Research progress of corneal endothelial cell regeneration and replacement
Zongyi Li, Haoyun Duan, Qingjun Zhou
Research progress of corneal endothelial cell regeneration and replacement
Corneal endothelial cells (CECs) are crucial for the maintenance of corneal transparency and normal visual function. Corneal endothelial dysfunction can lead to corneal edema, opacity, and even blindness. Due to the limited proliferative capacity of human CECs and the global shortage of donor cornea, corneal endothelial regeneration and replacement always represent the most challenge in the basic research and clinical treatment of corneal diseases. Although there is a potential existence of corneal endothelial progenitor cells, the efficiency of Descemet stripping without endothelial keratoplasty remains controversial. In recent years, significant advancements have been made in the field of cultured endothelial cell regeneration and artificial material replacement. Here, we reviewed the current research and clinical progress of corneal endothelial cell regeneration and replacement, including the in vitro cultivation of primary human CECs, in vitro differentiation of stem cell-derived CECs, tissue-engineered corneal endothelium, and fabrication of artificial corneal endothelium. We also discussed the remaining questions regarding innovating clinical preventive and therapeutic strategies for corneal endothelial dysfunction.
artificial corneal endothelium / cell therapy / corneal endothelial dysfunction / regeneration
[1] |
DelMonte DW, Kim T. Anatomy and physiology of the cornea. J Cataract Refract Surg. 2011;37(3):588-598.
CrossRef
Google scholar
|
[2] |
Gain P, Jullienne R, He Z, et al. Global survey of corneal trans-plantation and eye banking. JAMA Ophthalmol. 2016;134(2):167-173.
CrossRef
Google scholar
|
[3] |
Price MO, Mehta JS, Jurkunas UV, Price FW. Corneal endothelial dysfunction: evolving understanding and treatment options. Prog Retin Eye Res. 2021;82:100904.
CrossRef
Google scholar
|
[4] |
Bonanno JA. Molecular mechanisms underlying the corneal endothelial pump. Exp Eye Res. 2012;95(1):2-7.
CrossRef
Google scholar
|
[5] |
Watsky MA, McDermott ML, Edelhauser HF. In vitro corneal endothelial permeability in rabbit and human: the effects of age, cataract surgery and diabetes. Exp Eye Res. 1989;49(5):751-767.
CrossRef
Google scholar
|
[6] |
Van den Bogerd B, Dhubhghaill SN, Koppen C, Tassignon MJ, Zakaria N. A review of the evidence for in vivo corneal endothelial regeneration. Surv Ophthalmol. 2018;63(2):149-165.
CrossRef
Google scholar
|
[7] |
Harris JE, Nordquist LT. The hydration of the cornea. I. The transport of water from the cornea. AmJ Ophthalmol. 1955;40(5 Pt 2):100-110.
CrossRef
Google scholar
|
[8] |
Waring GO, 3rd, Bourne WM, Edelhauser HF, Kenyon KR. The corneal endothelium. Normal and pathologic structure and function. Ophthalmology. 1982;89(6):531-590.
CrossRef
Google scholar
|
[9] |
Kidson SH, Kume T, Deng K, Winfrey V, Hogan BL. The forkhead/winged-helix gene, Mf1, is necessary for the normal development of the cornea and formation of the anterior chamber in the mouse eye. Dev Biol. 1999;211(2):306-322.
CrossRef
Google scholar
|
[10] |
Katikireddy KR, Schmedt T, Price MO, Price FW, Jurkunas UV. Existence of neural crest-derived progenitor cells in normal and Fuchs endothelial dystrophy corneal endothelium. Am J Pathol. 2016;186(10):2736-2750.
CrossRef
Google scholar
|
[11] |
Joyce NC. Proliferative capacity of the corneal endothelium. Prog Retin Eye Res. 2003;22(3):359-389.
