Concave microlens arrays with tunable curvature for enhanced photodegradation of organic pollutants in water: A non-contact approach
Qiuyun Lu, Yanan Li, Kehinde Kassim, Ben Bin Xu, Mohamed Gamal El-Din, Xuehua Zhang
Concave microlens arrays with tunable curvature for enhanced photodegradation of organic pollutants in water: A non-contact approach
Solar-driven photodegradation for water treatment faces challenges such as low energy conversion rates, high maintenance costs, and over-sensitivity to the environment. In this study, we develop reusable concave microlens arrays (MLAs) for more efficient solar photodegradation by optimizing light distribution. Concave MLAs with the base radius of ~5 μm are fabricated by imprinting convex MLAs to polydimethylsiloxane elastomers. Concave MLAs possess a non-contact reactor configuration, preventing MLAs from detaching or being contaminated. By precisely controlling the solvent exchange, concave MLAs are fabricated with well-defined curvature and adjustable volume on femtoliter scale. The focusing effects of MLAs are examined, and good agreement is presented between experiments and simulations. The photodegradation efficiency of organic pollutants in water is significantly enhanced by 5.1-fold, attributed to higher intensity at focal points of concave MLAs. Furthermore, enhanced photodegradation by concave MLAs is demonstrated under low light irradiation, applicable to real river water and highly turbid water.
microlens array / photodegradation / solar energy / water treatment
[1] |
Porley V, Chatzisymeon E, Meikap BC, Ghosal S, Robertson N. Field testing of low-cost titania-based photocatalysts for enhanced solar disinfection (SODIS) in rural India. Environ Sci. 2020;6(3):809-816.
CrossRef
Google scholar
|
[2] |
Banerjee T, Podjaski F, Kroger J, Biswal BP, Lotsch BV. Polymer photocatalysts for solar-to-chemical energy conversion. Nat Rev Mater. 2021;6(2):168-190.
CrossRef
Google scholar
|
[3] |
Nahim-Granados S, Rivas-Ibanez G, Pérez JAS, Oller I, Malato S, Polo-López MI. Fresh-cut wastewater reclamation: techno-economical assessment of solar driven processes at pilot plant scale. Appl Catal B Environ. 2020;278:119334.
CrossRef
Google scholar
|
[4] |
Gong J, Li C, Wasielewski MR. Advances in solar energy conversion. Chem Soc Rev. 2019;48(7):1862-1864.
CrossRef
Google scholar
|
[5] |
Zhang P, Lou XW. Design of Heterostructured Hollow Photocatalysts for solar-to-chemical energy conversion. Adv Mater. 2019;31(29):1900281.
CrossRef
Google scholar
|
[6] |
Stevens R, Miyashita T. Review of standards for microlenses and microlens arrays. Imaging Sci J. 2010;58(4):202-212.
CrossRef
Google scholar
|
[7] |
Fang C, Zheng J, Zhang Y, et al. Antireflective Paraboloidal microlens film for boosting power conversion efficiency of solar cells. ACS Appl Mater Interfaces. 2018;10(26):21950-21956.
CrossRef
Google scholar
|
[8] |
Liu Q, Liu H, Li D, Qiao W, Chen G, Ågren H. Microlens array enhanced upconversion luminescence at low excitation irradiance. Nanoscale. 2019;11(29):14070-14078.
CrossRef
Google scholar
|
[9] |
Dongare PD, Alabastri A, Neumann O, Nordlander P, Halas NJ. Solar thermal desalination as a nonlinear optical process. Proc Natl Acad Sci. 2019;116(27):13182-13187.
CrossRef
Google scholar
|
[10] |
Gao H, Hyun JK, Lee MH, Yang J-C, Lauhon LJ, Odom TW. Broadband Plasmonic microlenses based on patches of Nanoholes. Nano Lett. 2010;10(10):4111-4116.
CrossRef
Google scholar
|
[11] |
Dyett B, Zhang Q, Xu Q, Wang X, Zhang X. Extraordinary focusing effect of surface Nanolenses in Total internal reflection mode. ACS Central Sci. 2018;4(11):1511-1519.
CrossRef
Google scholar
|
[12] |
Bae S-I, Kim K, Jang K-W, Kim H-K, Jeong K-H. High contrast ultrathin light-field camera using inverted microlens arrays with metal–insulator–metal optical absorber. Adv Opt Mater. 2021;9(6):2001657.
