
The role of yes-associated protein in nasal inflammatory diseases
Bing Zhong, Yu Zhao
Eye & ENT Research ›› 2025, Vol. 2 ›› Issue (1) : 18-24.
The role of yes-associated protein in nasal inflammatory diseases
Yes-associated protein (YAP), a pivotal protein of the Hippo signaling pathway, plays a crucial role in regulating cell proliferation and differentiation. Emerging evidence highlights its significance in respiratory inflammatory disorders, including chronic rhinosinusitis, allergic rhinitis. This review delves into the impact of YAP on individuals affected by these ailments, with a specific focus on the role it plays in nasal mucosal epithelial cells. We further explore the interplay between YAP and the inflammatory mediators, outlining the pathological mechanisms through which it contributes to tissue restructuring in these contexts. Despite advancements, gaps persist in understanding YAP's broader role in clinical applications. Future research directions are proposed in this article to bridge these knowledge gaps.
allergic rhinitis / chronic rhinosinusitis / nasal inflammatory diseases / yes-associated protein
[1] |
Kolkhir P , Akdis CA , Akdis M , et al. Type 2 chronic inflammatory diseases: targets, therapies and unmet needs. Nat Rev Drug Discov. 2023; 22 (9): 743- 767.
CrossRef
Google scholar
|
[2] |
Wang W , Xu Y , Wang L , et al. Single-cell profiling identifies mechanisms of inflammatory heterogeneity in chronic rhinosinusitis. Nat Immunol. 2022; 23 (10): 1484- 1494.
CrossRef
Google scholar
|
[3] |
Bousquet J , Anto JM , Bachert C , et al. Allergic rhinitis. Nat Rev Dis Primers. 2020; 6 (1): 95.
CrossRef
Google scholar
|
[4] |
Bernstein JA , Bernstein JS , Makol R , Ward S . Allergic rhinitis: a review. JAMA. 2024; 331 (10): 866- 877.
CrossRef
Google scholar
|
[5] |
Huang K , Yang T , Xu J , et al. Prevalence, risk factors, and management of asthma in China: a national cross-sectional study. Lancet. 2019; 394 (10196): 407- 418.
CrossRef
Google scholar
|
[6] |
Asher MI , Montefort S , Bjorksten B , et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet. 2006; 368 (9537): 733- 743.
CrossRef
Google scholar
|
[7] |
Wang X , Moylan B , Leopold DA , et al. Mutation in the gene responsible for cystic fibrosis and predisposition to chronic rhinosinusitis in the general population. JAMA. 2000; 284 (14): 1814- 1819.
CrossRef
Google scholar
|
[8] |
Schwartz BS , Al-Sayouri SA , Pollak JS , et al. Strong and consistent associations of precedent chronic rhinosinusitis with risk of noncystic fibrosis bronchiectasis. J Allergy Clin Immunol. 2022; 150 (3): 701- 708.e704.
CrossRef
Google scholar
|
[9] |
Moya IM , Halder G . Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol. 2019; 20 (4): 211- 226.
CrossRef
Google scholar
|
[10] |
Dey A , Varelas X , Guan KL . Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discov. 2020; 19 (7): 480- 494.
CrossRef
Google scholar
|
[11] |
Dupont S , Morsut L , Aragona M , et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011; 474 (7350): 179- 183.
CrossRef
Google scholar
|
[12] |
Driskill JH , Pan D . Control of stem cell renewal and fate by YAP and TAZ. Nat Rev Mol Cell Biol. 2023; 24 (12): 895- 911.
CrossRef
Google scholar
|
[13] |
Panciera T , Azzolin L , Cordenonsi M , Piccolo S . Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol. 2017; 18 (12): 758- 770.
CrossRef
Google scholar
|
[14] |
Koo JH , Guan KL . Interplay between YAP/TAZ and metabolism. Cell Metab. 2018; 28 (2): 196- 206.
CrossRef
Google scholar
|
[15] |
Totaro A , Panciera T , Piccolo S . YAP/TAZ upstream signals and downstream responses. Nat Cell Biol. 2018; 20 (8): 888- 899.
CrossRef
Google scholar
|
[16] |
Wu J , Minikes AM , Gao M , et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature. 2019; 572 (7769): 402- 406.
CrossRef
Google scholar
|
[17] |
Yu FX , Zhao B , Panupinthu N , et al. Regulation of the hippo-YAP pathway by G-protein-coupled receptor signaling. Cell. 2024; 187 (6): 1563- 1564.