CrossRef
Google scholar
|
[12] |
Korey M, Gieser D, Kass MA, Waltman SR, Gordon M, Becker B. Central corneal endothelial cell density and central corneal thickness in ocular hypertension and primary open-angle glaucoma. Am J Ophthalmol. 1982;94(5):610-616.
CrossRef
Google scholar
|
[13] |
Li Z, Fan N, Cheng Y, et al. Factors associated with severe corneal endothelial damage following acute primary angle closure in Chinese subjects. Graefes Arch Clin Exp Ophthalmol. 2023;261(10):2927-2934.
CrossRef
Google scholar
|
[14] |
Feizi S. Corneal endothelial cell dysfunction: etiologies and management. Ther Adv Ophthalmol. 2018;10:2515841418815802.
CrossRef
Google scholar
|
[15] |
Aldrich BT, Schlotzer-Schrehardt U, Skeie JM, et al. Mitochondrial and morphologic alterations in native human corneal endothelial cells associated with diabetes mellitus. Invest Ophthalmol Vis Sci. 2017;58(4):2130-2138.
CrossRef
Google scholar
|
[16] |
Su DH, Wong TY, Wong WL, et al. Diabetes, hyperglycemia, and central corneal thickness: the Singapore Malay Eye Study. Ophthalmology. 2008;115(6):964-968.e961.
CrossRef
Google scholar
|
[17] |
Chen C, Zhou Q, Li Z, et al. Hyperglycemia induces corneal endothelial dysfunction through attenuating mitophagy. Exp Eye Res. 2022;215:108903.
CrossRef
Google scholar
|
[18] |
Schultz RO, Matsuda M, Yee RW, Edelhauser HF, Schultz KJ. Corneal endothelial changes in type I and type II diabetes mellitus. Am J Ophthalmol. 1984;98(4):401-410.
CrossRef
Google scholar
|
[19] |
Jun AS. One hundred years of Fuchs’ dystrophy. Ophthalmology. 2010;117(5):859-860.e814.
CrossRef
Google scholar
|
[20] |
Jurkunas U, Azar DT. Potential complications of ocular surgery in patients with coexistent keratoconus and Fuchs’ endothelial dystrophy. Ophthalmology. 2006;113(12):2187-2197.
CrossRef
Google scholar
|
[21] |
Darlington JK, Mannis MJ, Segal WA. Anterior keratoconus associated with unilateral cornea guttata. Cornea. 2001;20(8):881-884.
CrossRef
Google scholar
|
[22] |
Elmassry A, Osman A, Sabry M, et al. Corneal endothelial cells changes in different stages of Keratoconus: a multi-Centre clinical study. BMC Ophthalmol. 2021;21(1):143.
CrossRef
Google scholar
|
[23] |
Bertelmann E, Pleyer U, Rieck P. Risk factors for endothelial cell loss post-keratoplasty. Acta Ophthalmol Scand. 2006;84(6):766-770.
CrossRef
Google scholar
|
[24] |
Engelmann K, Valtink M, Lindemann D, Nitschke M. [Transplantation of corneal endothelium—chances and challenges]. Klin Monbl Augenheilkd. 2011;228(8):712-723.
CrossRef
Google scholar
|
[25] |
PriceFW, Jr., WhitsonWE, Marks RG. Progression of visual acuity after penetrating keratoplasty. Ophthalmology. 1991;98(8):1177-1185.
CrossRef
Google scholar
|
[26] |
Crawford AZ, Patel DV, McGhee C. A brief history of corneal transplantation: from ancient to modern. Oman J Ophthalmol. 2013;6(Suppl 1):S12-S17.
CrossRef
Google scholar
|
[27] |
Melles GR, Lander F, Beekhuis WH, Remeijer L, Binder P. Posterior lamellar keratoplasty for a case of pseudophakic bullous keratopathy. Am J Ophthalmol. 1999;127(3):340-341.
