Concave microlens arrays with tunable curvature for enhanced photodegradation of organic pollutants in water: A non-contact approach

Qiuyun Lu, Yanan Li, Kehinde Kassim, Ben Bin Xu, Mohamed Gamal El-Din, Xuehua Zhang

PDF
EcoMat ›› 2024, Vol. 6 ›› Issue (1) : e12426. DOI: 10.1002/eom2.12426
RESEARCH ARTICLE

Concave microlens arrays with tunable curvature for enhanced photodegradation of organic pollutants in water: A non-contact approach

Author information +
History +

Abstract

Solar-driven photodegradation for water treatment faces challenges such as low energy conversion rates, high maintenance costs, and over-sensitivity to the environment. In this study, we develop reusable concave microlens arrays (MLAs) for more efficient solar photodegradation by optimizing light distribution. Concave MLAs with the base radius of ~5 μm are fabricated by imprinting convex MLAs to polydimethylsiloxane elastomers. Concave MLAs possess a non-contact reactor configuration, preventing MLAs from detaching or being contaminated. By precisely controlling the solvent exchange, concave MLAs are fabricated with well-defined curvature and adjustable volume on femtoliter scale. The focusing effects of MLAs are examined, and good agreement is presented between experiments and simulations. The photodegradation efficiency of organic pollutants in water is significantly enhanced by 5.1-fold, attributed to higher intensity at focal points of concave MLAs. Furthermore, enhanced photodegradation by concave MLAs is demonstrated under low light irradiation, applicable to real river water and highly turbid water.

Keywords

microlens array / photodegradation / solar energy / water treatment

Cite this article

Download citation ▾
Qiuyun Lu, Yanan Li, Kehinde Kassim, Ben Bin Xu, Mohamed Gamal El-Din, Xuehua Zhang. Concave microlens arrays with tunable curvature for enhanced photodegradation of organic pollutants in water: A non-contact approach. EcoMat, 2024, 6(1): e12426 https://doi.org/10.1002/eom2.12426

