
Differences in auditory mismatch negativity and global functional connectivity caused by interaural time differences
Songjian Wang, Chunlin Li, Mengyue Wang, Meng Lin, Si Qian, Jiong Hu, Esther Pugh, Xu Zhang, Shuo Wang
Eye & ENT Research ›› 2025, Vol. 2 ›› Issue (1) : 32-42.
Differences in auditory mismatch negativity and global functional connectivity caused by interaural time differences
Our ability to localize low-frequency sounds relies on interaural time differences (ITD), a sensitivity that is fundamental to our ability to pinpoint sound sources in azimuth and segregate competing sound sources across a wide range of situations. However, the neural representation of ITD has not been well characterized. This study aimed to elucidate distinctions in evoked cortical potentials and global functional connectivity during the unattended processing of sound localization on the horizontal plane, by recording and analyzing the auditory mismatch negativity (MMN) in adults, employing a deviant-standard oddball paradigm. A centrally-positioned sound source at the midline of the horizontal plane (ITD = 0 μs) served as the standard stimulus, while lateralized sounds with varying ITDs constituted the deviants. Results of MMN characteristics and the distribution of theta band power revealed a contralateral regulation mechanism of sound localization. To delve deeper into functional connectivity dynamics among different deviant stimulus groups, we computed the phase lag index within the theta band. Augmented functional connectivity was found between frontal electrode pairs when sound stimuli were directed towards the central compared to peripheral locations. In addition, assessments of global efficiency demonstrated that the peripheral sound stimuli revealed a higher global efficiency for peripheral sound stimuli. These observations suggest that smaller deviation from the center angle engages enhanced top-down attentional modulation to salient features. In summary, our results reinforced the contralateral regulatory mechanism governing sound source localization and illuminated the unique characteristics of theta band neural responses.
auditory mismatch negativity / functional connectivity / interaural time difference / sound localization / theta band
[1] |
Risoud M , Hanson JN , Gauvrit F , et al. Sound source localization. Eur Ann Otorhinolaryngol Head Neck Dis. 2018; 135 (4): 259- 264.
CrossRef
Google scholar
|
[2] |
Rayleigh LXII . On our perception of sound direction. London, Edinburgh Dublin Phil Mag J Sci. 1907; 13 (74): 214- 232.
CrossRef
Google scholar
|
[3] |
Middlebrooks JC . Sound localization. Handb Clin Neurol. 2015; 129: 99- 116.
CrossRef
Google scholar
|
[4] |
Dai L , Best V , Shinn-Cunningham BG . Sensorineural hearing loss degrades behavioral and physiological measures of human spatial selective auditory attention. Proc Natl Acad Sci U S A. 2018; 115 (14): E3286- E3295.
CrossRef
Google scholar
|
[5] |
Kiki van der Heijden K , Rauschecker JP , de Gelder B , Formisano E . Cortical mechanisms of spatial hearing. Nat Rev Neurosci. 2019; 20 (10): 609- 623.
CrossRef
Google scholar
|
[6] |
Altman JA , Vaitulevich SP , Shestopalova LB , Varfolomeev AL . Mismatch negativity evoked by stationary and moving auditory images of different azimuthal positions. Neurosci Lett. 2005; 384 (3): 330- 335.
CrossRef
Google scholar
|
[7] |
Osakabe Y , Shiga T , Hoshino H , et al. Do tone duration changes that elicit the mismatch negativity also affect the preceding middle latency responses? Eur J Neurosci. 2020; 51 (11): 2270- 2276.
CrossRef
Google scholar
|
[8] |
Naatanen R , Paavilainen P , Rinne T , Alho K . The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol. 2007; 118 (12): 2544- 2590.
CrossRef
Google scholar
|
[9] |
Nager W , Kohlmetz C , Joppich G , Möbes J , Münte TF . Tracking of multiple sound sources defined by interaural time differences: brain potential evidence in humans. Neurosci Lett. 2003; 344 (3): 181- 184.
CrossRef
Google scholar
|
[10] |
Richter N , Schroger E , Rubsamen R . Hemispheric specialization during discrimination of sound sources reflected by MMN. Neuropsychologia. 2009; 47 (12): 2652- 2659.
CrossRef
Google scholar
|
[11] |
Lakatos P , O’Connell MN , Barczak A , et al. The thalamocortical circuit of auditory mismatch negativity. Biol Psychiatry. 2020; 87 (8): 770- 780.