CrossRef
Google scholar
|
[28] |
Beckingham AC, Van Maanen HM, McKnight J. Curriculum innovation for gerontological nursing in Canada: a health for all systems based approach. Int J Nurs Stud. 1992;29(2):135-149.
CrossRef
Google scholar
|
[29] |
Stuart AJ, Romano V, Virgili G, Shortt AJ. Descemet’s membrane endothelial keratoplasty (DMEK) versus Descemet’s stripping automated endothelial keratoplasty (DSAEK) for corneal endothelial failure. Cochrane Database Syst Rev. 2018;6(6):CD012097.
CrossRef
Google scholar
|
[30] |
Marques RE, Guerra PS, Sousa DC, Gonçalves AI, Quintas AM, Rodrigues W. DMEK versus DSAEK for Fuchs’ endothelial dystrophy: a meta-analysis. Eur J Ophthalmol. 2019;29(1):15-22.
CrossRef
Google scholar
|
[31] |
Pavlovic I, Shajari M, Herrmann E, Schmack I, Lencova A, Kohnen T. Meta-analysis of postoperative outcome parameters comparing Descemet membrane endothelial keratoplasty versus Descemet stripping automated endothelial keratoplasty. Cornea. 2017;36(12):1445-1451.
CrossRef
Google scholar
|
[32] |
Cogan DG. A new method for studying endothelial regeneration. Ophthalmologica. 1949;118(4-5):440-443.
CrossRef
Google scholar
|
[33] |
Joo CK, Pepose JS, Fleming TP. In vitro propagation of primary and extended life span murine corneal endothelial cells. Invest Ophthalmol Vis Sci. 1994;35(11):3952-3957.
|
[34] |
Espana EM, Sun M, Birk DE. Existence of corneal endothelial slow-cycling cells. Invest Ophthalmol Vis Sci. 2015;56(6):3827-3837.
CrossRef
Google scholar
|
[35] |
Capella JA. Regeneration of endothelium in diseased and injured corneas. Am J Ophthalmol. 1972;74(5):810-817.
CrossRef
Google scholar
|
[36] |
Van Horn DL, Hyndiuk RA. Endothelial wound repair in primate cornea. Exp Eye Res. 1975;21(2):113-124.
CrossRef
Google scholar
|
[37] |
Landshman N, Solomon A, Belkin M. Cell division in the healing of the corneal endothelium of cats. Arch Ophthalmol. 1989;107(12):1804-1808.
CrossRef
Google scholar
|
[38] |
Amann J, Holley GP, Lee SB, Edelhauser HF. Increased endothelial cell density in the paracentral and peripheral regions of the human cornea. Am J Ophthalmol. 2003;135(5):584-590.
CrossRef
Google scholar
|
[39] |
Yam GH, Seah X, Yusoff N, et al. Characterization of human transition zone reveals a putative progenitor-enriched niche of corneal endothelium. Cells. 2019;8(10):1244.
CrossRef
Google scholar
|
[40] |
Hirata-Tominaga K, Nakamura T, Okumura N, et al. Corneal endothelial cell fate is maintained by LGR5 through the regulation of hedgehog and Wnt pathway. Stem Cells. 2013;31(7):1396-1407.
CrossRef
Google scholar
|
[41] |
Iovieno A, Neri A, Soldani AM, Adani C, Fontana L. Descemetorhexis without graft placement for the treatment of Fuchs endothelial dystrophy: preliminary results and review of the literature. Cornea. 2017;36(6):637-641.
CrossRef
Google scholar
|
[42] |
Hoppenreijs VP, Pels E, Vrensen GF, et al. Effects of human epidermal growth factor on endothelial wound healing of human corneas. Invest Ophthalmol Vis Sci. 1992;33(6):1946-1957.
|
[43] |
Hoppenreijs VP, Pels E, Vrensen GF, et al. Effects of platelet-derived growth factor on endothelial wound healing of human corneas. Invest Ophthalmol Vis Sci. 1994;35(1):150-161.
|
[44] |
Lu J, Lu Z, Reinach P, et al. TGF-beta2 inhibits AKT activation and FGF-2-induced corneal endothelial cell proliferation. Exp Cell Res. 2006;312(18):3631-3640.
