PDF
(734KB)
Abstract
Yes-associated protein (YAP), a pivotal protein of the Hippo signaling pathway, plays a crucial role in regulating cell proliferation and differentiation. Emerging evidence highlights its significance in respiratory inflammatory disorders, including chronic rhinosinusitis, allergic rhinitis. This review delves into the impact of YAP on individuals affected by these ailments, with a specific focus on the role it plays in nasal mucosal epithelial cells. We further explore the interplay between YAP and the inflammatory mediators, outlining the pathological mechanisms through which it contributes to tissue restructuring in these contexts. Despite advancements, gaps persist in understanding YAP's broader role in clinical applications. Future research directions are proposed in this article to bridge these knowledge gaps.
Keywords
allergic rhinitis
/
chronic rhinosinusitis
/
nasal inflammatory diseases
/
yes-associated protein
Cite this article
Download citation ▾
Bing Zhong, Yu Zhao.
The role of yes-associated protein in nasal inflammatory diseases.
Eye & ENT Research, 2025, 2(1): 18-24 DOI:10.1002/eer3.70001
| [1] |
Kolkhir P , Akdis CA , Akdis M , et al. Type 2 chronic inflammatory diseases: targets, therapies and unmet needs. Nat Rev Drug Discov. 2023; 22 (9): 743- 767.
|
| [2] |
Wang W , Xu Y , Wang L , et al. Single-cell profiling identifies mechanisms of inflammatory heterogeneity in chronic rhinosinusitis. Nat Immunol. 2022; 23 (10): 1484- 1494.
|
| [3] |
Bousquet J , Anto JM , Bachert C , et al. Allergic rhinitis. Nat Rev Dis Primers. 2020; 6 (1): 95.
|
| [4] |
Bernstein JA , Bernstein JS , Makol R , Ward S . Allergic rhinitis: a review. JAMA. 2024; 331 (10): 866- 877.
|
| [5] |
Huang K , Yang T , Xu J , et al. Prevalence, risk factors, and management of asthma in China: a national cross-sectional study. Lancet. 2019; 394 (10196): 407- 418.
|
| [6] |
Asher MI , Montefort S , Bjorksten B , et al. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet. 2006; 368 (9537): 733- 743.
|
| [7] |
Wang X , Moylan B , Leopold DA , et al. Mutation in the gene responsible for cystic fibrosis and predisposition to chronic rhinosinusitis in the general population. JAMA. 2000; 284 (14): 1814- 1819.
|
| [8] |
Schwartz BS , Al-Sayouri SA , Pollak JS , et al. Strong and consistent associations of precedent chronic rhinosinusitis with risk of noncystic fibrosis bronchiectasis. J Allergy Clin Immunol. 2022; 150 (3): 701- 708.e704.
|
| [9] |
Moya IM , Halder G . Hippo-YAP/TAZ signalling in organ regeneration and regenerative medicine. Nat Rev Mol Cell Biol. 2019; 20 (4): 211- 226.
|
| [10] |
Dey A , Varelas X , Guan KL . Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine. Nat Rev Drug Discov. 2020; 19 (7): 480- 494.
|
| [11] |
Dupont S , Morsut L , Aragona M , et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011; 474 (7350): 179- 183.
|
| [12] |
Driskill JH , Pan D . Control of stem cell renewal and fate by YAP and TAZ. Nat Rev Mol Cell Biol. 2023; 24 (12): 895- 911.
|
| [13] |
Panciera T , Azzolin L , Cordenonsi M , Piccolo S . Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol. 2017; 18 (12): 758- 770.
|
| [14] |
Koo JH , Guan KL . Interplay between YAP/TAZ and metabolism. Cell Metab. 2018; 28 (2): 196- 206.
|
| [15] |
Totaro A , Panciera T , Piccolo S . YAP/TAZ upstream signals and downstream responses. Nat Cell Biol. 2018; 20 (8): 888- 899.
|
| [16] |
Wu J , Minikes AM , Gao M , et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature. 2019; 572 (7769): 402- 406.