CrossRef
Google scholar
|
[18] |
Kurppa KJ , Liu Y , To C , et al. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell. 2020; 37 (1): 104- 122.e112.
|
[19] |
Sladitschek-Martens HL , Guarnieri A , Brumana G , et al. YAP/TAZ activity in stromal cells prevents ageing by controlling cGASSTING. Nature. 2022; 607 (7920): 790- 798.
CrossRef
Google scholar
|
[20] |
Wang L , Luo JY , Li B , et al. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature. 2016; 540 (7634): 579- 582.
CrossRef
Google scholar
|
[21] |
Wang Z , Kim SY , Tu W , et al. Extracellular vesicles in fatty liver promote a metastatic tumor microenvironment. Cell Metab. 2023; 35 (7): 1209- 1226.e1213.
CrossRef
Google scholar
|
[22] |
Zhang Z , Du J , Wang S , et al. OTUB2 promotes cancer metastasis via hippo-independent activation of YAP and TAZ. Mol Cell. 2019; 73 (1): 7- 21.e27.
CrossRef
Google scholar
|
[23] |
Ju J , Zhang H , Lin M , et al. The alanyl-tRNA synthetase AARS1 moonlights as a lactyltransferase to promote YAP signaling in gastric cancer. J Clin Investig. 2024; 134 (10).
CrossRef
Google scholar
|
[24] |
Wang D , Zhang Y , Xu X , et al. YAP promotes the activation of NLRP3 inflammasome via blocking K27-linked polyubiquitination of NLRP3. Nat Commun. 2021; 12 (1): 2674.
CrossRef
Google scholar
|
[25] |
Zhong B , Liu J , Ong HH , et al. Hypoxia-reduced YAP phosphorylation enhances expression of Mucin5AC in nasal epithelial cells of chronic rhinosinusitis with nasal polyps. Allergy. 2024.
CrossRef
Google scholar
|
[26] |
Qiu H , Liu J , Wu Q , et al. An in vitro study of the impact of IL-17A and IL-22 on ciliogenesis in nasal polyps epithelium via the HippoYAP pathway. J Allergy Clin Immunol. 2024; 154 (5): 1180- 1194.
CrossRef
Google scholar
|
[27] |
Chapurin N , Wu J , Labby AB , Chandra RK , Chowdhury NI , Turner JH . Current insight into treatment of chronic rhinosinusitis: phenotypes, endotypes, and implications for targeted therapeutics. J Allergy Clin Immunol. 2022; 150 (1): 22- 32.
CrossRef
Google scholar
|
[28] |
Bachert C , Han JK , Desrosiers M , et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebocontrolled, parallel-group phase 3 trials. Lancet. 2019; 394 (10209): 1638- 1650.
CrossRef
Google scholar
|
[29] |
Bachert C , Marple B , Schlosser RJ , et al. Adult chronic rhinosinusitis. Nat Rev Dis Primers. 2020; 6 (1): 86.
CrossRef
Google scholar
|
[30] |
Fokkens WJ , Lund VJ , Hopkins C , et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020; 58 (Suppl S29): 1- 464.
|
[31] |
Hua HL , Li S , Xu Y , et al. Differentiation of eosinophilic and noneosinophilic chronic rhinosinusitis on preoperative computed tomography using deep learning. Clin Otolaryngol. 2023; 48 (2): 330- 338.
CrossRef
Google scholar
|
[32] |
Zhu Z , Wang W , Zhang X , et al. Nasal fluid cytology and cytokine profiles of eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Rhinology. 2020; 58 (4): 314- 322.
CrossRef
Google scholar
|
[33] |
Hoggard M , Wagner Mackenzie B , Jain R , Taylor MW , Biswas K , Douglas RG . Chronic rhinosinusitis and the evolving understanding of microbial ecology in chronic inflammatory mucosal disease. Clin Microbiol Rev. 2017; 30 (1): 321- 348.
CrossRef
Google scholar
|
[34] |
Volpe S , Irish J , Palumbo S , et al. Viral infections and chronic rhinosinusitis. J Allergy Clin Immunol. 2023; 152 (4): 819- 826.
CrossRef
Google scholar
|
[35] |
Kennedy DW . The role of Staphylococcus aureus in chronic rhinosinusitis. Int Forum Allergy Rhinol. 2014; 4 (12): 951- 952.
CrossRef
Google scholar
|
[36] |
Zou X , Wang K , Deng Y , et al. Hypoxia-inducible factor 2alpha promotes pathogenic polarization of stem-like Th2 cells via modulation of phospholipid metabolism. Immunity. 2024; 57 (12): 2808- 2826.e2808.