CrossRef
Google scholar
|
[13] |
Zhong Y, Yu H, Wen Y, et al. Novel optofluidic imaging system integrated with tunable microlens arrays. ACS Appl Mater Interfaces. 2023;15(9):11994–12004.
|
[14] |
Ma Y, Li H, Chen S, et al. Skin-like electronics for perception and interaction: materials, structural designs, and applications. Adv Intell Syst. 2021;3(4):2000108.
CrossRef
Google scholar
|
[15] |
Jürgensen N, Fritz B, Mertens A, et al. A single-step hot embossing process for integration of microlens arrays in biodegradable substrates for improved light extraction of light-emitting devices. Adv Mater Technol. 2021;6(2):1900933.
CrossRef
Google scholar
|
[16] |
Vinayaka AC, Ngo TA, Nguyen T, Bang DD, Wolff A. Pathogen concentration combined solid-phase PCR on supercritical angle fluorescence microlens Array for multiplexed detection of invasive NontyphoidalSalmonellaSerovars. Anal Chem. 2020;92(3):2706-2713.
CrossRef
Google scholar
|
[17] |
Kang B-H, Jang K-W, Yu E-S, et al. Ultrafast plasmonic nucleic acid amplification and real-time quantification for decentralized molecular Diagnostics. ACS Nano. 2023;17(7):6507–6518.
|
[18] |
Wei Y, Yang Q, Bian H, et al. Fabrication of high integrated microlens arrays on a glass substrate for 3D micro-optical systems. Appl Surf Sci. 2018;457:1202-1207.
CrossRef
Google scholar
|
[19] |
Cai S, Sun Y, Chu H, Yang W, Yu H, Liu L. Microlenses arrays: fabrication, materials, and applications. Microsc Res Tech. 2021;84(11):2784-2806.
CrossRef
Google scholar
|
[20] |
Lee M, Lee GJ, Jang HJ, et al. An amphibious artificial vision system with a panoramic visual field. Nat Electron. 2022;5(7):452-459.
CrossRef
Google scholar
|
[21] |
Sohn I-B, Choi H-K, Noh Y-C, Kim J, Ahsan MS. Laser assisted fabrication of micro-lens array and characterization of their beam shaping property. Appl Surf Sci. 2019;479:375-385.
CrossRef
Google scholar
|
[22] |
Ding Y, Lin Y, Zhao L, et al. High-throughput and controllable fabrication of soft screen protectors with microlens arrays for light enhancement of OLED displays. Adv Mater Technol. 2020;5(10):2000382.
CrossRef
Google scholar
|
[23] |
Lu Q, Xu Q, Meng J, et al. Surface microlenses for much more efficient Photodegradation in water treatment. ACS ES&T Water. 2022;2(4):644-657.
CrossRef
Google scholar
|
[24] |
Li Y, Lu Q, EI-Din MG, Zhang X. Immobilization of photocatalytic ZnO nanocaps on planar and curved surfaces for the photodegradation of organic contaminants in water. ACS ES&T Water. 2023;3(8):2740–2752.
|
[25] |
Hanun JN, Hassan F, Jiang J-J. Occurrence, fate, and sorption behavior of contaminants of emerging concern to microplastics: influence of the weathering/aging process. J Environ Chem Eng. 2021;9(5):106290.
CrossRef
Google scholar
|
[26] |
Mukaida M, Yan J. Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo. Int J Mach Tools Manuf. 2017;115:2-14.
CrossRef
Google scholar
|
[27] |
Liu X, Zhou T, Zhang L, et al. 3D fabrication of spherical microlens arrays on concave and convex silica surfaces. Microsyst Technol. 2019;25(1):361-370.
CrossRef
Google scholar
|
[28] |
Mo J, Chang X, Renqing D, Zhang J, Liao L, Luo S. Design, fabrication, and performance evaluation of a concave lens array on an aspheric curved surface. Opt Express. 2022;30(18):33241.
CrossRef
Google scholar
|
[29] |
Zhang D, Xu Q, Fang C, et al. Fabrication of a microlens Array with controlled curvature by thermally curving photosensitive gel film beneath microholes. ACS Appl Mater Interfaces. 2017;9(19):16604-16609.