|
| [17] |
Yu FX , Zhao B , Panupinthu N , et al. Regulation of the hippo-YAP pathway by G-protein-coupled receptor signaling. Cell. 2024; 187 (6): 1563- 1564.
|
| [18] |
Kurppa KJ , Liu Y , To C , et al. Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell. 2020; 37 (1): 104- 122.e112.
|
| [19] |
Sladitschek-Martens HL , Guarnieri A , Brumana G , et al. YAP/TAZ activity in stromal cells prevents ageing by controlling cGASSTING. Nature. 2022; 607 (7920): 790- 798.
|
| [20] |
Wang L , Luo JY , Li B , et al. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature. 2016; 540 (7634): 579- 582.
|
| [21] |
Wang Z , Kim SY , Tu W , et al. Extracellular vesicles in fatty liver promote a metastatic tumor microenvironment. Cell Metab. 2023; 35 (7): 1209- 1226.e1213.
|
| [22] |
Zhang Z , Du J , Wang S , et al. OTUB2 promotes cancer metastasis via hippo-independent activation of YAP and TAZ. Mol Cell. 2019; 73 (1): 7- 21.e27.
|
| [23] |
Ju J , Zhang H , Lin M , et al. The alanyl-tRNA synthetase AARS1 moonlights as a lactyltransferase to promote YAP signaling in gastric cancer. J Clin Investig. 2024; 134 (10).
|
| [24] |
Wang D , Zhang Y , Xu X , et al. YAP promotes the activation of NLRP3 inflammasome via blocking K27-linked polyubiquitination of NLRP3. Nat Commun. 2021; 12 (1): 2674.
|
| [25] |
Zhong B , Liu J , Ong HH , et al. Hypoxia-reduced YAP phosphorylation enhances expression of Mucin5AC in nasal epithelial cells of chronic rhinosinusitis with nasal polyps. Allergy. 2024.
|
| [26] |
Qiu H , Liu J , Wu Q , et al. An in vitro study of the impact of IL-17A and IL-22 on ciliogenesis in nasal polyps epithelium via the HippoYAP pathway. J Allergy Clin Immunol. 2024; 154 (5): 1180- 1194.
|
| [27] |
Chapurin N , Wu J , Labby AB , Chandra RK , Chowdhury NI , Turner JH . Current insight into treatment of chronic rhinosinusitis: phenotypes, endotypes, and implications for targeted therapeutics. J Allergy Clin Immunol. 2022; 150 (1): 22- 32.
|
| [28] |
Bachert C , Han JK , Desrosiers M , et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebocontrolled, parallel-group phase 3 trials. Lancet. 2019; 394 (10209): 1638- 1650.
|
| [29] |
Bachert C , Marple B , Schlosser RJ , et al. Adult chronic rhinosinusitis. Nat Rev Dis Primers. 2020; 6 (1): 86.
|
| [30] |
Fokkens WJ , Lund VJ , Hopkins C , et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020; 58 (Suppl S29): 1- 464.
|
| [31] |
Hua HL , Li S , Xu Y , et al. Differentiation of eosinophilic and noneosinophilic chronic rhinosinusitis on preoperative computed tomography using deep learning. Clin Otolaryngol. 2023; 48 (2): 330- 338.
|
| [32] |
Zhu Z , Wang W , Zhang X , et al. Nasal fluid cytology and cytokine profiles of eosinophilic and non-eosinophilic chronic rhinosinusitis with nasal polyps. Rhinology. 2020; 58 (4): 314- 322.
|
| [33] |
Hoggard M , Wagner Mackenzie B , Jain R , Taylor MW , Biswas K , Douglas RG . Chronic rhinosinusitis and the evolving understanding of microbial ecology in chronic inflammatory mucosal disease. Clin Microbiol Rev. 2017; 30 (1): 321- 348.
|
| [34] |
Volpe S , Irish J , Palumbo S , et al. Viral infections and chronic rhinosinusitis. J Allergy Clin Immunol. 2023; 152 (4): 819- 826.
|
| [35] |
Kennedy DW . The role of Staphylococcus aureus in chronic rhinosinusitis. Int Forum Allergy Rhinol. 2014; 4 (12): 951- 952.