CrossRef
Google scholar
|
[37] |
Khalil SM , Bernstein I , Kulaga H , et al. Interleukin 13 (IL-13) alters hypoxia-associated genes and upregulates CD73. Int Forum Allergy Rhinol. 2020; 10 (9): 1096- 1102.
CrossRef
Google scholar
|
[38] |
Kidoguchi M , Imoto Y , Noguchi E , et al. Middle meatus microbiome in patients with eosinophilic chronic rhinosinusitis in a Japanese population. J Allergy Clin Immunol. 2023; 152 (6): 1669- 1676.e1663.
CrossRef
Google scholar
|
[39] |
Abreu NA , Nagalingam NA , Song Y , et al. Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis. Sci Transl Med. 2012; 4 (151): 151ra124.
CrossRef
Google scholar
|
[40] |
Lee SB , Yi JS , Lee BJ , et al. Human rhinovirus serotypes in the nasal washes and mucosa of patients with chronic rhinosinusitis. Int Forum Allergy Rhinol. 2015; 5 (3): 197- 203.
CrossRef
Google scholar
|
[41] |
Wang JH , Kwon HJ , Jang YJ . Rhinovirus enhances various bacterial adhesions to nasal epithelial cells simultaneously. Laryngoscope. 2009; 119 (7): 1406- 1411.
CrossRef
Google scholar
|
[42] |
Yeo NK , Jang YJ . Rhinovirus infection-induced alteration of tight junction and adherens junction components in human nasal epithelial cells. Laryngoscope. 2010; 120 (2): 346- 352.
CrossRef
Google scholar
|
[43] |
Liu T , Zhou YT , Wang LQ , et al. NOD-like receptor family, pyrin domain containing 3 (NLRP3) contributes to inflammation, pyroptosis, and mucin production in human airway epithelium on rhinovirus infection. J Allergy Clin Immunol. 2019; 144 (3): 777- 787.e779.
CrossRef
Google scholar
|
[44] |
Zhong B , Sun S , Tan KS , et al. Hypoxia-inducible factor 1alpha activates the NLRP3 inflammasome to regulate epithelial differentiation in chronic rhinosinusitis. J Allergy Clin Immunol. 2023; 152 (6): 1444- 1459.e1414.
CrossRef
Google scholar
|
[45] |
Zhong B , Seah JJ , Liu F , Ba L , Du J , Wang Y . The role of hypoxia in the pathophysiology of chronic rhinosinusitis. Allergy. 2022; 77 (11): 3217- 3232.
CrossRef
Google scholar
|
[46] |
Zhong B , Du J , Liu F , et al. Hypoxia-induced factor-1alpha induces NLRP3 expression by M1 macrophages in noneosinophilic chronic rhinosinusitis with nasal polyps. Allergy. 2021; 76 (2): 582- 586.
CrossRef
Google scholar
|
[47] |
Zhong B , Du J , Liu F , et al. Activation of the mTOR/HIF-1alpha/VEGF axis promotes M1 macrophage polarization in non-eosinophilic chronic rhinosinusitis with nasal polyps. Allergy. 2022; 77 (2): 643- 646.
CrossRef
Google scholar
|
[48] |
Wei Y , Xia W , Ye X , et al. The antimicrobial protein short palate, lung, and nasal epithelium clone 1 (SPLUNC1) is differentially modulated in eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2014; 133 (2): 420- 428.
CrossRef
Google scholar
|
[49] |
Wagstaffe HR , Thwaites RS , Reynaldi A , et al. Mucosal and systemic immune correlates of viral control after SARS-CoV-2 infection challenge in seronegative adults. Sci Immunol. 2024; 9 (92): eadj9285.
CrossRef
Google scholar
|
[50] |
Yan B , Lan F , Li J , Wang C , Zhang L . The mucosal concept in chronic rhinosinusitis: focus on the epithelial barrier. J Allergy Clin Immunol. 2024; 153 (5): 1206- 1214.
CrossRef
Google scholar
|
[51] |
Ahn SH , Oh JT , Kim DH , et al. S100A9 induces tissue remodeling of human nasal epithelium in chronic rhinosinusitis with nasal polyp. Int Forum Allergy Rhinol. 2024; 15 (2): 135- 148.
CrossRef
Google scholar
|
[52] |
Khalmuratova R , Ryu JS , Hwang JH , et al. NRP1 antagonism as a novel therapeutic target in nasal polyps of patients with chronic rhinosinusitis. Allergy. 2024; 79 (11): 3095- 3107.
