Boosting the performance of aqueous zinc-ion battery by regulating the electrolyte solvation structure

Xingxing Wu , Yufan Xia , Shuang Chen , Zhen Luo , Xuan Zhang , Muhammad Wakil Shahzad , Ben Bin Xu , Hongge Pan , Mi Yan , Yinzhu Jiang

EcoMat ›› 2024, Vol. 6 ›› Issue (3) : e12438

PDF
EcoMat ›› 2024, Vol. 6 ›› Issue (3) : e12438 DOI: 10.1002/eom2.12438
RESEARCH ARTICLE

Boosting the performance of aqueous zinc-ion battery by regulating the electrolyte solvation structure

Author information +
History +
PDF

Abstract

The practical implementation of aqueous Zn-ion batteries (ZIBs) for large-scale energy storage is impeded by the challenges of water-induced parasitic reactions and uncontrolled dendrite growth. Herein, we propose a strategy to regulate both anions and cations of electrolyte solvation structures to address above challenges, by introducing an electrolyte additive of 3-hydroxy-4-(trimethylammonio)butyrate (HTMAB) into ZnSO4 electrolyte. Consequently, the deposition of Zn is significantly improved leading to a highly reversible Zn anode with paralleled texture. The Zn/Zn cells with ZnSO4/HTMAB exhibit outstanding cycling performance, showcasing a lifespan exceeding 7500 h and an exceptionally high accumulative capacity of 16.47 Ah cm−2. Zn/NaV3O8·1.5H2O full cell displays a specific capacity of ~130 mAh g−1 at 5 A g−1 maintaining a capacity retention of 93% after 2000 cycles. This work highlights the regulation on both cations and anions of electrolyte solvation structures in optimizing interfacial stability during Zn plating/stripping for high performance ZIBs.

Keywords

electrolyte additive / solvation structure / zinc-ion batteries / Zn plating/stripping

Cite this article

Download citation ▾
Xingxing Wu, Yufan Xia, Shuang Chen, Zhen Luo, Xuan Zhang, Muhammad Wakil Shahzad, Ben Bin Xu, Hongge Pan, Mi Yan, Yinzhu Jiang. Boosting the performance of aqueous zinc-ion battery by regulating the electrolyte solvation structure. EcoMat, 2024, 6(3): e12438 DOI:10.1002/eom2.12438

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chao D, Zhou W, Xie F, et al. Roadmap for advanced aqueous batteries: from design of materials to applications. Sci Adv. 2020;6(21):eaba4098.

[2]

Shin J, Choi JW. Opportunities and reality of aqueous rechargeable batteries. Adv Energy Mater. 2020;10(28):2001386.

[3]

Tang B, Shan L, Liang S, Zhou J. Issues and opportunities facing aqueous zinc-ion batteries. Energ Environ Sci. 2019;12(11):3288-3304.

[4]

Zhang T, Tang Y, Guo S, et al. Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energ Environ Sci. 2020;13(12):4625-4665.

[5]

Hao J, Li X, Zeng X, Li D, Mao J, Guo Z. Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energ Environ Sci. 2020;13(11):3917-3949.

[6]

Li L, Cheng H, Zhang J, et al. Quantitative chemistry in electrolyte solvation design for aqueous batteries. ACS Energy Lett. 2023;8(2):1076-1095.

[7]

Yang W, Yang Y, Yang H, Zhou H. Regulating water activity for rechargeable zinc-ion batteries: Progress and perspective. ACS Energy Lett. 2022;7(8):2515-2530.

[8]

Chang Z, Yang H, Qiao Y, Zhu X, He P, Zhou H. Tailoring the solvation sheath of cations by constructing electrode front-faces for rechargeable batteries. Adv Mater. 2022;34(34):2201339.

[9]

Zhang Q, Luan J, Tang Y, Ji X, Wang H. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew Chem Int ed. 2020;59(32):13180-13191.

[10]

Du W, Ang EH, Yang Y, Zhang Y, Ye M, Li CC. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energ Environ Sci. 2020;13(10):3330-3360.

