The role of yes-associated protein in nasal inflammatory diseases

Bing Zhong, Yu Zhao

Eye & ENT Research ›› 2025, Vol. 2 ›› Issue (1) : 18-24.

PDF(734 KB)
PDF(734 KB)
Eye & ENT Research ›› 2025, Vol. 2 ›› Issue (1) : 18-24. DOI: 10.1002/eer3.70001
REVIEW ARTICLE

The role of yes-associated protein in nasal inflammatory diseases

Author information +
History +

Abstract

Yes-associated protein (YAP), a pivotal protein of the Hippo signaling pathway, plays a crucial role in regulating cell proliferation and differentiation. Emerging evidence highlights its significance in respiratory inflammatory disorders, including chronic rhinosinusitis, allergic rhinitis. This review delves into the impact of YAP on individuals affected by these ailments, with a specific focus on the role it plays in nasal mucosal epithelial cells. We further explore the interplay between YAP and the inflammatory mediators, outlining the pathological mechanisms through which it contributes to tissue restructuring in these contexts. Despite advancements, gaps persist in understanding YAP's broader role in clinical applications. Future research directions are proposed in this article to bridge these knowledge gaps.

Keywords

allergic rhinitis / chronic rhinosinusitis / nasal inflammatory diseases / yes-associated protein

Cite this article

Download citation ▾
Bing Zhong, Yu Zhao. The role of yes-associated protein in nasal inflammatory diseases. Eye & ENT Research, 2025, 2(1): 18‒24 https://doi.org/10.1002/eer3.70001