CrossRef
Google scholar
|
[53] |
Soliai MM , Kato A , Naughton KA , et al. Epigenetic responses to rhinovirus exposure in airway epithelial cells are correlated with key transcriptional pathways in chronic rhinosinusitis. Allergy. 2023; 78 (10): 2698- 2711.
CrossRef
Google scholar
|
[54] |
Schleimer RP . Immunopathogenesis of chronic rhinosinusitis and nasal polyposis. Annu Rev Pathol. 2017; 12 (1): 331- 357.
CrossRef
Google scholar
|
[55] |
Kato A , Schleimer RP , Bleier BS . Mechanisms and pathogenesis of chronic rhinosinusitis. J Allergy Clin Immunol. 2022; 149 (5): 1491- 1503.
CrossRef
Google scholar
|
[56] |
Hong H , Liao S , Chen F , Yang Q , Wang DY . Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy. 2020; 75 (11): 2794- 2804.
CrossRef
Google scholar
|
[57] |
Soyka MB , Wawrzyniak P , Eiwegger T , et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-gamma and IL-4. J Allergy Clin Immunol. 2012; 130 (5): 1087- 1096.e1010.
CrossRef
Google scholar
|
[58] |
Xiao C , Puddicombe SM , Field S , et al. Defective epithelial barrier function in asthma. J Allergy Clin Immunol. 2011; 128 (3): 549- 556. e541.
CrossRef
Google scholar
|
[59] |
Huang ZQ , Liu J , Sun LY , et al. Updated epithelial barrier dysfunction in chronic rhinosinusitis: targeting pathophysiology and treatment response of tight junctions. Allergy. 2024; 79 (5): 1146- 1165.
CrossRef
Google scholar
|
[60] |
Pace E , Scafidi V , Di Bona D , et al. Increased expression of IL-19 in the epithelium of patients with chronic rhinosinusitis and nasal polyps. Allergy. 2012; 67 (7): 878- 886.
CrossRef
Google scholar
|
[61] |
Liu X , Tong X , Zou L , et al. A genome-wide association study reveals the relationship between human genetic variation and the nasal microbiome. Commun Biol. 2024; 7 (1): 139.
CrossRef
Google scholar
|
[62] |
Deng H , Sun Y , Wang W , et al. The hippo pathway effector Yesassociated protein promotes epithelial proliferation and remodeling in chronic rhinosinusitis with nasal polyps. Allergy. 2019; 74 (4): 731- 742.
CrossRef
Google scholar
|
[63] |
Deng H , Li M , Zheng R , et al. YAP promotes cell proliferation and epithelium-derived cytokine expression via NF-kappaB pathway in nasal polyps. J Asthma Allergy. 2021; 14: 839- 850.
CrossRef
Google scholar
|
[64] |
Renaud M , Venkatasamy A , Escudier E , et al. Characterization of the ciliary beating efficiency in primary diffuse chronic rhinosinusitis. Rhinology. 2024; 62 (6): 763- 765.
CrossRef
Google scholar
|
[65] |
Akdis CA . Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021; 21 (11): 739- 751.
CrossRef
Google scholar
|
[66] |
Berni Canani R , Caminati M , Carucci L , Eguiluz-Gracia I . Skin, gut, and lung barrier: physiological interface and target of intervention for preventing and treating allergic diseases. Allergy. 2024; 79 (6): 1485- 1500.
CrossRef
Google scholar
|
[67] |
Jiao J , Duan S , Meng N , Li Y , Fan E , Zhang L . Role of IFN-gamma, IL-13, and IL-17 on mucociliary differentiation of nasal epithelial cells in chronic rhinosinusitis with nasal polyps. Clin Exp Allergy. 2016; 46 (3): 449- 460.
CrossRef
Google scholar
|
[68] |
Zhao R , Guo Z , Dong W , et al. Effects of PM2.5 on mucus secretion and tissue remodeling in a rabbit model of chronic rhinosinusitis. Int Forum Allergy Rhinol. 2018; 8 (11): 1349- 1355.
CrossRef
Google scholar
|
[69] |
Lai Y , Chen B , Shi J , Palmer JN , Kennedy DW , Cohen NA . Inflammation-mediated upregulation of centrosomal protein 110, a negative modulator of ciliogenesis, in patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2011; 128 (6): 1207- 1215.e1201.
