Boosting the performance of aqueous zinc-ion battery by regulating the electrolyte solvation structure
Xingxing Wu, Yufan Xia, Shuang Chen, Zhen Luo, Xuan Zhang, Muhammad Wakil Shahzad, Ben Bin Xu, Hongge Pan, Mi Yan, Yinzhu Jiang
Boosting the performance of aqueous zinc-ion battery by regulating the electrolyte solvation structure
The practical implementation of aqueous Zn-ion batteries (ZIBs) for large-scale energy storage is impeded by the challenges of water-induced parasitic reactions and uncontrolled dendrite growth. Herein, we propose a strategy to regulate both anions and cations of electrolyte solvation structures to address above challenges, by introducing an electrolyte additive of 3-hydroxy-4-(trimethylammonio)butyrate (HTMAB) into ZnSO4 electrolyte. Consequently, the deposition of Zn is significantly improved leading to a highly reversible Zn anode with paralleled texture. The Zn/Zn cells with ZnSO4/HTMAB exhibit outstanding cycling performance, showcasing a lifespan exceeding 7500 h and an exceptionally high accumulative capacity of 16.47 Ah cm−2. Zn/NaV3O8·1.5H2O full cell displays a specific capacity of ~130 mAh g−1 at 5 A g−1 maintaining a capacity retention of 93% after 2000 cycles. This work highlights the regulation on both cations and anions of electrolyte solvation structures in optimizing interfacial stability during Zn plating/stripping for high performance ZIBs.
electrolyte additive / solvation structure / zinc-ion batteries / Zn plating/stripping
[1] |
Chao D, Zhou W, Xie F, et al. Roadmap for advanced aqueous batteries: from design of materials to applications. Sci Adv. 2020;6(21):eaba4098.
CrossRef
Google scholar
|
[2] |
Shin J, Choi JW. Opportunities and reality of aqueous rechargeable batteries. Adv Energy Mater. 2020;10(28):2001386.
CrossRef
Google scholar
|
[3] |
Tang B, Shan L, Liang S, Zhou J. Issues and opportunities facing aqueous zinc-ion batteries. Energ Environ Sci. 2019;12(11):3288-3304.
CrossRef
Google scholar
|
[4] |
Zhang T, Tang Y, Guo S, et al. Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energ Environ Sci. 2020;13(12):4625-4665.
CrossRef
Google scholar
|
[5] |
Hao J, Li X, Zeng X, Li D, Mao J, Guo Z. Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energ Environ Sci. 2020;13(11):3917-3949.
CrossRef
Google scholar
|
[6] |
Li L, Cheng H, Zhang J, et al. Quantitative chemistry in electrolyte solvation design for aqueous batteries. ACS Energy Lett. 2023;8(2):1076-1095.
CrossRef
Google scholar
|
[7] |
Yang W, Yang Y, Yang H, Zhou H. Regulating water activity for rechargeable zinc-ion batteries: Progress and perspective. ACS Energy Lett. 2022;7(8):2515-2530.
CrossRef
Google scholar
|
[8] |
Chang Z, Yang H, Qiao Y, Zhu X, He P, Zhou H. Tailoring the solvation sheath of cations by constructing electrode front-faces for rechargeable batteries. Adv Mater. 2022;34(34):2201339.
CrossRef
Google scholar
|
[9] |
Zhang Q, Luan J, Tang Y, Ji X, Wang H. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew Chem Int ed. 2020;59(32):13180-13191.
CrossRef
Google scholar
|
[10] |
Du W, Ang EH, Yang Y, Zhang Y, Ye M, Li CC. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energ Environ Sci. 2020;13(10):3330-3360.
CrossRef
Google scholar
|
[11] |
Zampardi G, La Mantia F. Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat Commun. 2022;13(1):687.
CrossRef
Google scholar
|
[12] |
Li C, Jin S, Archer LA, Nazar LF. Toward practical aqueous zinc-ion batteries for electrochemical energy storage. Joule. 2022;6(8):1733-1738.
CrossRef
Google scholar
|
[13] |
Li J, Liu Z, Han S, et al. Hetero nucleus growth stabilizing zinc anode for high-biosecurity zinc-ion batteries. Nano-Micro Lett. 2023;15(1):237.
CrossRef
Google scholar
|
[14] |
Dong H, Hu X, Liu R, et al. Bio-inspired polyanionic electrolytes for highly stable zinc-ion batteries. Angew Chem Int ed. 2023;62(41):e202311268.