CrossRef
Google scholar
|
[30] |
Zhang Q, Guo Z, Ma Z, Wang S, Peng B. Fabricating SU-8pPhotoresist microstructures with controlled convexity--concavity and curvature through thermally manipulating capillary action in poly (dimethylsiloxane) microholes. Langmuir. 2023;39(2):763–770.
|
[31] |
Gissibl T, Thiele S, Herkommer A, Giessen H. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat Photonics. 2016;10(8):554-560.
CrossRef
Google scholar
|
[32] |
Li R, Li C, Yan M, et al. Fabrication of chalcogenide microlens arrays by femtosecond laser writing and precision molding. Ceram Int. 2023;49(10):15865–15873.
CrossRef
Google scholar
|
[33] |
Wu M, Jiang L, Li X, et al. Microheater-integrated microlens array for robust rapid fog removal. ACS Appl Mater Interfaces. 2023;15(34):41092–41100.
|
[34] |
Chen F, Liu H, Yang Q, et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method. Opt Express. 2010;18(19):20334-20343.
CrossRef
Google scholar
|
[35] |
Deng Z, Yang Q, Chen F, et al. Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining. Opt Lett. 2015;40(9):1928-1931.
CrossRef
Google scholar
|
[36] |
Wu P, Cao X, Chen Z, et al. Fabrication of cylindrical microlens by femtosecond laser-assisted hydrofluoric acid wet etching of fused silica. Adv Photonics Res. 2023;4(4):2200227.
CrossRef
Google scholar
|
[37] |
Zhang A, Bai H, Li L. Breath figure: a nature-inspired preparation method for ordered porous films. Chem Rev. 2015;115(18):9801-9868.
CrossRef
Google scholar
|
[38] |
Han JW, Joo CW, Lee J, et al. Enhancement of spectral stability and outcoupling efficiency in organic light-emitting diodes with breath figure patterned microlens array films. Opt Mater. 2019;96:109262.
CrossRef
Google scholar
|
[39] |
Mei L, Qu C, Xu Z, et al. Facile fabrication of microlens array on encapsulation layer for enhancing angular color uniformity of color-mixed light-emitting diodes. Opt Laser Technol. 2021;142:107227.
CrossRef
Google scholar
|
[40] |
Kessel A, Frydendahl C, Indukuri SRKC, Mazurski N, Arora P, Levy U. Soft lithography for manufacturing scalable perovskite Metasurfaces with enhanced emission and absorption. Adv Opt Mater. 2020;8(23):2001627.
CrossRef
Google scholar
|
[41] |
Li J-W, Li Y-J, Hu X-S, et al. Biosafety of a 3D-printed intraocular lens made of a poly(acrylamide-co-sodium acrylate) hydrogel in vitro and in vivo. Int J Ophthalmol. 2020;13(10):1521-1530.
CrossRef
Google scholar
|
[42] |
Luan S, Xu P, Zhang Y, Xue L, Song Y, Gui C. Flexible Superhydrophobic microlens arrays for humid outdoor environment applications. ACS Appl Mater Interfaces. 2022;14(47):53433-53441.
CrossRef
Google scholar
|
[43] |
Li T, Xu Z, Xu BB, et al. Advancing pressure sensors performance through a flexible MXene embedded interlocking structure in a microlens array. Nano Res. 2023;16(7):1–7.
|
[44] |
Moore S, Gomez J, Lek D, You BH, Kim N, Song I-H. Experimental study of polymer microlens fabrication using partial-filling hot embossing technique. Microelectron Eng. 2016;162:57-62.
CrossRef
Google scholar
|
[45] |
Chang C-Y, Chu J-H. Innovative design of reel-to-reel hot embossing system for production of plastic microlens array films. Int J Adv Manuf Technol. 2017;89(5-8):2411-2420.
CrossRef
Google scholar
|
[46] |
Yang S-P, Kim J-B, Seo Y-H, Jeong K-H. Rotational offset microlens arrays for highly efficient structured pattern projection. Adv Opt Mater. 2020;8(16):2000395.
CrossRef
Google scholar
|
[47] |
Bae S-I, Kim K, Yang S, Jang K-w, Jeong K-H. Multifocal microlens arrays using multilayer photolithography. Opt Express. 2020;28(7):9082-9088.