CrossRef
Google scholar
|
[12] |
Deouell LY , Parnes A , Pickard N , Knight RT . Spatial location is accurately tracked by human auditory sensory memory: evidence from the mismatch negativity. Eur J Neurosci. 2006; 24 (5): 1488- 1494.
CrossRef
Google scholar
|
[13] |
Jiao X , Ying C , Tong S , Tang Y , Wang J , Sun J . The lateralization and reliability of spatial mismatch negativity elicited by auditory deviants with virtual spatial location. Int J Psychophysiol. 2021; 165: 92- 100.
CrossRef
Google scholar
|
[14] |
Ozmeral EJ , Eddins DA , Eddins AC . Electrophysiological responses to lateral shifts are not consistent with opponent-channel processing of interaural level differences. J Neurophysiol. 2019; 122 (2): 737- 748.
CrossRef
Google scholar
|
[15] |
Paavilainen P . The mismatch-negativity (MMN) component of the auditory event-related potential to violations of abstract regularities: a review. Int J Psychophysiol. 2013; 88 (2): 109- 123.
CrossRef
Google scholar
|
[16] |
Pakarinen S , Takegata R , Rinne T , Huotilainen M , Naatanen R . Measurement of extensive auditory discrimination profiles using the mismatch negativity (MMN) of the auditory event-related potential (ERP). Clin Neurophysiol. 2007; 118 (1): 177- 185.
CrossRef
Google scholar
|
[17] |
Ahveninen J , Kopco N , Jaaskelainen IP . Psychophysics and neuronal bases of sound localization in humans. Hear Res. 2014; 307: 86- 97.
CrossRef
Google scholar
|
[18] |
Da Costa S , Clarke S , Crottaz-Herbette S . Keeping track of sound objects in space: the contribution of early-stage auditory areas. Hear Res. 2018; 366: 17- 31.
CrossRef
Google scholar
|
[19] |
Heijden K , Rauschecker JP , Formisano E , Valente G , de Gelder B . Active sound localization sharpens spatial tuning in human primary auditory cortex. J Neurosci. 2018; 38 (40): 8574- 8587.
CrossRef
Google scholar
|
[20] |
Grothe B , Pecka M , McAlpine D . Mechanisms of sound localization in mammals. Physiol Rev. 2010; 90 (3): 983- 1012.
CrossRef
Google scholar
|
[21] |
Bednar A , Lalor EC . Neural tracking of auditory motion is reflected by delta phase and alpha power of EEG. Neuroimage. 2018; 181: 683- 691.
CrossRef
Google scholar
|
[22] |
Edmonds BA , Krumbholz K . Are interaural time and level differences represented by independent or integrated codes in the human auditory cortex? J Assoc Res Otolaryngol. 2014; 15 (1): 103- 114.
CrossRef
Google scholar
|
[23] |
Krumbholz K , Schönwiesner M , Rübsamen R , Zilles K , Fink GR , Von Cramon DY . Hierarchical processing of sound location and motion in the human brainstem and planum temporale. Eur J Neurosci. 2005; 21 (1): 230- 238.
CrossRef
Google scholar
|
[24] |
Salminen NH , Tiitinen H , Yrttiaho S , May PJ . The neural code for interaural time difference in human auditory cortex. J Acoust Soc Am. 2010; 127 (2): EL60- 65.
CrossRef
Google scholar
|
[25] |
Higgins NC , McLaughlin SA , Rinne T , Stecker GC . Evidence for cueindependent spatial representation in the human auditory cortex during active listening. Proc Natl Acad Sci U S A. 2017; 114 (36): E7602- E7611.
CrossRef
Google scholar
|
[26] |
Kappenman ES , Farrens JL , Zhang W , Stewart AX , Luck SJ . Erp core: an open resource for human event-related potential research. Neuroimage. 2021; 225: 117465.
CrossRef
Google scholar
|
[27] |
Kormendi J , Ferentzi E , Weiss B , Nagy Z . Topography of movementrelated delta and theta brain oscillations. Brain Topogr. 2021; 34 (5): 608- 617.
CrossRef
Google scholar
|
[28] |
Widmann A , Schroger E , Maess B . Digital filter design for electrophysiological data--a practical approach. J Neurosci Methods. 2015; 250: 34- 46.