CrossRef
Google scholar
|
[45] |
Catala P, Thuret G, Skottman H, et al. Approaches for corneal endothelium regenerative medicine. Prog Retin Eye Res. 2022;87:100987.
CrossRef
Google scholar
|
[46] |
Spinozzi D, Miron A, Bruinsma M, et al. New developments in corneal endothelial cell replacement. Acta Ophthalmol. 2021;99(7):712-729.
CrossRef
Google scholar
|
[47] |
Zhang Y, Hu Z, Qu J, et al. Tissue-engineered corneal endothelial sheets using ultrathin acellular porcine corneal stroma substrates for endothelial keratoplasty. ACS Biomater Sci Eng. 2022;8(3):1301-1311.
CrossRef
Google scholar
|
[48] |
Zhao J, Tian M, Li Y, Su W, Fan T. Construction of tissue-engineered human corneal endothelium for corneal endothelial regeneration using a crosslinked amniotic membrane scaffold. Acta Biomater. 2022;147:185-197.
CrossRef
Google scholar
|
[49] |
Luo X, He X, Zhao H, et al. Research progress of polymer biomaterials as scaffolds for corneal endothelium tissue engineering. Nanomaterials. 2023;13(13):1976.
CrossRef
Google scholar
|
[50] |
Amano S. Transplantation of cultured human corneal endothelial cells. Cornea. 2003;22(7 Suppl l):S66-S74.
CrossRef
Google scholar
|
[51] |
Kinoshita S, Koizumi N, Ueno M, et al. Injection of cultured cells with a ROCK inhibitor for bullous keratopathy. N Engl J Med. 2018;378(11):995-1003.
CrossRef
Google scholar
|
[52] |
Okumura N, Sakamoto Y, Fujii K, et al. Rho kinase inhibitor enables cell-based therapy for corneal endothelial dysfunction. Sci Rep. 2016;6(1):26113.
CrossRef
Google scholar
|
[53] |
Okumura N, Fujii K, Kagami T, et al. Activation of the rho/rho kinase signaling pathway is involved in cell death of corneal endothelium. Invest Ophthalmol Vis Sci. 2016;57(15):6843-6851.
CrossRef
Google scholar
|
[54] |
Okumura N, Ueno M, Koizumi N, et al. Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor. Invest Ophthalmol Vis Sci. 2009;50(8):3680-3687.
CrossRef
Google scholar
|
[55] |
Peh GSL, Ong HS, Adnan K, et al. Functional evaluation of two corneal endothelial cell-based therapies: tissue-engineered construct and cell injection. Sci Rep. 2019;9(1):6087.
CrossRef
Google scholar
|
[56] |
Okumura N, Kinoshita S, Koizumi N. Application of Rho kinase inhibitors for the treatment of corneal endothelial diseases. J Ophthalmol. 2017;2017:2646904-2646908.
CrossRef
Google scholar
|
[57] |
Kohsaku N, Kojiro I, Morio U, et al. Five-year follow-up of first 11 patients undergoing injection of cultured corneal endothelial cells for corneal endothelial failure. Ophthalmology. 2021;128(4):504-514.
CrossRef
Google scholar
|
[58] |
Wongvisavavit R, Parekh M, Ahmad S, Daniels JT. Challenges in corneal endothelial cell culture. Regen Med. 2021;16(9):871-891.
CrossRef
Google scholar
|
[59] |
Parekh M, Ferrari S, Sheridan C, Kaye S, Ahmad S. Concise review: an update on the culture of human corneal endothelial cells for transplantation. Stem Cells Transl Med. 2016;5(2):258-264.
CrossRef
Google scholar
|
[60] |
Roy O, Leclerc VB, Bourget JM, Theriault M, Proulx S. Understanding the process of corneal endothelial morphological change in vitro. Invest Ophthalmol Vis Sci. 2015;56(2):1228-1237.
