Pavement performance model for road maintenance and repair planning: a review of predictive techniques

Krishna Singh Basnet, Jagat Kumar Shrestha, Rabindra Nath Shrestha

PDF(1781 KB)
PDF(1781 KB)
Digital Transportation and Safety ›› 2023, Vol. 2 ›› Issue (4) : 253-267. DOI: 10.48130/DTS-2023-0021
REVIEW
research-article

Pavement performance model for road maintenance and repair planning: a review of predictive techniques

Author information +
History +

Abstract

This paper provides a review of predictive analytics for roads, identifying gaps and limitations in current methodologies. It explores the implications of these limitations on accuracy and application, while also discussing how advanced predictive analytics can address these challenges. The article acknowledges the transformative shift brought about by technological advancements and increased computational capabilities. The degradation of pavement surfaces due to increased road users has resulted in safety and comfort issues. Researchers have conducted studies to assess pavement condition and predict future changes in pavement structure. Pavement Management Systems are crucial in developing prediction performance models that estimate pavement condition and degradation severity over time. Machine learning algorithms, artificial neural networks, and regression models have been used, with strengths and weaknesses. Researchers generally agree on their accuracy in estimating pavement condition considering factors like traffic, pavement age, and weather conditions. However, it is important to carefully select an appropriate prediction model to achieve a high-quality prediction performance system. Understanding the strengths and weaknesses of each model enables informed decisions for implementing prediction models that suit specific needs. The advancement of prediction models, coupled with innovative technologies, will contribute to improved pavement management and the overall safety and comfort of road users.

Graphical abstract

Keywords

Road Maintenance / Prediction Model / Deterministic Model / Probabilistic Model / Machine Learning Model

Cite this article

Download citation ▾
Krishna Singh Basnet, Jagat Kumar Shrestha, Rabindra Nath Shrestha. Pavement performance model for road maintenance and repair planning: a review of predictive techniques. Digital Transportation and Safety, 2023, 2(4): 253‒267 https://doi.org/10.48130/DTS-2023-0021

References

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]
[72]
[73]
[74]
[75]
[76]
[77]
[78]
[79]
[80]
[81]
[82]
[83]
[84]
[85]
[86]
[87]
[88]
[89]
[90]
[91]
[92]
[93]
[94]
[95]
[96]
[97]
[98]
[99]
[100]
[101]
[102]
[103]
[104]
[105]
[106]
[107]
[108]
[109]
[110]
[111]
[112]
[113]
[114]
[115]
[116]
[117]
[118]
[119]
[120]
[121]
[122]
[123]
[124]
[125]
[126]
[127]
[128]
[129]

RIGHTS & PERMISSIONS

2023 Editorial Office of Digital Transportation and Safety
PDF(1781 KB)

Accesses

Citations

Detail

Sections
Recommended

/