Concave microlens arrays with tunable curvature for enhanced photodegradation of organic pollutants in water: A non-contact approach

Qiuyun Lu , Yanan Li , Kehinde Kassim , Ben Bin Xu , Mohamed Gamal El-Din , Xuehua Zhang

EcoMat ›› 2024, Vol. 6 ›› Issue (1) : e12426

PDF
EcoMat ›› 2024, Vol. 6 ›› Issue (1) : e12426 DOI: 10.1002/eom2.12426
RESEARCH ARTICLE

Concave microlens arrays with tunable curvature for enhanced photodegradation of organic pollutants in water: A non-contact approach

Author information +
History +
PDF

Abstract

Solar-driven photodegradation for water treatment faces challenges such as low energy conversion rates, high maintenance costs, and over-sensitivity to the environment. In this study, we develop reusable concave microlens arrays (MLAs) for more efficient solar photodegradation by optimizing light distribution. Concave MLAs with the base radius of ~5 μm are fabricated by imprinting convex MLAs to polydimethylsiloxane elastomers. Concave MLAs possess a non-contact reactor configuration, preventing MLAs from detaching or being contaminated. By precisely controlling the solvent exchange, concave MLAs are fabricated with well-defined curvature and adjustable volume on femtoliter scale. The focusing effects of MLAs are examined, and good agreement is presented between experiments and simulations. The photodegradation efficiency of organic pollutants in water is significantly enhanced by 5.1-fold, attributed to higher intensity at focal points of concave MLAs. Furthermore, enhanced photodegradation by concave MLAs is demonstrated under low light irradiation, applicable to real river water and highly turbid water.

Keywords

microlens array / photodegradation / solar energy / water treatment

Cite this article

Download citation ▾
Qiuyun Lu, Yanan Li, Kehinde Kassim, Ben Bin Xu, Mohamed Gamal El-Din, Xuehua Zhang. Concave microlens arrays with tunable curvature for enhanced photodegradation of organic pollutants in water: A non-contact approach. EcoMat, 2024, 6(1): e12426 DOI:10.1002/eom2.12426

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Porley V, Chatzisymeon E, Meikap BC, Ghosal S, Robertson N. Field testing of low-cost titania-based photocatalysts for enhanced solar disinfection (SODIS) in rural India. Environ Sci. 2020;6(3):809-816.

[2]

Banerjee T, Podjaski F, Kroger J, Biswal BP, Lotsch BV. Polymer photocatalysts for solar-to-chemical energy conversion. Nat Rev Mater. 2021;6(2):168-190.

[3]

Nahim-Granados S, Rivas-Ibanez G, Pérez JAS, Oller I, Malato S, Polo-López MI. Fresh-cut wastewater reclamation: techno-economical assessment of solar driven processes at pilot plant scale. Appl Catal B Environ. 2020;278:119334.

[4]

Gong J, Li C, Wasielewski MR. Advances in solar energy conversion. Chem Soc Rev. 2019;48(7):1862-1864.

[5]

Zhang P, Lou XW. Design of Heterostructured Hollow Photocatalysts for solar-to-chemical energy conversion. Adv Mater. 2019;31(29):1900281.

[6]

Stevens R, Miyashita T. Review of standards for microlenses and microlens arrays. Imaging Sci J. 2010;58(4):202-212.

[7]

Fang C, Zheng J, Zhang Y, et al. Antireflective Paraboloidal microlens film for boosting power conversion efficiency of solar cells. ACS Appl Mater Interfaces. 2018;10(26):21950-21956.

[8]

Liu Q, Liu H, Li D, Qiao W, Chen G, Ågren H. Microlens array enhanced upconversion luminescence at low excitation irradiance. Nanoscale. 2019;11(29):14070-14078.

[9]

Dongare PD, Alabastri A, Neumann O, Nordlander P, Halas NJ. Solar thermal desalination as a nonlinear optical process. Proc Natl Acad Sci. 2019;116(27):13182-13187.