References

[1]
Kolkhir P , Akdis CA , Akdis M , et al. Type 2 chronic inflammatory diseases: targets, therapies and unmet needs. Nat Rev Drug Discov. 2023; 22 (9): 743- 767.
CrossRef Google scholar
[2]
Wang W , Xu Y , Wang L , et al. Single-cell profiling identifies mechanisms of inflammatory heterogeneity in chronic rhinosinusitis. Nat Immunol. 2022; 23 (10): 1484- 1494.
CrossRef Google scholar
[3]
Bousquet J , Anto JM , Bachert C , et al. Allergic rhinitis. Nat Rev Dis Primers. 2020; 6 (1): 95.
CrossRef Google scholar
[4]
Bernstein JA , Bernstein JS , Makol R , Ward S . Allergic rhinitis: a review. JAMA. 2024; 331 (10): 866- 877.
CrossRef Google scholar
[5]
Huang K , Yang T , Xu J , et al. Prevalence, risk factors, and management of asthma in China: a national cross-sectional study. Lancet. 2019; 394 (10196): 407- 418.
CrossRef Google scholar
[6]
Asher MI , Montefort S , Bjorksten B , et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet. 2006; 368 (9537): 733- 743.
CrossRef Google scholar
[7]
Wang X , Moylan B , Leopold DA , et al. Mutation in the gene responsible for cystic fibrosis and predisposition to chronic rhinosinusitis in the general population. JAMA. 2000; 284 (14): 1814- 1819.
CrossRef Google scholar
[8]
Schwartz BS , Al-Sayouri SA , Pollak JS , et al. Strong and consistent associations of precedent chronic rhinosinusitis with risk of noncystic fibrosis bronchiectasis. J Allergy Clin Immunol. 2022; 150 (3): 701- 708.e704.
CrossRef Google scholar
[9]
Moya IM , Halder G . Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol. 2019; 20 (4): 211- 226.
CrossRef Google scholar
[10]
Dey A , Varelas X , Guan KL . Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discov. 2020; 19 (7): 480- 494.
CrossRef Google scholar
[11]
Dupont S , Morsut L , Aragona M , et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011; 474 (7350): 179- 183.
CrossRef Google scholar
[12]
Driskill JH , Pan D . Control of stem cell renewal and fate by YAP and TAZ. Nat Rev Mol Cell Biol. 2023; 24 (12): 895- 911.
CrossRef Google scholar
[13]
Panciera T , Azzolin L , Cordenonsi M , Piccolo S . Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol. 2017; 18 (12): 758- 770.
CrossRef Google scholar
[14]
Koo JH , Guan KL . Interplay between YAP/TAZ and metabolism. Cell Metab. 2018; 28 (2): 196- 206.
CrossRef Google scholar
[15]
Totaro A , Panciera T , Piccolo S . YAP/TAZ upstream signals and downstream responses. Nat Cell Biol. 2018; 20 (8): 888- 899.
CrossRef Google scholar
[16]
Wu J , Minikes AM , Gao M , et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature. 2019; 572 (7769): 402- 406.
CrossRef Google scholar
[17]
Yu FX , Zhao B , Panupinthu N , et al. Regulation of the hippo-YAP pathway by G-protein-coupled receptor signaling. Cell. 2024; 187 (6): 1563- 1564.
CrossRef Google scholar
[18]
Kurppa KJ , Liu Y , To C , et al. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell. 2020; 37 (1): 104- 122.e112.
[19]
Sladitschek-Martens HL , Guarnieri A , Brumana G , et al. YAP/TAZ activity in stromal cells prevents ageing by controlling cGASSTING. Nature. 2022; 607 (7920): 790- 798.
CrossRef Google scholar
[20]
Wang L , Luo JY , Li B , et al. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature. 2016; 540 (7634): 579- 582.
CrossRef Google scholar
[21]
Wang Z , Kim SY , Tu W , et al. Extracellular vesicles in fatty liver promote a metastatic tumor microenvironment. Cell Metab. 2023; 35 (7): 1209- 1226.e1213.
CrossRef Google scholar
[22]
Zhang Z , Du J , Wang S , et al. OTUB2 promotes cancer metastasis via hippo-independent activation of YAP and TAZ. Mol Cell. 2019; 73 (1): 7- 21.e27.
CrossRef Google scholar
[23]
Ju J , Zhang H , Lin M , et al. The alanyl-tRNA synthetase AARS1 moonlights as a lactyltransferase to promote YAP signaling in gastric cancer. J Clin Investig. 2024; 134 (10).
CrossRef Google scholar
[24]
Wang D , Zhang Y , Xu X , et al. YAP promotes the activation of NLRP3 inflammasome via blocking K27-linked polyubiquitination of NLRP3. Nat Commun. 2021; 12 (1): 2674.
CrossRef Google scholar
[25]
Zhong B , Liu J , Ong HH , et al. Hypoxia-reduced YAP phosphorylation enhances expression of Mucin5AC in nasal epithelial cells of chronic rhinosinusitis with nasal polyps. Allergy. 2024.