CrossRef
Google scholar
|
[15] |
Zhu M, Wang H, Wang H, et al. A fluorinated solid-state-electrolyte interface layer guiding fast zinc-ion oriented deposition in aqueous zinc-ion batteries. Angew Chem Int ed. 2024;63(4):e202316904.
CrossRef
Google scholar
|
[16] |
Xie X, Li J, Xing Z, Lu B, Liang S, Zhou J. Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Nat Sci Rev. 2023;10(3):nwac281.
CrossRef
Google scholar
|
[17] |
Chen R, Zhang C, Li J, et al. A hydrated deep eutectic electrolyte with finely-tuned solvation chemistry for high-performance zinc-ion batteries. Energ Environ Sci. 2023;16(6):2540-2549.
CrossRef
Google scholar
|
[18] |
Chen R, Zhang W, Huang Q, et al. Trace amounts of triple-functional additives enable reversible aqueous zinc-ion batteries from a comprehensive perspective. Nano-Micro Lett. 2023;15(1):81.
CrossRef
Google scholar
|
[19] |
Cao J, Zhang D, Zhang X, Zeng Z, Qin J, Huang Y. Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energ Environ Sci. 2022;15(2):499-528.
CrossRef
Google scholar
|
[20] |
Li C, Wang H, Chen S, et al. Weak-water-coordination electrolyte to stabilize zinc anode interface for aqueous zinc ion batteries. Small. 2023;2306939.
CrossRef
Google scholar
|
[21] |
Sun P, Ma L, Zhou W, et al. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew Chem Int ed. 2021;133(33):18395-18403.
CrossRef
Google scholar
|
[22] |
Liu B, Wei C, Zhu Z, et al. Regulating surface reaction kinetics through ligand field effects for fast and reversible aqueous zinc batteries. Angew Chem Int ed. 2022;134(44):e202212780.
CrossRef
Google scholar
|
[23] |
Zhang S-J, Hao J, Luo D, et al. Dual-function electrolyte additive for highly reversible Zn anode. Adv Energy Mater. 2021;11(37):2102010.
CrossRef
Google scholar
|
[24] |
Wang Y, Wang Z, Pang WK, et al. Solvent control of water O−H bonds for highly reversible zinc ion batteries. Nat Commun. 2023;14(1):2720.
CrossRef
Google scholar
|
[25] |
Zhang Q, Ma Y, Lu Y, et al. Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. Angew Chem Int ed. 2021;133(43):23545-23552.
CrossRef
Google scholar
|
[26] |
Ren H, Li S, Wang B, et al. Molecular-crowding effect mimicking cold-resistant plants to stabilize the zinc anode with wider service temperature range. Adv Mater. 2023;35(1):2208237.
CrossRef
Google scholar
|
[27] |
Ratajczak H, Pietraszko A, Baran J, Barnes AJ, Tarnavski Y. Structure and polarized IR and Raman spectra of the solid complex of bis(betaine)—sulphuric acid. J Mol Struct. 1994;327(2):297-312.
CrossRef
Google scholar
|
[28] |
Wu X, Xia Y, Chen S, et al. Transient zwitterions dynamics empowered adaptive interface for ultra-stable Zn plating/stripping. Small. 2023;2306739.
CrossRef
Google scholar
|
[29] |
Luo Z, Xia Y, Chen S, et al. Synergistic “anchor-capture” enabled by amino and carboxyl for constructing robust interface of Zn anode. Nano-Micro Lett. 2023;15(1):205.
CrossRef
Google scholar
|
[30] |
Yu H, Chen D, Ni X, et al. Reversible adsorption with oriented arrangement of a zwitterionic additive stabilizes electrodes for ultralong-life Zn-ion batteries. Energ Environ Sci. 2023;16(6):2684-2695.
CrossRef
Google scholar
|
[31] |
Huang C, Zhao X, Liu S, et al. Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv Mater. 2021;33(38):2100445.
CrossRef
Google scholar
|
[32] |
Wang D, Lv D, Liu H, et al. In situ formation of nitrogen-rich solid electrolyte interphase and simultaneous regulating solvation structures for advanced Zn metal batteries. Angew Chem Int ed. 2022;61(52):e202212839.
CrossRef
Google scholar
|
[33] |
Zou Y, Yang X, Shen L, et al. Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energ Environ Sci. 2022;15(12):5017-5038.
CrossRef
Google scholar
|
[34] |
Li TC, Lin C, Luo M, et al. Interfacial molecule engineering for reversible Zn electrochemistry. ACS Energy Lett. 2023;8(8):3258-3268.