CrossRef
Google scholar
|
[61] |
Chen S, Zhu Q, Sun H, et al. Advances in culture, expansion and mechanistic studies of corneal endothelial cells: a systematic review. J Biomed Sci. 2019;26(1):2.
CrossRef
Google scholar
|
[62] |
Peh GS, Beuerman RW, Colman A, Tan DT, Mehta JS. Human corneal endothelial cell expansion for corneal endothelium transplantation: an overview. Transplantation. 2011;91(8):811-819.
CrossRef
Google scholar
|
[63] |
Li W, Sabater AL, Chen YT, et al. A novel method of isolation, preservation, and expansion of human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2007;48(2):614-620.
CrossRef
Google scholar
|
[64] |
Zhu C, Joyce NC. Proliferative response of corneal endothelial cells from young and older donors. Invest Ophthalmol Vis Sci. 2004;45(6):1743-1751.
CrossRef
Google scholar
|
[65] |
Baum JL, Niedra R, Davis C, Yue BYJT. Mass culture of human corneal endothelial cells. Arch Ophthalmol. 1979;97(6):1136-1140.
CrossRef
Google scholar
|
[66] |
Yue BY, Sugar J, Gilboy JE, et al. Growth of human corneal endothelial cells in culture. Invest Ophthalmol Vis Sci. 1989;30(2):248-253.
|
[67] |
Zhang W, Shao C, Yu F, Chen J, Fu Y, Fan X. Y-27632 promotes the repair effect of umbilical cord blood-derived endothelial progenitor cells on corneal endothelial wound healing. Cornea. 2021;40(2):203-214.
CrossRef
Google scholar
|
[68] |
Peh GS, Chng Z, Ang HP, et al. Propagation of human corneal endothelial cells: a novel dual media approach. Cell Transpl. 2015;24(2):287-304.
CrossRef
Google scholar
|
[69] |
Rinkoski TA, Bahler CK, Pacheco JM, et al. Characterization of a dual media system for culturing primary normal and Fuchs endothelial corneal dystrophy (FECD) endothelial cells. PLoS One. 2021;16(9):e0258006.
CrossRef
Google scholar
|
[70] |
Peh GS, Adnan K, George BL, et al. The effects of Rho-associated kinase inhibitor Y-27632 on primary human corneal endothelial cells propagated using a dual media approach. Sci Rep. 2015;5(1):9167.
CrossRef
Google scholar
|
[71] |
Toda M, Ueno M, Hiraga A, et al. Production of homogeneous cultured human corneal endothelial cells indispensable for innovative cell therapy. Invest Ophthalmol Vis Sci. 2017;58(4):2011-2020.
CrossRef
Google scholar
|
[72] |
Ueno M, Toda M, Numa K, et al. Superiority of mature differentiated cultured human corneal endothelial cell injection therapy for corneal endothelial failure. Am J Ophthalmol. 2022;237:267-277.
CrossRef
Google scholar
|
[73] |
Ueno M, Asada K, Toda M, et al. MicroRNA profiles qualify phenotypic features of cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2016;57(13):5509-5517.
CrossRef
Google scholar
|
[74] |
Numa K, Ueno M, Fujita T, et al. Mitochondria as a platform for dictating the cell fate of cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2020;61(14):10.
CrossRef
Google scholar
|
[75] |
Hamuro J, Numa K, Fujita T, et al. Metabolites interrogation in cell fate decision of cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci. 2020;61(2):10.
CrossRef
Google scholar
|
[76] |
Hamuro J, Asada K, Ueno M, et al. Repressed miR-34a expression dictates the cell fate to corneal endothelium failure. Invest Ophthalmol Vis Sci. 2022;63(4):22.
CrossRef
Google scholar
|
[77] |
Bacakova L, Zarubova J, Travnickova M, et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells -a review. Biotechnol Adv. 2018;36(4):1111-1126.