CrossRef Google scholar
[26]
Qiu H , Liu J , Wu Q , et al. An in vitro study of the impact of IL-17A and IL-22 on ciliogenesis in nasal polyps epithelium via the HippoYAP pathway. J Allergy Clin Immunol. 2024; 154 (5): 1180- 1194.
CrossRef Google scholar
[27]
Chapurin N , Wu J , Labby AB , Chandra RK , Chowdhury NI , Turner JH . Current insight into treatment of chronic rhinosinusitis: phenotypes, endotypes, and implications for targeted therapeutics. J Allergy Clin Immunol. 2022; 150 (1): 22- 32.
CrossRef Google scholar
[28]
Bachert C , Han JK , Desrosiers M , et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebocontrolled, parallel-group phase 3 trials. Lancet. 2019; 394 (10209): 1638- 1650.
CrossRef Google scholar
[29]
Bachert C , Marple B , Schlosser RJ , et al. Adult chronic rhinosinusitis. Nat Rev Dis Primers. 2020; 6 (1): 86.
CrossRef Google scholar
[30]
Fokkens WJ , Lund VJ , Hopkins C , et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020; 58 (Suppl S29): 1- 464.
[31]
Hua HL , Li S , Xu Y , et al. Differentiation of eosinophilic and noneosinophilic chronic rhinosinusitis on preoperative computed tomography using deep learning. Clin Otolaryngol. 2023; 48 (2): 330- 338.
CrossRef Google scholar
[32]
Zhu Z , Wang W , Zhang X , et al. Nasal fluid cytology and cytokine profiles of eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Rhinology. 2020; 58 (4): 314- 322.
CrossRef Google scholar
[33]
Hoggard M , Wagner Mackenzie B , Jain R , Taylor MW , Biswas K , Douglas RG . Chronic rhinosinusitis and the evolving understanding of microbial ecology in chronic inflammatory mucosal disease. Clin Microbiol Rev. 2017; 30 (1): 321- 348.
CrossRef Google scholar
[34]
Volpe S , Irish J , Palumbo S , et al. Viral infections and chronic rhinosinusitis. J Allergy Clin Immunol. 2023; 152 (4): 819- 826.
CrossRef Google scholar
[35]
Kennedy DW . The role of Staphylococcus aureus in chronic rhinosinusitis. Int Forum Allergy Rhinol. 2014; 4 (12): 951- 952.
CrossRef Google scholar
[36]
Zou X , Wang K , Deng Y , et al. Hypoxia-inducible factor 2alpha promotes pathogenic polarization of stem-like Th2 cells via modulation of phospholipid metabolism. Immunity. 2024; 57 (12): 2808- 2826.e2808.
CrossRef Google scholar
[37]
Khalil SM , Bernstein I , Kulaga H , et al. Interleukin 13 (IL-13) alters hypoxia-associated genes and upregulates CD73. Int Forum Allergy Rhinol. 2020; 10 (9): 1096- 1102.
CrossRef Google scholar
[38]
Kidoguchi M , Imoto Y , Noguchi E , et al. Middle meatus microbiome in patients with eosinophilic chronic rhinosinusitis in a Japanese population. J Allergy Clin Immunol. 2023; 152 (6): 1669- 1676.e1663.
CrossRef Google scholar
[39]
Abreu NA , Nagalingam NA , Song Y , et al. Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis. Sci Transl Med. 2012; 4 (151): 151ra124.
CrossRef Google scholar
[40]
Lee SB , Yi JS , Lee BJ , et al. Human rhinovirus serotypes in the nasal washes and mucosa of patients with chronic rhinosinusitis. Int Forum Allergy Rhinol. 2015; 5 (3): 197- 203.
CrossRef Google scholar
[41]
Wang JH , Kwon HJ , Jang YJ . Rhinovirus enhances various bacterial adhesions to nasal epithelial cells simultaneously. Laryngoscope. 2009; 119 (7): 1406- 1411.
CrossRef Google scholar
[42]
Yeo NK , Jang YJ . Rhinovirus infection-induced alteration of tight junction and adherens junction components in human nasal epithelial cells. Laryngoscope. 2010; 120 (2): 346- 352.
CrossRef Google scholar
[43]
Liu T , Zhou YT , Wang LQ , et al. NOD-like receptor family, pyrin domain containing 3 (NLRP3) contributes to inflammation, pyroptosis, and mucin production in human airway epithelium on rhinovirus infection. J Allergy Clin Immunol. 2019; 144 (3): 777- 787.e779.
CrossRef Google scholar
[44]
Zhong B , Sun S , Tan KS , et al. Hypoxia-inducible factor 1alpha activates the NLRP3 inflammasome to regulate epithelial differentiation in chronic rhinosinusitis. J Allergy Clin Immunol. 2023; 152 (6): 1444- 1459.e1414.
CrossRef Google scholar
[45]
Zhong B , Seah JJ , Liu F , Ba L , Du J , Wang Y . The role of hypoxia in the pathophysiology of chronic rhinosinusitis. Allergy. 2022; 77 (11): 3217- 3232.
