for retinal degenerative disorders: a systematic review and three-level meta-analysis. J Transl Med. 2024; 22 (1): 227.
|
| [64] |
Li L , Yu Y , Lin S , Hu J . Changes in best-corrected visual acuity in patients with dry age-related macular degeneration after stem cell transplantation: systematic review and meta-analysis. Stem Cell Res Ther. 2022; 13 (1): 237.
|
RIGHTS & PERMISSIONS
The Author(s). Eye & ENT Research published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.