References

[1]
Porley V, Chatzisymeon E, Meikap BC, Ghosal S, Robertson N. Field testing of low-cost titania-based photocatalysts for enhanced solar disinfection (SODIS) in rural India. Environ Sci. 2020;6(3):809-816.
CrossRef Google scholar
[2]
Banerjee T, Podjaski F, Kroger J, Biswal BP, Lotsch BV. Polymer photocatalysts for solar-to-chemical energy conversion. Nat Rev Mater. 2021;6(2):168-190.
CrossRef Google scholar
[3]
Nahim-Granados S, Rivas-Ibanez G, Pérez JAS, Oller I, Malato S, Polo-López MI. Fresh-cut wastewater reclamation: techno-economical assessment of solar driven processes at pilot plant scale. Appl Catal B Environ. 2020;278:119334.
CrossRef Google scholar
[4]
Gong J, Li C, Wasielewski MR. Advances in solar energy conversion. Chem Soc Rev. 2019;48(7):1862-1864.
CrossRef Google scholar
[5]
Zhang P, Lou XW. Design of Heterostructured Hollow Photocatalysts for solar-to-chemical energy conversion. Adv Mater. 2019;31(29):1900281.
CrossRef Google scholar
[6]
Stevens R, Miyashita T. Review of standards for microlenses and microlens arrays. Imaging Sci J. 2010;58(4):202-212.
CrossRef Google scholar
[7]
Fang C, Zheng J, Zhang Y, et al. Antireflective Paraboloidal microlens film for boosting power conversion efficiency of solar cells. ACS Appl Mater Interfaces. 2018;10(26):21950-21956.
CrossRef Google scholar
[8]
Liu Q, Liu H, Li D, Qiao W, Chen G, Ågren H. Microlens array enhanced upconversion luminescence at low excitation irradiance. Nanoscale. 2019;11(29):14070-14078.
CrossRef Google scholar
[9]
Dongare PD, Alabastri A, Neumann O, Nordlander P, Halas NJ. Solar thermal desalination as a nonlinear optical process. Proc Natl Acad Sci. 2019;116(27):13182-13187.
CrossRef Google scholar
[10]
Gao H, Hyun JK, Lee MH, Yang J-C, Lauhon LJ, Odom TW. Broadband Plasmonic microlenses based on patches of Nanoholes. Nano Lett. 2010;10(10):4111-4116.
CrossRef Google scholar
[11]
Dyett B, Zhang Q, Xu Q, Wang X, Zhang X. Extraordinary focusing effect of surface Nanolenses in Total internal reflection mode. ACS Central Sci. 2018;4(11):1511-1519.
CrossRef Google scholar
[12]
Bae S-I, Kim K, Jang K-W, Kim H-K, Jeong K-H. High contrast ultrathin light-field camera using inverted microlens arrays with metal–insulator–metal optical absorber. Adv Opt Mater. 2021;9(6):2001657.
CrossRef Google scholar
[13]
Zhong Y, Yu H, Wen Y, et al. Novel optofluidic imaging system integrated with tunable microlens arrays. ACS Appl Mater Interfaces. 2023;15(9):11994–12004.
[14]
Ma Y, Li H, Chen S, et al. Skin-like electronics for perception and interaction: materials, structural designs, and applications. Adv Intell Syst. 2021;3(4):2000108.
CrossRef Google scholar
[15]
Jürgensen N, Fritz B, Mertens A, et al. A single-step hot embossing process for integration of microlens arrays in biodegradable substrates for improved light extraction of light-emitting devices. Adv Mater Technol. 2021;6(2):1900933.
CrossRef Google scholar
[16]
Vinayaka AC, Ngo TA, Nguyen T, Bang DD, Wolff A. Pathogen concentration combined solid-phase PCR on supercritical angle fluorescence microlens Array for multiplexed detection of invasive NontyphoidalSalmonellaSerovars. Anal Chem. 2020;92(3):2706-2713.
CrossRef Google scholar
[17]
Kang B-H, Jang K-W, Yu E-S, et al. Ultrafast plasmonic nucleic acid amplification and real-time quantification for decentralized molecular Diagnostics. ACS Nano. 2023;17(7):6507–6518.
[18]
Wei Y, Yang Q, Bian H, et al. Fabrication of high integrated microlens arrays on a glass substrate for 3D micro-optical systems. Appl Surf Sci. 2018;457:1202-1207.
CrossRef Google scholar
[19]
Cai S, Sun Y, Chu H, Yang W, Yu H, Liu L. Microlenses arrays: fabrication, materials, and applications. Microsc Res Tech. 2021;84(11):2784-2806.
CrossRef Google scholar
[20]
Lee M, Lee GJ, Jang HJ, et al. An amphibious artificial vision system with a panoramic visual field. Nat Electron. 2022;5(7):452-459.
CrossRef Google scholar
[21]
Sohn I-B, Choi H-K, Noh Y-C, Kim J, Ahsan MS. Laser assisted fabrication of micro-lens array and characterization of their beam shaping property. Appl Surf Sci. 2019;479:375-385.
CrossRef Google scholar
[22]