CrossRef
Google scholar
|
[70] |
Yuan T , Zheng R , Liu J , et al. Role of yes-associated protein in interleukin-13 induced nasal remodeling of chronic rhinosinusitis with nasal polyps. Allergy. 2021; 76 (2): 600- 604.
CrossRef
Google scholar
|
[71] |
Yuan T , Zheng R , Zhou XM , et al. Abnormal expression of YAP is associated with proliferation, differentiation, neutrophil infiltration, and adverse outcome in patients with nasal inverted papilloma. Front Cell Dev Biol. 2021; 9: 625251.
CrossRef
Google scholar
|
[72] |
Li Y . The expression of MUC5AC in patients with rhinosinusitis: a systematic review and meta-analysis. Clin Transl Allergy. 2024; 14 (11): e70003.
CrossRef
Google scholar
|
[73] |
Zhang Y , Wang X , Jiao J , Li Y , Song X , Zhang L . Expression of T helper cytokines associated with MUC5AC secretion in eosinophilbased endotypes of nasal polyps. Allergy. 2021; 76 (2): 604- 609.
CrossRef
Google scholar
|
[74] |
Ye Y , Zhao J , Ye J , et al. The role of autophagy in the overexpression of MUC5AC in patients with chronic rhinosinusitis. Int Immunopharmacol. 2019; 71: 169- 180.
CrossRef
Google scholar
|
[75] |
Zhang Y , Derycke L , Holtappels G , et al. Th2 cytokines orchestrate the secretion of MUC5AC and MUC5B in IL-5-positive chronic rhinosinusitis with nasal polyps. Allergy. 2019; 74 (1): 131- 140.
CrossRef
Google scholar
|
[76] |
Kim HK , Kook JH , Kang KR , Oh DJ , Kim TH , Lee SH . Increased expression of hCLCA1 in chronic rhinosinusitis and its contribution to produce MUC5AC. Laryngoscope. 2016; 126 (11): E347- E355.
CrossRef
Google scholar
|
[77] |
Bai J , Miao B , Wu X , et al. Enhanced expression of SAM-pointed domain-containing Ets-like factor in chronic rhinosinusitis with nasal polyps. Laryngoscope. 2015; 125 (3): E97- E103.
CrossRef
Google scholar
|
[78] |
Lan F , Zhong H , Zhang N , et al. IFN-lambda1 enhances Staphylococcus aureus clearance in healthy nasal mucosa but not in nasal polyps. J Allergy Clin Immunol. 2019; 143 (4): 1416- 1425.e1414.
CrossRef
Google scholar
|
[79] |
Seshadri S , Lu X , Purkey MR , et al. Increased expression of the epithelial anion transporter pendrin/SLC26A4 in nasal polyps of patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2015; 136 (6): 1548- 1558.e1547.
CrossRef
Google scholar
|
[80] |
Zhou Y , Jiang Y , Peng W , Li M , Chen H , Chen S . The diverse roles of YAP in the regulation of human nasal epithelial remodeling. Tissue Cell. 2021; 72: 101592.
CrossRef
Google scholar
|
[81] |
Ordovas-Montanes J , Dwyer DF , Nyquist SK , et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature. 2018; 560 (7720): 649- 654.
CrossRef
Google scholar
|
[82] |
Huang H , Tan KS , Zhou S , et al. p63(+)Krt5(+) basal cells are increased in the squamous metaplastic epithelium of patients with radiation-induced chronic Rhinosinusitis. Radiat Oncol. 2020; 15 (1): 222.
CrossRef
Google scholar
|
[83] |
Li CW , Shi L , Zhang KK , et al. Role of p63/p73 in epithelial remodeling and their response to steroid treatment in nasal polyposis. J Allergy Clin Immunol. 2011; 127 (3): 765- 772.e761.
CrossRef
Google scholar
|
[84] |
Kawakita K , Kouzaki H , Murao T , et al. Role of basal cells in nasal polyp epithelium in the pathophysiology of eosinophilic chronic rhinosinusitis (eCRS). Allergol Int. 2024; 73 (4): 563- 572.
CrossRef
Google scholar
|
[85] |
Zhong B , Sun S , Tan KS , et al. HIF-1alpha activates NLRP3 inflammasome to regulate epithelial differentiation in chronic rhinosinusitis. J Allergy Clin Immunol. 2023.
CrossRef
Google scholar
|
[86] |
Zihni C , Mills C , Matter K , Balda MS . Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol. 2016; 17 (9): 564- 580.