CrossRef
Google scholar
|
[78] |
Suman S, Domingues A, Ratajczak J, et al. Potential clinical applications of stem cells in regenerative medicine. Adv Exp Med Biol. 2019;1201:1-22.
CrossRef
Google scholar
|
[79] |
Shao C, Chen J, Chen P, et al. Targeted transplantation of human umbilical cord blood endothelial progenitor cells with immunomagnetic nanoparticles to repair corneal endothelium defect. Stem Cells Dev. 2015;24(6):756-767.
CrossRef
Google scholar
|
[80] |
Inagaki E, Hatou S, Higa K, et al. Skin-derived precursors as a source of progenitors for corneal endothelial regeneration. Stem Cells Transl Med. 2017;6(3):788-798.
CrossRef
Google scholar
|
[81] |
Marta CM, Adrian M, Jorge FD, Francisco AM, De Miguel MP. Improvement of an effective protocol for directed differentiation of human adipose tissue-derived adult mesenchymal stem cells to corneal endothelial cells. Int J Mol Sci. 2021;22(21):11982.
CrossRef
Google scholar
|
[82] |
Shen L, Sun P, Zhang C, Yang L, Du L, Wu X. Therapy of corneal endothelial dysfunction with corneal endothelial cell-like cells derived from skin-derived precursors. Sci Rep. 2017;7(1):13400.
CrossRef
Google scholar
|
[83] |
Pan SH, Zhao N, Feng X, Jie Y, Jin ZB. Conversion of mouse embryonic fibroblasts into neural crest cells and functional corneal endothelia by defined small molecules. Sci Adv. 2021;7(23).
CrossRef
Google scholar
|
[84] |
Yamanaka S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell. 2020;27(4):523-531.
CrossRef
Google scholar
|
[85] |
Deinsberger J, Reisinger D, Weber B. Global trends in clinical trials involving pluripotent stem cells: a systematic multi-database analysis. NPJ Regen Med. 2020;5(1):15.
CrossRef
Google scholar
|
[86] |
Jia L, Diao Y, Fang Y, Yang K, Wang L, Huang Y. Methodological study of directed differentiation of pluripotent stem cells into corneal endothelial cells. Ann Transl Med. 2022;10(8):482.
CrossRef
Google scholar
|
[87] |
Chen X, Wu L, Li Z, et al. Directed differentiation of human corneal endothelial cells from human embryonic stem cells by using cell-conditioned culture media. Invest Ophthalmol Vis Sci. 2018;59(7):3028-3036.
CrossRef
Google scholar
|
[88] |
Hatou S, Sayano T, Higa K, et al. Transplantation of iPSC-derived corneal endothelial substitutes in a monkey corneal edema model. Stem Cell Res. 2021;55:102497.
CrossRef
Google scholar
|
[89] |
Zhang C, Du L, Sun P, et al. Construction of tissue-engineered full-thickness cornea substitute using limbal epithelial cell-like and corneal endothelial cell-like cells derived from human embryonic stem cells. Biomaterials. 2017;124:180-194.
CrossRef
Google scholar
|
[90] |
Zhang K, Pang K, Wu X. Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells. Stem Cells Dev. 2014;23(12):1340-1354.
CrossRef
Google scholar
|
[91] |
Yu J, Yu N, Tian Y, et al. Safety and efficacy of human ESC-derived corneal endothelial cells for corneal endothelial dysfunction. Cell Biosci. 2023;13(1):201.
CrossRef
Google scholar
|
[92] |
Li Z, Duan H, Jia Y, et al. Long-term corneal recovery by simultaneous delivery of hPSC-derived corneal endothelial precursors and nicotinamide. J Clin Invest. 2022;132(1).
CrossRef
Google scholar
|
[93] |
Nishida K, Yamato M, Hayashida Y, et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med. 2004;351(12):1187-1196.