CrossRef Google scholar
[46]
Zhong B , Du J , Liu F , et al. Hypoxia-induced factor-1alpha induces NLRP3 expression by M1 macrophages in noneosinophilic chronic rhinosinusitis with nasal polyps. Allergy. 2021; 76 (2): 582- 586.
CrossRef Google scholar
[47]
Zhong B , Du J , Liu F , et al. Activation of the mTOR/HIF-1alpha/VEGF axis promotes M1 macrophage polarization in non-eosinophilic chronic rhinosinusitis with nasal polyps. Allergy. 2022; 77 (2): 643- 646.
CrossRef Google scholar
[48]
Wei Y , Xia W , Ye X , et al. The antimicrobial protein short palate, lung, and nasal epithelium clone 1 (SPLUNC1) is differentially modulated in eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2014; 133 (2): 420- 428.
CrossRef Google scholar
[49]
Wagstaffe HR , Thwaites RS , Reynaldi A , et al. Mucosal and systemic immune correlates of viral control after SARS-CoV-2 infection challenge in seronegative adults. Sci Immunol. 2024; 9 (92): eadj9285.
CrossRef Google scholar
[50]
Yan B , Lan F , Li J , Wang C , Zhang L . The mucosal concept in chronic rhinosinusitis: focus on the epithelial barrier. J Allergy Clin Immunol. 2024; 153 (5): 1206- 1214.
CrossRef Google scholar
[51]
Ahn SH , Oh JT , Kim DH , et al. S100A9 induces tissue remodeling of human nasal epithelium in chronic rhinosinusitis with nasal polyp. Int Forum Allergy Rhinol. 2024; 15 (2): 135- 148.
CrossRef Google scholar
[52]
Khalmuratova R , Ryu JS , Hwang JH , et al. NRP1 antagonism as a novel therapeutic target in nasal polyps of patients with chronic rhinosinusitis. Allergy. 2024; 79 (11): 3095- 3107.
CrossRef Google scholar
[53]
Soliai MM , Kato A , Naughton KA , et al. Epigenetic responses to rhinovirus exposure in airway epithelial cells are correlated with key transcriptional pathways in chronic rhinosinusitis. Allergy. 2023; 78 (10): 2698- 2711.
CrossRef Google scholar
[54]
Schleimer RP . Immunopathogenesis of chronic rhinosinusitis and nasal polyposis. Annu Rev Pathol. 2017; 12 (1): 331- 357.
CrossRef Google scholar
[55]
Kato A , Schleimer RP , Bleier BS . Mechanisms and pathogenesis of chronic rhinosinusitis. J Allergy Clin Immunol. 2022; 149 (5): 1491- 1503.
CrossRef Google scholar
[56]
Hong H , Liao S , Chen F , Yang Q , Wang DY . Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy. 2020; 75 (11): 2794- 2804.
CrossRef Google scholar
[57]
Soyka MB , Wawrzyniak P , Eiwegger T , et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-gamma and IL-4. J Allergy Clin Immunol. 2012; 130 (5): 1087- 1096.e1010.
CrossRef Google scholar
[58]
Xiao C , Puddicombe SM , Field S , et al. Defective epithelial barrier function in asthma. J Allergy Clin Immunol. 2011; 128 (3): 549- 556. e541.
CrossRef Google scholar
[59]
Huang ZQ , Liu J , Sun LY , et al. Updated epithelial barrier dysfunction in chronic rhinosinusitis: targeting pathophysiology and treatment response of tight junctions. Allergy. 2024; 79 (5): 1146- 1165.
CrossRef Google scholar
[60]
Pace E , Scafidi V , Di Bona D , et al. Increased expression of IL-19 in the epithelium of patients with chronic rhinosinusitis and nasal polyps. Allergy. 2012; 67 (7): 878- 886.
CrossRef Google scholar
[61]
Liu X , Tong X , Zou L , et al. A genome-wide association study reveals the relationship between human genetic variation and the nasal microbiome. Commun Biol. 2024; 7 (1): 139.
CrossRef Google scholar
[62]
Deng H , Sun Y , Wang W , et al. The hippo pathway effector Yesassociated protein promotes epithelial proliferation and remodeling in chronic rhinosinusitis with nasal polyps. Allergy. 2019; 74 (4): 731- 742.
CrossRef Google scholar
[63]
Deng H , Li M , Zheng R , et al. YAP promotes cell proliferation and epithelium-derived cytokine expression via NF-kappaB pathway in nasal polyps. J Asthma Allergy. 2021; 14: 839- 850.
CrossRef Google scholar
[64]
Renaud M , Venkatasamy A , Escudier E , et al. Characterization of the ciliary beating efficiency in primary diffuse chronic rhinosinusitis. Rhinology. 2024; 62 (6): 763- 765.
CrossRef Google scholar
[65]
Akdis CA . Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021; 21 (11): 739- 751.
CrossRef Google scholar
[66]