CrossRef
Google scholar
|
[87] |
Gunzel D , Yu AS . Claudins and the modulation of tight junction permeability. Physiol Rev. 2013; 93 (2): 525- 569.
CrossRef
Google scholar
|
[88] |
Fasano A . Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev. 2011; 91 (1): 151- 175.
CrossRef
Google scholar
|
[89] |
Jiao J , Wang C , Zhang L . Epithelial physical barrier defects in chronic rhinosinusitis. Expert Rev Clin Immunol. 2019; 15 (6): 679- 688.
CrossRef
Google scholar
|
[90] |
Song J , Zhao C , Wang E , et al. Downregulation of tight junction protein MAGI1 by interferon-gamma contributes to barrier dysfunction in chronic rhinosinusitis with nasal polyps. Allergy. 2024.
CrossRef
Google scholar
|
[91] |
Wu H , Li Y , Li X , et al. IL-17A disrupts the nasal mucosal epithelial barrier in patients with chronic rhinosinusitis by activating the ERK/STAT3 pathway. Rhinology. 2024; 62 (6): 726- 738.
CrossRef
Google scholar
|
[92] |
Jiang X , Shu L , Liu Y , et al. YES-associated protein-regulated Smad7 worsen epithelial barrier injury of chronic sinusitis with nasal polyps. Immun Inflamm Dis. 2023; 11 (6): e907.
CrossRef
Google scholar
|
[93] |
Yang J , Antin P , Berx G , et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2020; 21 (6): 341- 352.
CrossRef
Google scholar
|
[94] |
Cui J , Zhang C , Lee JE , et al. MLL3 loss drives metastasis by promoting a hybrid epithelial-mesenchymal transition state. Nat Cell Biol. 2023; 25 (1): 145- 158.
CrossRef
Google scholar
|
[95] |
Lamouille S , Xu J , Derynck R . Molecular mechanisms of epithelialmesenchymal transition. Nat Rev Mol Cell Biol. 2014; 15 (3): 178- 196.
CrossRef
Google scholar
|
[96] |
Thiery JP , Acloque H , Huang RY , Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell. 2009; 139 (5): 871- 890.
CrossRef
Google scholar
|
[97] |
Acloque H , Adams MS , Fishwick K , Bronner-Fraser M , Nieto MA . Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Investig. 2009; 119 (6): 1438- 1449.
CrossRef
Google scholar
|
[98] |
Liu C , Wang K , Liu W , Zhang J , Fan Y , Sun Y . ALOX15(+) M2 macrophages contribute to epithelial remodeling in eosinophilic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2024; 154 (3): 592- 608.
CrossRef
Google scholar
|
[99] |
Shin HW , Cho K , Kim DW , et al. Hypoxia-inducible factor 1 mediates nasal polypogenesis by inducing epithelial-to-mesenchymal transition. Am J Respir Crit Care Med. 2012; 185 (9): 944- 954.
CrossRef
Google scholar
|
[100] |
Lee M , Kim DW , Yoon H , et al. Sirtuin 1 attenuates nasal polypogenesis by suppressing epithelial-to-mesenchymal transition. J Allergy Clin Immunol. 2016; 137 (1): 87- 98.e87.
CrossRef
Google scholar
|
[101] |
Zhan J , Zhan H , Zheng J , Wei X , Fu Y . YAP1 expression in nasal polyps and its relationship with epithelial mesenchymal transition. Am J Transl Res. 2021; 13 (6): 6568- 6575.
|
[102] |
Miao P , Jiang Y , Jian Y , et al. Exacerbation of allergic rhinitis by the commensal bacterium Streptococcus salivarius. Nat Microbiol. 2023; 8 (2): 218- 230.
CrossRef
Google scholar
|
[103] |
Waage J , Standl M , Curtin JA , et al. Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis. Nat Genet. 2018; 50 (8): 1072- 1080.
CrossRef
Google scholar
|
[104] |
Iinuma T , Kiuchi M , Hirahara K , et al. Single-cell immunoprofiling after immunotherapy for allergic rhinitis reveals functional suppression of pathogenic T(H)2 cells and clonal conversion. J Allergy Clin Immunol. 2022; 150 (4): 850- 860.e855.
CrossRef
Google scholar
|
[105] |
Chen M , Zheng R , Li F , et al. Genetic variants in Hippo pathway genes are associated with house dust mite-induced allergic rhinitis in a Chinese population. Clin Transl Allergy. 2021; 11 (10): e12077.
CrossRef
Google scholar
|
/
〈 |
|
〉 |