The transition of polymer solar cells (PSCs) from laboratory-scale unit cells to industrial-scale modules requires the development of new p-type polymers for high-performance large-area PSC modules based on environmentally friendly processes. Herein, a series of 1D/2A terpolymers (PBTPttBD) composed of benzo[1,2-b:4,5-b’]dithiophene (BDT-F), thieno[3,4-c]pyrrole-4,6(5H)-dione (TPD-TT), and benzo-[1,2-c:4,5-c’]dithiophene-4,8-dione (BDD) is synthesized for nonhalogenated solvent processed PSC submodules. The optical, electrochemical, charge-transport, and nano-morphological properties of the PBTPttBD terpolymers are modulated by adjusting the molar ratio of the TPD-TT and BDD components. PBTPttBD-75:BTP-eC11-based PSC submodules, processed with o-xylene, achieve a notable PCE of 11.57% over a 55 cm2 active area. This PCE value is among the highest reported using a nonhalogenated solvent over a 55 cm2 active area module. The optimized PSC submodule exhibits minimal cell-to-module loss, which can be attributed to the optimized crystallinity of the PBTPttBD-75:BTP-eC11 photoactive layer system and favorable film formation kinetics.
Interfacial solar evaporation is regarded as the promising technology to mitigate freshwater scarcity. However, when polluted water is used, toxic pollutants might accumulate in the bulk water. Herein, we report the production of Ni-MOF nanorod from waste poly(ethylene terephthalate) and fabricate bifunctional Ni-MOF-based evaporators. Owing to high light absorption and photothermal conversion, low thermal coefficient, and vaporization enthalpy, it shows an exciting evaporation rate (2.25 kg m−2 h−1) with good flexibility/durability, rated as one of most advanced evaporators. Density functional theory and COMSOL results show that the combination of nickel-sites in Ni-MOF and local heat plays a crucial role in peroxymonosulfate activation to produce reactive species. Thereby, it exhibits the high degradation activity of tetracycline. In outdoor, the freshwater production reaches 5.54 kg m−2 per day, and the tetracycline removal efficiency is 91%. This work provides a sustainable approach to produce solar evaporators capable of freshwater production and contaminant degradation.
Solar-driven photodegradation for water treatment faces challenges such as low energy conversion rates, high maintenance costs, and over-sensitivity to the environment. In this study, we develop reusable concave microlens arrays (MLAs) for more efficient solar photodegradation by optimizing light distribution. Concave MLAs with the base radius of ~5 μm are fabricated by imprinting convex MLAs to polydimethylsiloxane elastomers. Concave MLAs possess a non-contact reactor configuration, preventing MLAs from detaching or being contaminated. By precisely controlling the solvent exchange, concave MLAs are fabricated with well-defined curvature and adjustable volume on femtoliter scale. The focusing effects of MLAs are examined, and good agreement is presented between experiments and simulations. The photodegradation efficiency of organic pollutants in water is significantly enhanced by 5.1-fold, attributed to higher intensity at focal points of concave MLAs. Furthermore, enhanced photodegradation by concave MLAs is demonstrated under low light irradiation, applicable to real river water and highly turbid water.
In the field of environmental science, efficient removal of organic pollutants and pathogenic bacteria from wastewater using a photocatalytic process that responds to the full spectrum of sunlight is crucial. In this study, a highly effective nanoheterojunction called NaGdF4:Yb,Er@zeolitic imidazolate framework-8/manganese dioxide (NaGdF4:Yb,Er@ZIF-8/MnO2, UCZM) was synthesized. This nanoheterojunction exhibits a remarkable ability to respond to the entire range of ultraviolet, visible, and infrared light. Under simulated sunlight, UCZM demonstrated outstanding performance in degrading malachite green dye, with a degradation efficiency of 92.6% within 90 min. Moreover, UCZM completely inactivated both Staphylococcus aureus and Escherichia coli within 20 min under simulated sunlight. Mechanistic studies revealed that NaGdF4:Yb,Er played a crucial role in activating ZIF-8 and MnO2 through Förster resonance energy transfer, facilitating the photocatalytic process. The formation of a Z-type heterojunction in UCZM promoted the efficient separation of photogenerated carriers. Furthermore, UCZM exhibited excellent biosafety properties. This study represents the first exploration of a composite material composed of UCNPs, ZIF-8, and MnO2 for photocatalytic applications. The findings highlight the potential of this novel nanoheterojunction design, which exhibits a full spectral response, for tackling water pollution through efficient photocatalytic degradation of organic pollutants and inactivation of pathogenic bacteria.