Berni Canani R , Caminati M , Carucci L , Eguiluz-Gracia I . Skin, gut, and lung barrier: physiological interface and target of intervention for preventing and treating allergic diseases. Allergy. 2024; 79 (6): 1485- 1500.
CrossRef Google scholar
[67]
Jiao J , Duan S , Meng N , Li Y , Fan E , Zhang L . Role of IFN-gamma, IL-13, and IL-17 on mucociliary differentiation of nasal epithelial cells in chronic rhinosinusitis with nasal polyps. Clin Exp Allergy. 2016; 46 (3): 449- 460.
CrossRef Google scholar
[68]
Zhao R , Guo Z , Dong W , et al. Effects of PM2.5 on mucus secretion and tissue remodeling in a rabbit model of chronic rhinosinusitis. Int Forum Allergy Rhinol. 2018; 8 (11): 1349- 1355.
CrossRef Google scholar
[69]
Lai Y , Chen B , Shi J , Palmer JN , Kennedy DW , Cohen NA . Inflammation-mediated upregulation of centrosomal protein 110, a negative modulator of ciliogenesis, in patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2011; 128 (6): 1207- 1215.e1201.
CrossRef Google scholar
[70]
Yuan T , Zheng R , Liu J , et al. Role of yes-associated protein in interleukin-13 induced nasal remodeling of chronic rhinosinusitis with nasal polyps. Allergy. 2021; 76 (2): 600- 604.
CrossRef Google scholar
[71]
Yuan T , Zheng R , Zhou XM , et al. Abnormal expression of YAP is associated with proliferation, differentiation, neutrophil infiltration, and adverse outcome in patients with nasal inverted papilloma. Front Cell Dev Biol. 2021; 9: 625251.
CrossRef Google scholar
[72]
Li Y . The expression of MUC5AC in patients with rhinosinusitis: a systematic review and meta-analysis. Clin Transl Allergy. 2024; 14 (11): e70003.
CrossRef Google scholar
[73]
Zhang Y , Wang X , Jiao J , Li Y , Song X , Zhang L . Expression of T helper cytokines associated with MUC5AC secretion in eosinophilbased endotypes of nasal polyps. Allergy. 2021; 76 (2): 604- 609.
CrossRef Google scholar
[74]
Ye Y , Zhao J , Ye J , et al. The role of autophagy in the overexpression of MUC5AC in patients with chronic rhinosinusitis. Int Immunopharmacol. 2019; 71: 169- 180.
CrossRef Google scholar
[75]
Zhang Y , Derycke L , Holtappels G , et al. Th2 cytokines orchestrate the secretion of MUC5AC and MUC5B in IL-5-positive chronic rhinosinusitis with nasal polyps. Allergy. 2019; 74 (1): 131- 140.
CrossRef Google scholar
[76]
Kim HK , Kook JH , Kang KR , Oh DJ , Kim TH , Lee SH . Increased expression of hCLCA1 in chronic rhinosinusitis and its contribution to produce MUC5AC. Laryngoscope. 2016; 126 (11): E347- E355.
CrossRef Google scholar
[77]
Bai J , Miao B , Wu X , et al. Enhanced expression of SAM-pointed domain-containing Ets-like factor in chronic rhinosinusitis with nasal polyps. Laryngoscope. 2015; 125 (3): E97- E103.
CrossRef Google scholar
[78]
Lan F , Zhong H , Zhang N , et al. IFN-lambda1 enhances Staphylococcus aureus clearance in healthy nasal mucosa but not in nasal polyps. J Allergy Clin Immunol. 2019; 143 (4): 1416- 1425.e1414.
CrossRef Google scholar
[79]
Seshadri S , Lu X , Purkey MR , et al. Increased expression of the epithelial anion transporter pendrin/SLC26A4 in nasal polyps of patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2015; 136 (6): 1548- 1558.e1547.
CrossRef Google scholar
[80]
Zhou Y , Jiang Y , Peng W , Li M , Chen H , Chen S . The diverse roles of YAP in the regulation of human nasal epithelial remodeling. Tissue Cell. 2021; 72: 101592.
CrossRef Google scholar
[81]
Ordovas-Montanes J , Dwyer DF , Nyquist SK , et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature. 2018; 560 (7720): 649- 654.
CrossRef Google scholar
[82]
Huang H , Tan KS , Zhou S , et al. p63(+)Krt5(+) basal cells are increased in the squamous metaplastic epithelium of patients with radiation-induced chronic Rhinosinusitis. Radiat Oncol. 2020; 15 (1): 222.
CrossRef Google scholar
[83]
Li CW , Shi L , Zhang KK , et al. Role of p63/p73 in epithelial remodeling and their response to steroid treatment in nasal polyposis. J Allergy Clin Immunol. 2011; 127 (3): 765- 772.e761.
CrossRef Google scholar
[84]
Kawakita K , Kouzaki H , Murao T , et al. Role of basal cells in nasal polyp epithelium in the pathophysiology of eosinophilic chronic rhinosinusitis (eCRS). Allergol Int. 2024; 73 (4): 563- 572.
CrossRef Google scholar