CrossRef
Google scholar
|
[48] |
Peng Y, Guo X, Liang R, et al. Fabrication of microlens arrays with controlled curvature by micromolding water condensing based porous films for deep ultraviolet LEDs. ACS Photonics. 2017;4(10):2479-2485.
CrossRef
Google scholar
|
[49] |
Long Y, Song Z, Pan M, et al. Fabrication of uniform-aperture multi-focus microlens array by curving microfluid in the microholes with inclined walls. Opt Express. 2021;29(8):12763-12771.
CrossRef
Google scholar
|
[50] |
Liu X-Q, Yu L, Yang S-N, et al. Optical nanofabrication of concave microlens arrays. Laser Photonics Rev. 2019;13(5):1800272.
CrossRef
Google scholar
|
[51] |
Zhang X, Ren J, Yang H, He Y, Tan J, Qiao GG. From transient nanodroplets to permanent nanolenses. Soft Matter. 2012;8(16):4314.
CrossRef
Google scholar
|
[52] |
Yu H, Peng S, Lei L, Zhang J, Greaves TL, Zhang X. Large scale flow-mediated formation and potential applications of surface Nanodroplets. ACS Appl Mater Interfaces. 2016;8(34):22679-22687.
CrossRef
Google scholar
|
[53] |
Zhang X, Lu Z, Tan H, et al. Formation of surface nanodroplets under controlled flow conditions. Proc Natl Acad Sci. 2015;112(30):9253-9257.
CrossRef
Google scholar
|
[54] |
Lu Z, Peng S, Zhang X. Influence of solution composition on the formation of surface Nanodroplets by solvent exchange. Langmuir. 2016;32(7):1700-1706.
CrossRef
Google scholar
|
[55] |
Martí Jerez E, Fernández Pradas JM, Serra P, Duocastella M. Substrate reshaping for optically tuned liquid-printed microlenses beyond their wetting properties. Adv Mater Technol. 2023;8(19):2300564.
CrossRef
Google scholar
|
[56] |
Bao L, Rezk AR, Yeo LY, Zhang X. Highly ordered arrays of Femtoliter surface droplets. Small. 2015;11(37):4850-4855.
CrossRef
Google scholar
|
[57] |
Lei L, Li J, Yu H, Bao L, Peng S, Zhang X. Formation, growth and applications of femtoliter droplets on a microlens. Phys Chem Chem Phys. 2018;20(6):4226-4237.
CrossRef
Google scholar
|
[58] |
Bao L, Pinchasik B-E, Lei L, et al. Control of Femtoliter liquid on a microlens: a way to flexible dual-microlens arrays. ACS Appl Mater Interfaces. 2019;11(30):27386-27393.
CrossRef
Google scholar
|
[59] |
Murai Y, Yoshikawa M. Polymeric pseudo-liquid membranes from poly(dodecyl methacrylate): KCl transport and optical resolution. Polym J. 2013;45(10):1058-1063.
CrossRef
Google scholar
|
[60] |
Lu Q, Yang L, Chelme-Ayala P, Li Y, Zhang X, El-Din MG. Enhanced photocatalytic degradation of organic contaminants in water by highly tunable surface microlenses. Chem Eng J. 2023;463:142345.
CrossRef
Google scholar
|
[61] |
Liu Z, Sun B, Shi T, Tang Z, Liao G. Enhanced photovoltaic performance and stability of carbon counter electrode based perovskite solar cells encapsulated by PDMS. J Mater Chem A. 2016;4(27):10700-10709.
CrossRef
Google scholar
|
[62] |
Liu X, Cheng K, Cui P, et al. Hybrid energy harvester with bi-functional nano-wrinkled anti-reflective PDMS film for enhancing energies conversion from sunlight and raindrops. Nano Energy. 2019;66:104188.
CrossRef
Google scholar
|
[63] |
Kang J, Huang R, Guo S, et al. Suppression of ion migration through cross-linked PDMS doping to enhance the operational stability of perovskite solar cells. Sol Energy. 2021;217:105-112.
CrossRef
Google scholar
|
[64] |
Lapointe M, Barbeau B. Characterization of ballasted flocs in water treatment using microscopy. Water Res. 2016;90:119-127.
CrossRef
Google scholar
|
/
〈 | 〉 |