CrossRef
Google scholar
|
[29] |
Pontifex MB , Miskovic V , Laszlo S . Evaluating the efficacy of fully automated approaches for the selection of eyeblink ICA components. Psychophysiology. 2017; 54 (5): 780- 791.
CrossRef
Google scholar
|
[30] |
Delorme A , Makeig S . EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004; 134 (1): 9- 21.
CrossRef
Google scholar
|
[31] |
Hu L , Xiao P , Zhang ZG , Mouraux A , Iannetti GD . Single-trial timefrequency analysis of electrocortical signals: baseline correction and beyond. Neuroimage. 2014; 84: 876- 887.
CrossRef
Google scholar
|
[32] |
Zhang J , Dong X , Wang L , et al. Gender differences in global functional connectivity during facial emotion processing: a visual MMN study. Front Behav Neurosci. 2018; 12: 220.
CrossRef
Google scholar
|
[33] |
Wang L , Wang W , Yan T , et al. Beta-band functional connectivity influences audiovisual integration in older age: an EEG study. Front Aging Neurosci. 2017; 9: 239.
CrossRef
Google scholar
|
[34] |
Wang J , Wang X , Xia M , Liao X , Evans A , He Y . GRETNA: a graph theoretical network analysis toolbox for imaging connectomics. Front Hum Neurosci. 2015; 9: 386.
CrossRef
Google scholar
|
[35] |
Altman JA , Vaitulevich SP , Shestopalova LB , Petropavlovskaia EA . How does mismatch negativity reflect auditory motion? Hear Res. 2010; 268 (1-2): 194- 201.
CrossRef
Google scholar
|
[36] |
Brunetti M , Belardinelli P , Caulo M , et al. Human brain activation during passive listening to sounds from different locations: an fMRI and MEG study. Hum Brain Mapp. 2005; 26 (4): 251- 261.
CrossRef
Google scholar
|
[37] |
Luo H , Liu Z , Poeppel D . Auditory cortex tracks both auditory and visual stimulus dynamics using low-frequency neuronal phase modulation. PLoS Biol. 2010; 8: e1000445.
CrossRef
Google scholar
|
[38] |
Feng W , Stormer VS , Martinez A , McDonald JJ , Hillyard SA . Involuntary orienting of attention to a sound desynchronizes the occipital alpha rhythm and improves visual perception. Neuroimage. 2017; 150: 318- 328.
CrossRef
Google scholar
|
[39] |
Wostmann M , Herrmann B , Maess B , Obleser J . Spatiotemporal dynamics of auditory attention synchronize with speech. Proc Natl Acad Sci U S A. 2016; 113 (14): 3873- 3878.
CrossRef
Google scholar
|
[40] |
Sauseng P , Griesmayr B , Freunberger R , Klimesch W . Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci Biobehav Rev. 2010; 34 (7): 1015- 1022.
CrossRef
Google scholar
|
[41] |
Uhlhaas PJ . Dysconnectivity, large-scale networks and neuronal dynamics in schizophrenia. Curr Opin Neurobiol. 2013; 23 (2): 283- 290.
CrossRef
Google scholar
|
[42] |
Symons AE , El-Deredy W , Schwartze M , Kotz SA . The functional role of neural oscillations in non-verbal emotional communication. Front Hum Neurosci. 2016; 10: 239.
CrossRef
Google scholar
|
[43] |
Bossi F , Premoli I , Pizzamiglio S , Balaban S , Ricciardelli P , Rivolta D . Theta- and gamma-band activity discriminates face, body and object perception. Front Hum Neurosci. 2020; 14: 74.
CrossRef
Google scholar
|
[44] |
Li LY , Schiffman J , Hu DK , Lopour BA , Martin EA . An effortful approach to social affiliation in schizophrenia: preliminary evidence of increased theta and alpha connectivity during a live social interaction. Brain Sci. 2021; 11 (10): 1346.
CrossRef
Google scholar
|
[45] |
Zhou Y , Liu Z , Sun Y , Zhang H , Ruan J . Altered EEG brain networks in patients with acute peripheral herpes zoster. J Pain Res. 2021; 14: 3429- 3436.
CrossRef
Google scholar
|
[46] |
Altmann CF , Ueda R , Bucher B , et al. Trading of dynamic interaural time and level difference cues and its effect on the auditory motiononset response measured with electroencephalography. Neuroimage. 2017; 159: 185- 194.
CrossRef
Google scholar
|
/
〈 |
|
〉 |