[10]

Gao H, Hyun JK, Lee MH, Yang J-C, Lauhon LJ, Odom TW. Broadband Plasmonic microlenses based on patches of Nanoholes. Nano Lett. 2010;10(10):4111-4116.

[11]

Dyett B, Zhang Q, Xu Q, Wang X, Zhang X. Extraordinary focusing effect of surface Nanolenses in Total internal reflection mode. ACS Central Sci. 2018;4(11):1511-1519.

[12]

Bae S-I, Kim K, Jang K-W, Kim H-K, Jeong K-H. High contrast ultrathin light-field camera using inverted microlens arrays with metal–insulator–metal optical absorber. Adv Opt Mater. 2021;9(6):2001657.

[13]

Zhong Y, Yu H, Wen Y, et al. Novel optofluidic imaging system integrated with tunable microlens arrays. ACS Appl Mater Interfaces. 2023;15(9):11994–12004.

[14]

Ma Y, Li H, Chen S, et al. Skin-like electronics for perception and interaction: materials, structural designs, and applications. Adv Intell Syst. 2021;3(4):2000108.

[15]

Jürgensen N, Fritz B, Mertens A, et al. A single-step hot embossing process for integration of microlens arrays in biodegradable substrates for improved light extraction of light-emitting devices. Adv Mater Technol. 2021;6(2):1900933.

[16]

Vinayaka AC, Ngo TA, Nguyen T, Bang DD, Wolff A. Pathogen concentration combined solid-phase PCR on supercritical angle fluorescence microlens Array for multiplexed detection of invasive NontyphoidalSalmonellaSerovars. Anal Chem. 2020;92(3):2706-2713.

[17]

Kang B-H, Jang K-W, Yu E-S, et al. Ultrafast plasmonic nucleic acid amplification and real-time quantification for decentralized molecular Diagnostics. ACS Nano. 2023;17(7):6507–6518.

[18]

Wei Y, Yang Q, Bian H, et al. Fabrication of high integrated microlens arrays on a glass substrate for 3D micro-optical systems. Appl Surf Sci. 2018;457:1202-1207.

[19]

Cai S, Sun Y, Chu H, Yang W, Yu H, Liu L. Microlenses arrays: fabrication, materials, and applications. Microsc Res Tech. 2021;84(11):2784-2806.

[20]

Lee M, Lee GJ, Jang HJ, et al. An amphibious artificial vision system with a panoramic visual field. Nat Electron. 2022;5(7):452-459.

[21]

Sohn I-B, Choi H-K, Noh Y-C, Kim J, Ahsan MS. Laser assisted fabrication of micro-lens array and characterization of their beam shaping property. Appl Surf Sci. 2019;479:375-385.

[22]

Ding Y, Lin Y, Zhao L, et al. High-throughput and controllable fabrication of soft screen protectors with microlens arrays for light enhancement of OLED displays. Adv Mater Technol. 2020;5(10):2000382.

[23]

Lu Q, Xu Q, Meng J, et al. Surface microlenses for much more efficient Photodegradation in water treatment. ACS ES&T Water. 2022;2(4):644-657.

[24]

Li Y, Lu Q, EI-Din MG, Zhang X. Immobilization of photocatalytic ZnO nanocaps on planar and curved surfaces for the photodegradation of organic contaminants in water. ACS ES&T Water. 2023;3(8):2740–2752.

[25]

Hanun JN, Hassan F, Jiang J-J. Occurrence, fate, and sorption behavior of contaminants of emerging concern to microplastics: influence of the weathering/aging process. J Environ Chem Eng. 2021;9(5):106290.

[26]

Mukaida M, Yan J. Ductile machining of single-crystal silicon for microlens arrays by ultraprecision diamond turning using a slow tool servo. Int J Mach Tools Manuf. 2017;115:2-14.

[27]

Liu X, Zhou T, Zhang L, et al. 3D fabrication of spherical microlens arrays on concave and convex silica surfaces. Microsyst Technol. 2019;25(1):361-370.