|
| [36] |
Zou X , Wang K , Deng Y , et al. Hypoxia-inducible factor 2alpha promotes pathogenic polarization of stem-like Th2 cells via modulation of phospholipid metabolism. Immunity. 2024; 57 (12): 2808- 2826.e2808.
|
| [37] |
Khalil SM , Bernstein I , Kulaga H , et al. Interleukin 13 (IL-13) alters hypoxia-associated genes and upregulates CD73. Int Forum Allergy Rhinol. 2020; 10 (9): 1096- 1102.
|
| [38] |
Kidoguchi M , Imoto Y , Noguchi E , et al. Middle meatus microbiome in patients with eosinophilic chronic rhinosinusitis in a Japanese population. J Allergy Clin Immunol. 2023; 152 (6): 1669- 1676.e1663.
|
| [39] |
Abreu NA , Nagalingam NA , Song Y , et al. Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis. Sci Transl Med. 2012; 4 (151): 151ra124.
|
| [40] |
Lee SB , Yi JS , Lee BJ , et al. Human rhinovirus serotypes in the nasal washes and mucosa of patients with chronic rhinosinusitis. Int Forum Allergy Rhinol. 2015; 5 (3): 197- 203.
|
| [41] |
Wang JH , Kwon HJ , Jang YJ . Rhinovirus enhances various bacterial adhesions to nasal epithelial cells simultaneously. Laryngoscope. 2009; 119 (7): 1406- 1411.
|
| [42] |
Yeo NK , Jang YJ . Rhinovirus infection-induced alteration of tight junction and adherens junction components in human nasal epithelial cells. Laryngoscope. 2010; 120 (2): 346- 352.
|
| [43] |
Liu T , Zhou YT , Wang LQ , et al. NOD-like receptor family, pyrin domain containing 3 (NLRP3) contributes to inflammation, pyroptosis, and mucin production in human airway epithelium on rhinovirus infection. J Allergy Clin Immunol. 2019; 144 (3): 777- 787.e779.
|
| [44] |
Zhong B , Sun S , Tan KS , et al. Hypoxia-inducible factor 1alpha activates the NLRP3 inflammasome to regulate epithelial differentiation in chronic rhinosinusitis. J Allergy Clin Immunol. 2023; 152 (6): 1444- 1459.e1414.
|
| [45] |
Zhong B , Seah JJ , Liu F , Ba L , Du J , Wang Y . The role of hypoxia in the pathophysiology of chronic rhinosinusitis. Allergy. 2022; 77 (11): 3217- 3232.
|
| [46] |
Zhong B , Du J , Liu F , et al. Hypoxia-induced factor-1alpha induces NLRP3 expression by M1 macrophages in noneosinophilic chronic rhinosinusitis with nasal polyps. Allergy. 2021; 76 (2): 582- 586.
|
| [47] |
Zhong B , Du J , Liu F , et al. Activation of the mTOR/HIF-1alpha/VEGF axis promotes M1 macrophage polarization in non-eosinophilic chronic rhinosinusitis with nasal polyps. Allergy. 2022; 77 (2): 643- 646.
|
| [48] |
Wei Y , Xia W , Ye X , et al. The antimicrobial protein short palate, lung, and nasal epithelium clone 1 (SPLUNC1) is differentially modulated in eosinophilic and noneosinophilic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2014; 133 (2): 420- 428.
|
| [49] |
Wagstaffe HR , Thwaites RS , Reynaldi A , et al. Mucosal and systemic immune correlates of viral control after SARS-CoV-2 infection challenge in seronegative adults. Sci Immunol. 2024; 9 (92): eadj9285.
|
| [50] |
Yan B , Lan F , Li J , Wang C , Zhang L . The mucosal concept in chronic rhinosinusitis: focus on the epithelial barrier. J Allergy Clin Immunol. 2024; 153 (5): 1206- 1214.
|
| [51] |
Ahn SH , Oh JT , Kim DH , et al. S100A9 induces tissue remodeling of human nasal epithelium in chronic rhinosinusitis with nasal polyp. Int Forum Allergy Rhinol. 2024; 15 (2): 135- 148.