[11]

Zampardi G, La Mantia F. Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat Commun. 2022;13(1):687.

[12]

Li C, Jin S, Archer LA, Nazar LF. Toward practical aqueous zinc-ion batteries for electrochemical energy storage. Joule. 2022;6(8):1733-1738.

[13]

Li J, Liu Z, Han S, et al. Hetero nucleus growth stabilizing zinc anode for high-biosecurity zinc-ion batteries. Nano-Micro Lett. 2023;15(1):237.

[14]

Dong H, Hu X, Liu R, et al. Bio-inspired polyanionic electrolytes for highly stable zinc-ion batteries. Angew Chem Int ed. 2023;62(41):e202311268.

[15]

Zhu M, Wang H, Wang H, et al. A fluorinated solid-state-electrolyte interface layer guiding fast zinc-ion oriented deposition in aqueous zinc-ion batteries. Angew Chem Int ed. 2024;63(4):e202316904.

[16]

Xie X, Li J, Xing Z, Lu B, Liang S, Zhou J. Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Nat Sci Rev. 2023;10(3):nwac281.

[17]

Chen R, Zhang C, Li J, et al. A hydrated deep eutectic electrolyte with finely-tuned solvation chemistry for high-performance zinc-ion batteries. Energ Environ Sci. 2023;16(6):2540-2549.

[18]

Chen R, Zhang W, Huang Q, et al. Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective. Nano-Micro Lett. 2023;15(1):81.

[19]

Cao J, Zhang D, Zhang X, Zeng Z, Qin J, Huang Y. Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energ Environ Sci. 2022;15(2):499-528.

[20]

Li C, Wang H, Chen S, et al. Weak-water-coordination electrolyte to stabilize zinc anode interface for aqueous zinc ion batteries. Small. 2023;2306939.

[21]

Sun P, Ma L, Zhou W, et al. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew Chem Int ed. 2021;133(33):18395-18403.

[22]

Liu B, Wei C, Zhu Z, et al. Regulating surface reaction kinetics through ligand field effects for fast and reversible aqueous zinc batteries. Angew Chem Int ed. 2022;134(44):e202212780.

[23]

Zhang S-J, Hao J, Luo D, et al. Dual-function electrolyte additive for highly reversible Zn anode. Adv Energy Mater. 2021;11(37):2102010.

[24]

Wang Y, Wang Z, Pang WK, et al. Solvent control of water O−H bonds for highly reversible zinc ion batteries. Nat Commun. 2023;14(1):2720.

[25]

Zhang Q, Ma Y, Lu Y, et al. Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. Angew Chem Int ed. 2021;133(43):23545-23552.

[26]

Ren H, Li S, Wang B, et al. Molecular-crowding effect mimicking cold-resistant plants to stabilize the zinc anode with wider service temperature range. Adv Mater. 2023;35(1):2208237.

[27]

Ratajczak H, Pietraszko A, Baran J, Barnes AJ, Tarnavski Y. Structure and polarized IR and Raman spectra of the solid complex of bis(betaine)—sulphuric acid. J Mol Struct. 1994;327(2):297-312.

[28]

Wu X, Xia Y, Chen S, et al. Transient zwitterions dynamics empowered adaptive interface for ultra-stable Zn plating/stripping. Small. 2023;2306739.

[29]

Luo Z, Xia Y, Chen S, et al. Synergistic “anchor-capture” enabled by amino and carboxyl for constructing robust interface of Zn anode. Nano-Micro Lett. 2023;15(1):205.

[30]

Yu H, Chen D, Ni X, et al. Reversible adsorption with oriented arrangement of a zwitterionic additive stabilizes electrodes for ultralong-life Zn-ion batteries. Energ Environ Sci. 2023;16(6):2684-2695.

[31]

Huang C, Zhao X, Liu S, et al. Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv Mater. 2021;33(38):2100445.