Ding Y, Lin Y, Zhao L, et al. High-throughput and controllable fabrication of soft screen protectors with microlens arrays for light enhancement of OLED displays. Adv Mater Technol. 2020;5(10):2000382.
CrossRef Google scholar
[23]
Lu Q, Xu Q, Meng J, et al. Surface microlenses for much more efficient Photodegradation in water treatment. ACS ES&T Water. 2022;2(4):644-657.
CrossRef Google scholar
[24]
Li Y, Lu Q, EI-Din MG, Zhang X. Immobilization of photocatalytic ZnO nanocaps on planar and curved surfaces for the photodegradation of organic contaminants in water. ACS ES&T Water. 2023;3(8):2740–2752.
[25]
Hanun JN, Hassan F, Jiang J-J. Occurrence, fate, and sorption behavior of contaminants of emerging concern to microplastics: influence of the weathering/aging process. J Environ Chem Eng. 2021;9(5):106290.
CrossRef Google scholar
[26]
Mukaida M, Yan J. Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo. Int J Mach Tools Manuf. 2017;115:2-14.
CrossRef Google scholar
[27]
Liu X, Zhou T, Zhang L, et al. 3D fabrication of spherical microlens arrays on concave and convex silica surfaces. Microsyst Technol. 2019;25(1):361-370.
CrossRef Google scholar
[28]
Mo J, Chang X, Renqing D, Zhang J, Liao L, Luo S. Design, fabrication, and performance evaluation of a concave lens array on an aspheric curved surface. Opt Express. 2022;30(18):33241.
CrossRef Google scholar
[29]
Zhang D, Xu Q, Fang C, et al. Fabrication of a microlens Array with controlled curvature by thermally curving photosensitive gel film beneath microholes. ACS Appl Mater Interfaces. 2017;9(19):16604-16609.
CrossRef Google scholar
[30]
Zhang Q, Guo Z, Ma Z, Wang S, Peng B. Fabricating SU-8pPhotoresist microstructures with controlled convexity--concavity and curvature through thermally manipulating capillary action in poly (dimethylsiloxane) microholes. Langmuir. 2023;39(2):763–770.
[31]
Gissibl T, Thiele S, Herkommer A, Giessen H. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat Photonics. 2016;10(8):554-560.
CrossRef Google scholar
[32]
Li R, Li C, Yan M, et al. Fabrication of chalcogenide microlens arrays by femtosecond laser writing and precision molding. Ceram Int. 2023;49(10):15865–15873.
CrossRef Google scholar
[33]
Wu M, Jiang L, Li X, et al. Microheater-integrated microlens array for robust rapid fog removal. ACS Appl Mater Interfaces. 2023;15(34):41092–41100.
[34]
Chen F, Liu H, Yang Q, et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method. Opt Express. 2010;18(19):20334-20343.
CrossRef Google scholar
[35]
Deng Z, Yang Q, Chen F, et al. Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining. Opt Lett. 2015;40(9):1928-1931.
CrossRef Google scholar
[36]
Wu P, Cao X, Chen Z, et al. Fabrication of cylindrical microlens by femtosecond laser-assisted hydrofluoric acid wet etching of fused silica. Adv Photonics Res. 2023;4(4):2200227.
CrossRef Google scholar
[37]
Zhang A, Bai H, Li L. Breath figure: a nature-inspired preparation method for ordered porous films. Chem Rev. 2015;115(18):9801-9868.
CrossRef Google scholar
[38]
Han JW, Joo CW, Lee J, et al. Enhancement of spectral stability and outcoupling efficiency in organic light-emitting diodes with breath figure patterned microlens array films. Opt Mater. 2019;96:109262.
CrossRef Google scholar
[39]
Mei L, Qu C, Xu Z, et al. Facile fabrication of microlens array on encapsulation layer for enhancing angular color uniformity of color-mixed light-emitting diodes. Opt Laser Technol. 2021;142:107227.
CrossRef Google scholar
[40]
Kessel A, Frydendahl C, Indukuri SRKC, Mazurski N, Arora P, Levy U. Soft lithography for manufacturing scalable perovskite Metasurfaces with enhanced emission and absorption. Adv Opt Mater. 2020;8(23):2001627.
CrossRef Google scholar
[41]
Li J-W, Li Y-J, Hu X-S, et al. Biosafety of a 3D-printed intraocular lens made of a poly(acrylamide-co-sodium acrylate) hydrogel in vitro and in vivo. Int J Ophthalmol. 2020;13(10):1521-1530.
CrossRef Google scholar
[42]
Luan S, Xu P, Zhang Y, Xue L, Song Y, Gui C. Flexible Superhydrophobic microlens arrays for humid outdoor environment applications. ACS Appl Mater Interfaces. 2022;14(47):53433-53441.
CrossRef Google scholar
[43]
Li T, Xu Z, Xu BB, et al. Advancing pressure sensors performance through a flexible MXene embedded interlocking structure in a microlens array. Nano Res. 2023;16(7):1–7.