[28]

Mo J, Chang X, Renqing D, Zhang J, Liao L, Luo S. Design, fabrication, and performance evaluation of a concave lens array on an aspheric curved surface. Opt Express. 2022;30(18):33241.

[29]

Zhang D, Xu Q, Fang C, et al. Fabrication of a microlens Array with controlled curvature by thermally curving photosensitive gel film beneath microholes. ACS Appl Mater Interfaces. 2017;9(19):16604-16609.

[30]

Zhang Q, Guo Z, Ma Z, Wang S, Peng B. Fabricating SU-8pPhotoresist microstructures with controlled convexity--concavity and curvature through thermally manipulating capillary action in poly (dimethylsiloxane) microholes. Langmuir. 2023;39(2):763–770.

[31]

Gissibl T, Thiele S, Herkommer A, Giessen H. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat Photonics. 2016;10(8):554-560.

[32]

Li R, Li C, Yan M, et al. Fabrication of chalcogenide microlens arrays by femtosecond laser writing and precision molding. Ceram Int. 2023;49(10):15865–15873.

[33]

Wu M, Jiang L, Li X, et al. Microheater-integrated microlens array for robust rapid fog removal. ACS Appl Mater Interfaces. 2023;15(34):41092–41100.

[34]

Chen F, Liu H, Yang Q, et al. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method. Opt Express. 2010;18(19):20334-20343.

[35]

Deng Z, Yang Q, Chen F, et al. Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining. Opt Lett. 2015;40(9):1928-1931.

[36]

Wu P, Cao X, Chen Z, et al. Fabrication of cylindrical microlens by femtosecond laser-assisted hydrofluoric acid wet etching of fused silica. Adv Photonics Res. 2023;4(4):2200227.

[37]

Zhang A, Bai H, Li L. Breath figure: a nature-inspired preparation method for ordered porous films. Chem Rev. 2015;115(18):9801-9868.

[38]

Han JW, Joo CW, Lee J, et al. Enhancement of spectral stability and outcoupling efficiency in organic light-emitting diodes with breath figure patterned microlens array films. Opt Mater. 2019;96:109262.

[39]

Mei L, Qu C, Xu Z, et al. Facile fabrication of microlens array on encapsulation layer for enhancing angular color uniformity of color-mixed light-emitting diodes. Opt Laser Technol. 2021;142:107227.

[40]

Kessel A, Frydendahl C, Indukuri SRKC, Mazurski N, Arora P, Levy U. Soft lithography for manufacturing scalable perovskite Metasurfaces with enhanced emission and absorption. Adv Opt Mater. 2020;8(23):2001627.

[41]

Li J-W, Li Y-J, Hu X-S, et al. Biosafety of a 3D-printed intraocular lens made of a poly(acrylamide-co-sodium acrylate) hydrogel in vitro and in vivo. Int J Ophthalmol. 2020;13(10):1521-1530.

[42]

Luan S, Xu P, Zhang Y, Xue L, Song Y, Gui C. Flexible Superhydrophobic microlens arrays for humid outdoor environment applications. ACS Appl Mater Interfaces. 2022;14(47):53433-53441.

[43]

Li T, Xu Z, Xu BB, et al. Advancing pressure sensors performance through a flexible MXene embedded interlocking structure in a microlens array. Nano Res. 2023;16(7):1–7.

[44]

Moore S, Gomez J, Lek D, You BH, Kim N, Song I-H. Experimental study of polymer microlens fabrication using partial-filling hot embossing technique. Microelectron Eng. 2016;162:57-62.

[45]

Chang C-Y, Chu J-H. Innovative design of reel-to-reel hot embossing system for production of plastic microlens array films. Int J Adv Manuf Technol. 2017;89(5-8):2411-2420.

[46]

Yang S-P, Kim J-B, Seo Y-H, Jeong K-H. Rotational offset microlens arrays for highly efficient structured pattern projection. Adv Opt Mater. 2020;8(16):2000395.