|
| [52] |
Khalmuratova R , Ryu JS , Hwang JH , et al. NRP1 antagonism as a novel therapeutic target in nasal polyps of patients with chronic rhinosinusitis. Allergy. 2024; 79 (11): 3095- 3107.
|
| [53] |
Soliai MM , Kato A , Naughton KA , et al. Epigenetic responses to rhinovirus exposure in airway epithelial cells are correlated with key transcriptional pathways in chronic rhinosinusitis. Allergy. 2023; 78 (10): 2698- 2711.
|
| [54] |
Schleimer RP . Immunopathogenesis of chronic rhinosinusitis and nasal polyposis. Annu Rev Pathol. 2017; 12 (1): 331- 357.
|
| [55] |
Kato A , Schleimer RP , Bleier BS . Mechanisms and pathogenesis of chronic rhinosinusitis. J Allergy Clin Immunol. 2022; 149 (5): 1491- 1503.
|
| [56] |
Hong H , Liao S , Chen F , Yang Q , Wang DY . Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy. 2020; 75 (11): 2794- 2804.
|
| [57] |
Soyka MB , Wawrzyniak P , Eiwegger T , et al. Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-gamma and IL-4. J Allergy Clin Immunol. 2012; 130 (5): 1087- 1096.e1010.
|
| [58] |
Xiao C , Puddicombe SM , Field S , et al. Defective epithelial barrier function in asthma. J Allergy Clin Immunol. 2011; 128 (3): 549- 556. e541.
|
| [59] |
Huang ZQ , Liu J , Sun LY , et al. Updated epithelial barrier dysfunction in chronic rhinosinusitis: targeting pathophysiology and treatment response of tight junctions. Allergy. 2024; 79 (5): 1146- 1165.
|
| [60] |
Pace E , Scafidi V , Di Bona D , et al. Increased expression of IL-19 in the epithelium of patients with chronic rhinosinusitis and nasal polyps. Allergy. 2012; 67 (7): 878- 886.
|
| [61] |
Liu X , Tong X , Zou L , et al. A genome-wide association study reveals the relationship between human genetic variation and the nasal microbiome. Commun Biol. 2024; 7 (1): 139.
|
| [62] |
Deng H , Sun Y , Wang W , et al. The hippo pathway effector Yesassociated protein promotes epithelial proliferation and remodeling in chronic rhinosinusitis with nasal polyps. Allergy. 2019; 74 (4): 731- 742.
|
| [63] |
Deng H , Li M , Zheng R , et al. YAP promotes cell proliferation and epithelium-derived cytokine expression via NF-kappaB pathway in nasal polyps. J Asthma Allergy. 2021; 14: 839- 850.
|
| [64] |
Renaud M , Venkatasamy A , Escudier E , et al. Characterization of the ciliary beating efficiency in primary diffuse chronic rhinosinusitis. Rhinology. 2024; 62 (6): 763- 765.
|
| [65] |
Akdis CA . Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021; 21 (11): 739- 751.
|
| [66] |
Berni Canani R , Caminati M , Carucci L , Eguiluz-Gracia I . Skin, gut, and lung barrier: physiological interface and target of intervention for preventing and treating allergic diseases. Allergy. 2024; 79 (6): 1485- 1500.
|
| [67] |
Jiao J , Duan S , Meng N , Li Y , Fan E , Zhang L . Role of IFN-gamma, IL-13, and IL-17 on mucociliary differentiation of nasal epithelial cells in chronic rhinosinusitis with nasal polyps. Clin Exp Allergy. 2016; 46 (3): 449- 460.
|
| [68] |
Zhao R , Guo Z , Dong W , et al. Effects of PM2.5 on mucus secretion and tissue remodeling in a rabbit model of chronic rhinosinusitis. Int Forum Allergy Rhinol. 2018; 8 (11): 1349- 1355.
|
| [69] |
Lai Y , Chen B , Shi J , Palmer JN , Kennedy DW , Cohen NA . Inflammation-mediated upregulation of centrosomal protein 110, a negative modulator of ciliogenesis, in patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2011; 128 (6): 1207- 1215.e1201.