CrossRef
Google scholar
|
[35] |
Xie X, Liang S, Gao J, et al. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energ Environ Sci. 2020;13(2):503-510.
CrossRef
Google scholar
|
[36] |
Yu L, Huang J, Wang S, Qi L, Wang S, Chen C. Ionic liquid “water pocket” for stable and environment-adaptable aqueous zinc metal batteries. Adv Mater. 2023;35(21):2210789.
CrossRef
Google scholar
|
[37] |
Lin Y, Mai Z, Liang H, Li Y, Yang G, Wang C. Dendrite-free Zn anode enabled by anionic surfactant-induced horizontal growth for highly-stable aqueous Zn-ion pouch cells. Energ Environ Sci. 2023;16(2):687-697.
CrossRef
Google scholar
|
[38] |
Yu X, Li Z, Wu X, et al. Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule. 2023;7(6):1145-1175.
CrossRef
Google scholar
|
[39] |
Kim M, Lee J, Kim Y, Park Y, Kim H, Choi JW. Surface overpotential as a key metric for the discharge–charge reversibility of aqueous zinc-ion batteries. J Am Chem Soc. 2023;145(29):15776-15787.
CrossRef
Google scholar
|
[40] |
Qiu M, Sun P, Wang Y, Ma L, Zhi C, Mai W. Anion-trap engineering toward remarkable crystallographic reorientation and efficient cation migration of Zn ion batteries. Angew Chem Int ed. 2022;61(44):e202210979.
CrossRef
Google scholar
|
[41] |
Han D, Wang Z, Lu H, et al. A self-regulated interface toward highly reversible aqueous zinc batteries. Adv Energy Mater. 2022;12(9):2102982.
CrossRef
Google scholar
|
[42] |
Xiao P, Wu Y, Fu J, et al. Enabling high-rate and high-areal-capacity Zn deposition via an interfacial preferentially adsorbed molecular layer. ACS Energy Lett. 2023;8(1):31-39.
CrossRef
Google scholar
|
[43] |
Guan K, Tao L, Yang R, et al. Anti-corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries. Adv Energy Mater. 2022;12(9):2103557.
CrossRef
Google scholar
|
[44] |
Liu Y, An Y, Wu L, et al. Interfacial chemistry modulation via amphoteric glycine for a highly reversible zinc anode. ACS Nano. 2023;17(1):552-560.
CrossRef
Google scholar
|
[45] |
Li C, Qu G, Zhang X, Wang C, Xu X. Electrode/electrolyte interfacial chemistry modulated by chelating effect for high-performance zinc anode. Energy Environ Mater. 2023;e12608.
CrossRef
Google scholar
|
[46] |
Luo M, Wang C, Lu H, et al. Dendrite-free zinc anode enabled by zinc-chelating chemistry. Energy Storage Mater. 2021;41:515-521.
CrossRef
Google scholar
|
[47] |
Wan F, Zhang L, Dai X, Wang X, Niu Z, Chen J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat Commun. 2018;9(1):1656.
CrossRef
Google scholar
|
[48] |
Frisch M e, Trucks G, Schlegel HB, et al. Gaussian 16 Rev. C.01, Wallingford, CT. 2016
|
[49] |
Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc. 2008;120(1):215-241.
CrossRef
Google scholar
|
[50] |
Weigend F, Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys. 2005;7(18):3297-3305.
CrossRef
Google scholar
|
[51] |
Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132(15):154104.
CrossRef
Google scholar
|
[52] |
Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B. 2009;113(18):6378-6396.
CrossRef
Google scholar
|
[53] |
Gutowski M, van Lenthe JH, Verbeek J, van Duijneveldt FB, Chałasinski G. The basis set superposition error in correlated electronic structure calculations. Chem Phys Lett. 1986;124(4):370-375.
CrossRef
Google scholar
|
[54] |
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci. 1996;6(1):15-50.
CrossRef
Google scholar
|
[55] |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54(16):11169-11186.
CrossRef
Google scholar
|
[56] |
Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50(24):17953-17979.
CrossRef
Google scholar
|
[57] |
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865-3868.
CrossRef
Google scholar
|
[58] |
Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Cryst. 2011;44(6):1272-1276.
CrossRef
Google scholar
|
[59] |
Wang V, Xu N, Liu J-C, Tang G, Geng W-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput Phys Commun. 2021;267:108033.
CrossRef
Google scholar
|
/
〈 | 〉 |