[32]

Wang D, Lv D, Liu H, et al. In situ formation of nitrogen-rich solid electrolyte interphase and simultaneous regulating solvation structures for advanced Zn metal batteries. Angew Chem Int ed. 2022;61(52):e202212839.

[33]

Zou Y, Yang X, Shen L, et al. Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energ Environ Sci. 2022;15(12):5017-5038.

[34]

Li TC, Lin C, Luo M, et al. Interfacial molecule engineering for reversible Zn electrochemistry. ACS Energy Lett. 2023;8(8):3258-3268.

[35]

Xie X, Liang S, Gao J, et al. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energ Environ Sci. 2020;13(2):503-510.

[36]

Yu L, Huang J, Wang S, Qi L, Wang S, Chen C. Ionic liquid “water pocket” for stable and environment-adaptable aqueous zinc metal batteries. Adv Mater. 2023;35(21):2210789.

[37]

Lin Y, Mai Z, Liang H, Li Y, Yang G, Wang C. Dendrite-free Zn anode enabled by anionic surfactant-induced horizontal growth for highly-stable aqueous Zn-ion pouch cells. Energ Environ Sci. 2023;16(2):687-697.

[38]

Yu X, Li Z, Wu X, et al. Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule. 2023;7(6):1145-1175.

[39]

Kim M, Lee J, Kim Y, Park Y, Kim H, Choi JW. Surface overpotential as a key metric for the discharge–charge reversibility of aqueous zinc-ion batteries. J Am Chem Soc. 2023;145(29):15776-15787.

[40]

Qiu M, Sun P, Wang Y, Ma L, Zhi C, Mai W. Anion-trap engineering toward remarkable crystallographic reorientation and efficient cation migration of Zn ion batteries. Angew Chem Int ed. 2022;61(44):e202210979.

[41]

Han D, Wang Z, Lu H, et al. A self-regulated interface toward highly reversible aqueous zinc batteries. Adv Energy Mater. 2022;12(9):2102982.

[42]

Xiao P, Wu Y, Fu J, et al. Enabling high-rate and high-areal-capacity Zn deposition via an interfacial preferentially adsorbed molecular layer. ACS Energy Lett. 2023;8(1):31-39.

[43]

Guan K, Tao L, Yang R, et al. Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries. Adv Energy Mater. 2022;12(9):2103557.

[44]

Liu Y, An Y, Wu L, et al. Interfacial chemistry modulation via amphoteric glycine for a highly reversible zinc anode. ACS Nano. 2023;17(1):552-560.

[45]

Li C, Qu G, Zhang X, Wang C, Xu X. Electrode/electrolyte interfacial chemistry modulated by chelating effect for high-performance zinc anode. Energy Environ Mater. 2023;e12608.

[46]

Luo M, Wang C, Lu H, et al. Dendrite-free zinc anode enabled by zinc-chelating chemistry. Energy Storage Mater. 2021;41:515-521.

[47]

Wan F, Zhang L, Dai X, Wang X, Niu Z, Chen J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat Commun. 2018;9(1):1656.

[48]

Frisch M e, Trucks G, Schlegel HB, et al. Gaussian 16 Rev. C.01, Wallingford, CT. 2016

[49]

Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc. 2008;120(1):215-241.

[50]

Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys. 2005;7(18):3297-3305.

[51]

Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132(15):154104.

[52]

Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B. 2009;113(18):6378-6396.

[53]

Gutowski M, van Lenthe JH, Verbeek J, van Duijneveldt FB, Chałasinski G. The basis set superposition error in correlated electronic structure calculations. Chem Phys Lett. 1986;124(4):370-375.

[54]

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci. 1996;6(1):15-50.

[55]

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169-11186.

[56]

Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50(24):17953-17979.

[57]

Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865-3868.

[58]

Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Cryst. 2011;44(6):1272-1276.

[59]

Wang V, Xu N, Liu J-C, Tang G, Geng W-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput Phys Commun. 2021;267:108033.

RIGHTS & PERMISSIONS

2024 The Authors. EcoMat published by The Hong Kong Polytechnic University and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

425

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/