|
| [70] |
Yuan T , Zheng R , Liu J , et al. Role of yes-associated protein in interleukin-13 induced nasal remodeling of chronic rhinosinusitis with nasal polyps. Allergy. 2021; 76 (2): 600- 604.
|
| [71] |
Yuan T , Zheng R , Zhou XM , et al. Abnormal expression of YAP is associated with proliferation, differentiation, neutrophil infiltration, and adverse outcome in patients with nasal inverted papilloma. Front Cell Dev Biol. 2021; 9: 625251.
|
| [72] |
Li Y . The expression of MUC5AC in patients with rhinosinusitis: a systematic review and meta-analysis. Clin Transl Allergy. 2024; 14 (11): e70003.
|
| [73] |
Zhang Y , Wang X , Jiao J , Li Y , Song X , Zhang L . Expression of T helper cytokines associated with MUC5AC secretion in eosinophilbased endotypes of nasal polyps. Allergy. 2021; 76 (2): 604- 609.
|
| [74] |
Ye Y , Zhao J , Ye J , et al. The role of autophagy in the overexpression of MUC5AC in patients with chronic rhinosinusitis. Int Immunopharmacol. 2019; 71: 169- 180.
|
| [75] |
Zhang Y , Derycke L , Holtappels G , et al. Th2 cytokines orchestrate the secretion of MUC5AC and MUC5B in IL-5-positive chronic rhinosinusitis with nasal polyps. Allergy. 2019; 74 (1): 131- 140.
|
| [76] |
Kim HK , Kook JH , Kang KR , Oh DJ , Kim TH , Lee SH . Increased expression of hCLCA1 in chronic rhinosinusitis and its contribution to produce MUC5AC. Laryngoscope. 2016; 126 (11): E347- E355.
|
| [77] |
Bai J , Miao B , Wu X , et al. Enhanced expression of SAM-pointed domain-containing Ets-like factor in chronic rhinosinusitis with nasal polyps. Laryngoscope. 2015; 125 (3): E97- E103.
|
| [78] |
Lan F , Zhong H , Zhang N , et al. IFN-lambda1 enhances Staphylococcus aureus clearance in healthy nasal mucosa but not in nasal polyps. J Allergy Clin Immunol. 2019; 143 (4): 1416- 1425.e1414.
|
| [79] |
Seshadri S , Lu X , Purkey MR , et al. Increased expression of the epithelial anion transporter pendrin/SLC26A4 in nasal polyps of patients with chronic rhinosinusitis. J Allergy Clin Immunol. 2015; 136 (6): 1548- 1558.e1547.
|
| [80] |
Zhou Y , Jiang Y , Peng W , Li M , Chen H , Chen S . The diverse roles of YAP in the regulation of human nasal epithelial remodeling. Tissue Cell. 2021; 72: 101592.
|
| [81] |
Ordovas-Montanes J , Dwyer DF , Nyquist SK , et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature. 2018; 560 (7720): 649- 654.
|
| [82] |
Huang H , Tan KS , Zhou S , et al. p63(+)Krt5(+) basal cells are increased in the squamous metaplastic epithelium of patients with radiation-induced chronic Rhinosinusitis. Radiat Oncol. 2020; 15 (1): 222.
|
| [83] |
Li CW , Shi L , Zhang KK , et al. Role of p63/p73 in epithelial remodeling and their response to steroid treatment in nasal polyposis. J Allergy Clin Immunol. 2011; 127 (3): 765- 772.e761.
|
| [84] |
Kawakita K , Kouzaki H , Murao T , et al. Role of basal cells in nasal polyp epithelium in the pathophysiology of eosinophilic chronic rhinosinusitis (eCRS). Allergol Int. 2024; 73 (4): 563- 572.
|
| [85] |
Zhong B , Sun S , Tan KS , et al. HIF-1alpha activates NLRP3 inflammasome to regulate epithelial differentiation in chronic rhinosinusitis. J Allergy Clin Immunol. 2023.
|
| [86] |
Zihni C , Mills C , Matter K , Balda MS . Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol. 2016; 17 (9): 564- 580.