[44]
Moore S, Gomez J, Lek D, You BH, Kim N, Song I-H. Experimental study of polymer microlens fabrication using partial-filling hot embossing technique. Microelectron Eng. 2016;162:57-62.
CrossRef Google scholar
[45]
Chang C-Y, Chu J-H. Innovative design of reel-to-reel hot embossing system for production of plastic microlens array films. Int J Adv Manuf Technol. 2017;89(5-8):2411-2420.
CrossRef Google scholar
[46]
Yang S-P, Kim J-B, Seo Y-H, Jeong K-H. Rotational offset microlens arrays for highly efficient structured pattern projection. Adv Opt Mater. 2020;8(16):2000395.
CrossRef Google scholar
[47]
Bae S-I, Kim K, Yang S, Jang K-w, Jeong K-H. Multifocal microlens arrays using multilayer photolithography. Opt Express. 2020;28(7):9082-9088.
CrossRef Google scholar
[48]
Peng Y, Guo X, Liang R, et al. Fabrication of microlens arrays with controlled curvature by micromolding water condensing based porous films for deep ultraviolet LEDs. ACS Photonics. 2017;4(10):2479-2485.
CrossRef Google scholar
[49]
Long Y, Song Z, Pan M, et al. Fabrication of uniform-aperture multi-focus microlens array by curving microfluid in the microholes with inclined walls. Opt Express. 2021;29(8):12763-12771.
CrossRef Google scholar
[50]
Liu X-Q, Yu L, Yang S-N, et al. Optical nanofabrication of concave microlens arrays. Laser Photonics Rev. 2019;13(5):1800272.
CrossRef Google scholar
[51]
Zhang X, Ren J, Yang H, He Y, Tan J, Qiao GG. From transient nanodroplets to permanent nanolenses. Soft Matter. 2012;8(16):4314.
CrossRef Google scholar
[52]
Yu H, Peng S, Lei L, Zhang J, Greaves TL, Zhang X. Large scale flow-mediated formation and potential applications of surface Nanodroplets. ACS Appl Mater Interfaces. 2016;8(34):22679-22687.
CrossRef Google scholar
[53]
Zhang X, Lu Z, Tan H, et al. Formation of surface nanodroplets under controlled flow conditions. Proc Natl Acad Sci. 2015;112(30):9253-9257.
CrossRef Google scholar
[54]
Lu Z, Peng S, Zhang X. Influence of solution composition on the formation of surface Nanodroplets by solvent exchange. Langmuir. 2016;32(7):1700-1706.
CrossRef Google scholar
[55]
Martí Jerez E, Fernández Pradas JM, Serra P, Duocastella M. Substrate reshaping for optically tuned liquid-printed microlenses beyond their wetting properties. Adv Mater Technol. 2023;8(19):2300564.
CrossRef Google scholar
[56]
Bao L, Rezk AR, Yeo LY, Zhang X. Highly ordered arrays of Femtoliter surface droplets. Small. 2015;11(37):4850-4855.
CrossRef Google scholar
[57]
Lei L, Li J, Yu H, Bao L, Peng S, Zhang X. Formation, growth and applications of femtoliter droplets on a microlens. Phys Chem Chem Phys. 2018;20(6):4226-4237.
CrossRef Google scholar
[58]
Bao L, Pinchasik B-E, Lei L, et al. Control of Femtoliter liquid on a microlens: a way to flexible dual-microlens arrays. ACS Appl Mater Interfaces. 2019;11(30):27386-27393.
CrossRef Google scholar
[59]
Murai Y, Yoshikawa M. Polymeric pseudo-liquid membranes from poly(dodecyl methacrylate): KCl transport and optical resolution. Polym J. 2013;45(10):1058-1063.
CrossRef Google scholar
[60]
Lu Q, Yang L, Chelme-Ayala P, Li Y, Zhang X, El-Din MG. Enhanced photocatalytic degradation of organic contaminants in water by highly tunable surface microlenses. Chem Eng J. 2023;463:142345.
CrossRef Google scholar
[61]
Liu Z, Sun B, Shi T, Tang Z, Liao G. Enhanced photovoltaic performance and stability of carbon counter electrode based perovskite solar cells encapsulated by PDMS. J Mater Chem A. 2016;4(27):10700-10709.
CrossRef Google scholar
[62]
Liu X, Cheng K, Cui P, et al. Hybrid energy harvester with bi-functional nano-wrinkled anti-reflective PDMS film for enhancing energies conversion from sunlight and raindrops. Nano Energy. 2019;66:104188.
CrossRef Google scholar
[63]
Kang J, Huang R, Guo S, et al. Suppression of ion migration through cross-linked PDMS doping to enhance the operational stability of perovskite solar cells. Sol Energy. 2021;217:105-112.
CrossRef Google scholar
[64]
Lapointe M, Barbeau B. Characterization of ballasted flocs in water treatment using microscopy. Water Res. 2016;90:119-127.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. EcoMat published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/