CrossRef
Google scholar
|
[94] |
Satake Y, Higa K, Tsubota K, Shimazaki J. Long-term outcome of cultivated oral mucosal epithelial sheet transplantation in treatment of total limbal stem cell deficiency. Ophthalmology. 2011;118(8):1524-1530.
CrossRef
Google scholar
|
[95] |
Venugopal R, Nagpal R, Mohanty S, et al. Outcomes of cultivated oral mucosal epithelial transplantation in eyes with chronic Stevens-Johnson syndrome sequelae. Am J Ophthalmol. 2021;222:82-91.
CrossRef
Google scholar
|
[96] |
Bardag-Gorce F, Oliva J, Wood A, et al. Carrier-free cultured autologous oral mucosa epithelial cell sheet (CAOMECS) for corneal epithelium reconstruction: a histological study. Ocul Surf. 2015;13(2):150-163.
CrossRef
Google scholar
|
[97] |
Zhurenkov KE, Alexander-Sinkler EI, Gavrilyik IO, et al. Labial mucosa stem cells: isolation, characterization, and their potential for corneal epithelial reconstruction. Invest Ophthalmol Vis Sci. 2022;63(8):16.
CrossRef
Google scholar
|
[98] |
Attico E, Galaverni G, Torello A, et al. Comparison between cultivated oral mucosa and ocular surface epithelia for COMET patients follow-up. Int J Mol Sci. 2023;24(14):11522.
CrossRef
Google scholar
|
[99] |
Zhu Q, Hu M, Sun XM, et al. Experimental study on the rhesus monkey corneal endothelial cells substituted by the allogeneic vascular endothelial cells cultivated in vitro. Zhonghua Yan Ke Za Zhi. 2013;49(11):1006-1013.
|
[100] |
Zhu Q, Hu Z, Sun X, et al. Transplanted vascular endothelial cells to replace corneal endothelial cells by improved anterior chamber injection. Zhonghua Yan Ke Za Zhi. 2014;50(4):277-284.
|
[101] |
Dong C, Zou D, Duan H, et al. Ex vivo cultivated retinal pigment epithelial cell transplantation for the treatment of rabbit corneal endothelial dysfunction. Eye Vis (Lond). 2023;10(1):34.
CrossRef
Google scholar
|
[102] |
da Cruz L, Fynes K, Georgiadis O, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018;36(4):328-337.
CrossRef
Google scholar
|
[103] |
Mehat MS, Sundaram V, Ripamonti C, et al. Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration. Ophthalmology. 2018;125(11):1765-1775.
CrossRef
Google scholar
|
[104] |
Qiu TG. Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells (MA09-hRPE) in macular degeneration. NPJ Regen Med. 2019;4(1):19.
CrossRef
Google scholar
|
[105] |
Li SY, Liu Y, Wang L, et al. A phase I clinical trial of human embryonic stem cell-derived retinal pigment epithelial cells for early-stage Stargardt macular degeneration:5-years’ follow-up. Cell Prolif. 2021;54(9):e13100.
CrossRef
Google scholar
|
[106] |
Bhogal M, Lwin CN, Seah XY, Peh G, Mehta JS. Allogeneic Descemet’s membrane transplantation enhances corneal endothelial monolayer formation and restores functional integrity following Descemet’s stripping. Invest Ophthalmol Vis Sci. 2017;58(10):4249-4260.
CrossRef
Google scholar
|
[107] |
Ying LY, Qiu WY, Wang BH, Zhou P, Zhang B, Yao YF. Corneal endothelial regeneration in human eyes using endothelium-free grafts. BMC Ophthalmol. 2022;22(1):32.
CrossRef
Google scholar
|
[108] |
Auffarth GU, Son HS, Koch M, et al. Implantation of an artificial endothelial layer for treatment of chronic corneal edema. Cornea. 2021;40(12):1633-1638.
CrossRef
Google scholar
|
/
〈 | 〉 |