|
| [87] |
Gunzel D , Yu AS . Claudins and the modulation of tight junction permeability. Physiol Rev. 2013; 93 (2): 525- 569.
|
| [88] |
Fasano A . Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev. 2011; 91 (1): 151- 175.
|
| [89] |
Jiao J , Wang C , Zhang L . Epithelial physical barrier defects in chronic rhinosinusitis. Expert Rev Clin Immunol. 2019; 15 (6): 679- 688.
|
| [90] |
Song J , Zhao C , Wang E , et al. Downregulation of tight junction protein MAGI1 by interferon-gamma contributes to barrier dysfunction in chronic rhinosinusitis with nasal polyps. Allergy. 2024.
|
| [91] |
Wu H , Li Y , Li X , et al. IL-17A disrupts the nasal mucosal epithelial barrier in patients with chronic rhinosinusitis by activating the ERK/STAT3 pathway. Rhinology. 2024; 62 (6): 726- 738.
|
| [92] |
Jiang X , Shu L , Liu Y , et al. YES-associated protein-regulated Smad7 worsen epithelial barrier injury of chronic sinusitis with nasal polyps. Immun Inflamm Dis. 2023; 11 (6): e907.
|
| [93] |
Yang J , Antin P , Berx G , et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2020; 21 (6): 341- 352.
|
| [94] |
Cui J , Zhang C , Lee JE , et al. MLL3 loss drives metastasis by promoting a hybrid epithelial-mesenchymal transition state. Nat Cell Biol. 2023; 25 (1): 145- 158.
|
| [95] |
Lamouille S , Xu J , Derynck R . Molecular mechanisms of epithelialmesenchymal transition. Nat Rev Mol Cell Biol. 2014; 15 (3): 178- 196.
|
| [96] |
Thiery JP , Acloque H , Huang RY , Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell. 2009; 139 (5): 871- 890.
|
| [97] |
Acloque H , Adams MS , Fishwick K , Bronner-Fraser M , Nieto MA . Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Investig. 2009; 119 (6): 1438- 1449.
|
| [98] |
Liu C , Wang K , Liu W , Zhang J , Fan Y , Sun Y . ALOX15(+) M2 macrophages contribute to epithelial remodeling in eosinophilic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2024; 154 (3): 592- 608.
|
| [99] |
Shin HW , Cho K , Kim DW , et al. Hypoxia-inducible factor 1 mediates nasal polypogenesis by inducing epithelial-to-mesenchymal transition. Am J Respir Crit Care Med. 2012; 185 (9): 944- 954.
|
| [100] |
Lee M , Kim DW , Yoon H , et al. Sirtuin 1 attenuates nasal polypogenesis by suppressing epithelial-to-mesenchymal transition. J Allergy Clin Immunol. 2016; 137 (1): 87- 98.e87.
|
| [101] |
Zhan J , Zhan H , Zheng J , Wei X , Fu Y . YAP1 expression in nasal polyps and its relationship with epithelial mesenchymal transition. Am J Transl Res. 2021; 13 (6): 6568- 6575.
|
| [102] |
Miao P , Jiang Y , Jian Y , et al. Exacerbation of allergic rhinitis by the commensal bacterium Streptococcus salivarius. Nat Microbiol. 2023; 8 (2): 218- 230.
|
| [103] |
Waage J , Standl M , Curtin JA , et al. Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis. Nat Genet. 2018; 50 (8): 1072- 1080.
|
| [104] |
Iinuma T , Kiuchi M , Hirahara K , et al. Single-cell immunoprofiling after immunotherapy for allergic rhinitis reveals functional suppression of pathogenic T(H)2 cells and clonal conversion. J Allergy Clin Immunol. 2022; 150 (4): 850- 860.e855.
|
| [105] |
Chen M , Zheng R , Li F , et al. Genetic variants in Hippo pathway genes are associated with house dust mite-induced allergic rhinitis in a Chinese population. Clin Transl Allergy. 2021; 11 (10): e12077.
|
RIGHTS & PERMISSIONS
The Author(s). Eye & ENT Research published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.