[47]

Bae S-I, Kim K, Yang S, Jang K-w, Jeong K-H. Multifocal microlens arrays using multilayer photolithography. Opt Express. 2020;28(7):9082-9088.

[48]

Peng Y, Guo X, Liang R, et al. Fabrication of microlens arrays with controlled curvature by micromolding water condensing based porous films for deep ultraviolet LEDs. ACS Photonics. 2017;4(10):2479-2485.

[49]

Long Y, Song Z, Pan M, et al. Fabrication of uniform-aperture multi-focus microlens array by curving microfluid in the microholes with inclined walls. Opt Express. 2021;29(8):12763-12771.

[50]

Liu X-Q, Yu L, Yang S-N, et al. Optical nanofabrication of concave microlens arrays. Laser Photonics Rev. 2019;13(5):1800272.

[51]

Zhang X, Ren J, Yang H, He Y, Tan J, Qiao GG. From transient nanodroplets to permanent nanolenses. Soft Matter. 2012;8(16):4314.

[52]

Yu H, Peng S, Lei L, Zhang J, Greaves TL, Zhang X. Large scale flow-mediated formation and potential applications of surface Nanodroplets. ACS Appl Mater Interfaces. 2016;8(34):22679-22687.

[53]

Zhang X, Lu Z, Tan H, et al. Formation of surface nanodroplets under controlled flow conditions. Proc Natl Acad Sci. 2015;112(30):9253-9257.

[54]

Lu Z, Peng S, Zhang X. Influence of solution composition on the formation of surface Nanodroplets by solvent exchange. Langmuir. 2016;32(7):1700-1706.

[55]

Martí Jerez E, Fernández Pradas JM, Serra P, Duocastella M. Substrate reshaping for optically tuned liquid-printed microlenses beyond their wetting properties. Adv Mater Technol. 2023;8(19):2300564.

[56]

Bao L, Rezk AR, Yeo LY, Zhang X. Highly ordered arrays of Femtoliter surface droplets. Small. 2015;11(37):4850-4855.

[57]

Lei L, Li J, Yu H, Bao L, Peng S, Zhang X. Formation, growth and applications of femtoliter droplets on a microlens. Phys Chem Chem Phys. 2018;20(6):4226-4237.

[58]

Bao L, Pinchasik B-E, Lei L, et al. Control of Femtoliter liquid on a microlens: a way to flexible dual-microlens arrays. ACS Appl Mater Interfaces. 2019;11(30):27386-27393.

[59]

Murai Y, Yoshikawa M. Polymeric pseudo-liquid membranes from poly(dodecyl methacrylate): KCl transport and optical resolution. Polym J. 2013;45(10):1058-1063.

[60]

Lu Q, Yang L, Chelme-Ayala P, Li Y, Zhang X, El-Din MG. Enhanced photocatalytic degradation of organic contaminants in water by highly tunable surface microlenses. Chem Eng J. 2023;463:142345.

[61]

Liu Z, Sun B, Shi T, Tang Z, Liao G. Enhanced photovoltaic performance and stability of carbon counter electrode based perovskite solar cells encapsulated by PDMS. J Mater Chem A. 2016;4(27):10700-10709.

[62]

Liu X, Cheng K, Cui P, et al. Hybrid energy harvester with bi-functional nano-wrinkled anti-reflective PDMS film for enhancing energies conversion from sunlight and raindrops. Nano Energy. 2019;66:104188.

[63]

Kang J, Huang R, Guo S, et al. Suppression of ion migration through cross-linked PDMS doping to enhance the operational stability of perovskite solar cells. Sol Energy. 2021;217:105-112.

[64]

Lapointe M, Barbeau B. Characterization of ballasted flocs in water treatment using microscopy. Water Res. 2016;90:119-127.

RIGHTS & PERMISSIONS

2023 The Authors. EcoMat published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

230

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/