[85]
Zhong B , Sun S , Tan KS , et al. HIF-1alpha activates NLRP3 inflammasome to regulate epithelial differentiation in chronic rhinosinusitis. J Allergy Clin Immunol. 2023.
CrossRef Google scholar
[86]
Zihni C , Mills C , Matter K , Balda MS . Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol. 2016; 17 (9): 564- 580.
CrossRef Google scholar
[87]
Gunzel D , Yu AS . Claudins and the modulation of tight junction permeability. Physiol Rev. 2013; 93 (2): 525- 569.
CrossRef Google scholar
[88]
Fasano A . Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev. 2011; 91 (1): 151- 175.
CrossRef Google scholar
[89]
Jiao J , Wang C , Zhang L . Epithelial physical barrier defects in chronic rhinosinusitis. Expert Rev Clin Immunol. 2019; 15 (6): 679- 688.
CrossRef Google scholar
[90]
Song J , Zhao C , Wang E , et al. Downregulation of tight junction protein MAGI1 by interferon-gamma contributes to barrier dysfunction in chronic rhinosinusitis with nasal polyps. Allergy. 2024.
CrossRef Google scholar
[91]
Wu H , Li Y , Li X , et al. IL-17A disrupts the nasal mucosal epithelial barrier in patients with chronic rhinosinusitis by activating the ERK/STAT3 pathway. Rhinology. 2024; 62 (6): 726- 738.
CrossRef Google scholar
[92]
Jiang X , Shu L , Liu Y , et al. YES-associated protein-regulated Smad7 worsen epithelial barrier injury of chronic sinusitis with nasal polyps. Immun Inflamm Dis. 2023; 11 (6): e907.
CrossRef Google scholar
[93]
Yang J , Antin P , Berx G , et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2020; 21 (6): 341- 352.
CrossRef Google scholar
[94]
Cui J , Zhang C , Lee JE , et al. MLL3 loss drives metastasis by promoting a hybrid epithelial-mesenchymal transition state. Nat Cell Biol. 2023; 25 (1): 145- 158.
CrossRef Google scholar
[95]
Lamouille S , Xu J , Derynck R . Molecular mechanisms of epithelialmesenchymal transition. Nat Rev Mol Cell Biol. 2014; 15 (3): 178- 196.
CrossRef Google scholar
[96]
Thiery JP , Acloque H , Huang RY , Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell. 2009; 139 (5): 871- 890.
CrossRef Google scholar
[97]
Acloque H , Adams MS , Fishwick K , Bronner-Fraser M , Nieto MA . Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Investig. 2009; 119 (6): 1438- 1449.
CrossRef Google scholar
[98]
Liu C , Wang K , Liu W , Zhang J , Fan Y , Sun Y . ALOX15(+) M2 macrophages contribute to epithelial remodeling in eosinophilic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2024; 154 (3): 592- 608.
CrossRef Google scholar
[99]
Shin HW , Cho K , Kim DW , et al. Hypoxia-inducible factor 1 mediates nasal polypogenesis by inducing epithelial-to-mesenchymal transition. Am J Respir Crit Care Med. 2012; 185 (9): 944- 954.
CrossRef Google scholar
[100]
Lee M , Kim DW , Yoon H , et al. Sirtuin 1 attenuates nasal polypogenesis by suppressing epithelial-to-mesenchymal transition. J Allergy Clin Immunol. 2016; 137 (1): 87- 98.e87.
CrossRef Google scholar
[101]
Zhan J , Zhan H , Zheng J , Wei X , Fu Y . YAP1 expression in nasal polyps and its relationship with epithelial mesenchymal transition. Am J Transl Res. 2021; 13 (6): 6568- 6575.
[102]
Miao P , Jiang Y , Jian Y , et al. Exacerbation of allergic rhinitis by the commensal bacterium Streptococcus salivarius. Nat Microbiol. 2023; 8 (2): 218- 230.
CrossRef Google scholar
[103]
Waage J , Standl M , Curtin JA , et al. Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis. Nat Genet. 2018; 50 (8): 1072- 1080.
CrossRef Google scholar
[104]
Iinuma T , Kiuchi M , Hirahara K , et al. Single-cell immunoprofiling after immunotherapy for allergic rhinitis reveals functional suppression of pathogenic T(H)2 cells and clonal conversion. J Allergy Clin Immunol. 2022; 150 (4): 850- 860.e855.
CrossRef Google scholar
[105]
Chen M , Zheng R , Li F , et al. Genetic variants in Hippo pathway genes are associated with house dust mite-induced allergic rhinitis in a Chinese population. Clin Transl Allergy. 2021; 11 (10): e12077.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2025 The Author(s). Eye & ENT Research published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.
AI Summary AI Mindmap
PDF(734 KB)

Accesses

Citations

Detail

Sections
Recommended

/