Bacterial biofilms: Basic characteristics and strategies for the treatment of bacterial wound infections

Aersileng , Junliang Li , Shengjun Cao , Lingfeng Wang

Discussion of Clinical Cases ›› 2024, Vol. 11 ›› Issue (1) : 10 -20.

PDF (244KB)
Discussion of Clinical Cases ›› 2024, Vol. 11 ›› Issue (1) : 10 -20. DOI: 10.5430/dcc.v11n1p10
Reviews

Bacterial biofilms: Basic characteristics and strategies for the treatment of bacterial wound infections

Author information +
History +
PDF (244KB)

Abstract

Bacterial biofilms (BFs) are widely present in nature, and more than 99% of bacteria can form BF, which is an important factor leading to persistent infection of refractory wound and repeated infection. The formation of BF is a dynamic cyclic process involving various physical, chemical and biological processes, mainly including bacterial attachment, BF formation and maturation, and bacterial diffusion. The bacteria in bacterial biofilms are more resistant to antibiotics and disinfectants, and more resilient to environmental changes, which presents many challenges in treatment. This article reviews the basic characteristics, resistance mechanisms and treatment strategies of BF. At present, there are many studies on the treatment of BF, which need to be selected according to the specific situation and pathophysiological process of wound infection, and can be used as a single method or in combination. This article introduces some treatment methods to provide a reference for the clinical prevention and treatment of BF.

Keywords

Bacterial biofilms / Characteristics / Wounds / Infection / Treatment

Cite this article

Download citation ▾
Aersileng, Junliang Li, Shengjun Cao, Lingfeng Wang. Bacterial biofilms: Basic characteristics and strategies for the treatment of bacterial wound infections. Discussion of Clinical Cases, 2024, 11(1): 10-20 DOI:10.5430/dcc.v11n1p10

登录浏览全文

4963

注册一个新账户 忘记密码

ACKNOWLEDGEMENTS

Not applicable.

AUTHORS CONTRIBUTIONS

Aersileng contributed to the study conception, design and manuscript drafting; Junliang Li contributed to the study conception, guidance and review; Shengjun Cao and Lingfeng Wang contributed to the study conception and guidance.

FUNDING

Not applicable.

CONFLICTS OF INTEREST DISCLOSURE

The authors declare no conflicts of interest.

INFORMED CONSENT

Obtained.

ETHICS APPROVAL

The Publication Ethics Committee of the Sciedu Press. The journal’s policies adhere to the Core Practices established by the Committee on Publication Ethics (COPE).

PROVENANCE AND PEER REVIEW

Not commissioned; externally double-blind peer reviewed.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

DATA SHARING STATEMENT

No additional data are available.

OPEN ACCESS

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

COPYRIGHTS

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

References

[1]

Rumbaugh KP, Whiteley M. Towards improved biofilm models. Nat Rev Microbiol. 2025; 23: 57-66. PMid:39112554. https://doi.org/10.1038/s41579-024-01086-2

[2]

Huigens RW. Targeting bacterial biofilms with persister-killing agents. Future Med Chem. 2021; 13(3): 225-228. https://doi.org/10.4155/fmc-2020-0314

[3]

Chen XN, Shen YN, Li PY, et al. Bacterial biofilms: characteristics and combat strategies. Acta Pharmaceutica Sinica. 2018 ; 53(12): 2040-2049.

[4]

Sen CK, Mathew-Steiner SS, Das A, et al. Electroceutical management of bacterial biofilms and surgical infection. Antioxid Redox Signal. 2020; 33(10): 713-724. PMid:32466673. https://doi.org/10.1089/ars.2020.8086

[5]

James GA, Swogger E, Wolcott R, et al. Biofilms in chronic wounds. Wound Repair Regen. 2008; 16(1): 37-44. https://doi.org/10.1111/j.1524-475X.2007.00321.x

[6]

Lu S. Pay attention to the standarlized construction and theoretical training on the wound healing. Chinese Journal of Injury Repair and Wound Healing (Electronic Edition). 2023 ; 18(3): 188-190.

[7]

Xie T. Diagnosis and treatment of difficult wound diseases. Chinese Journal of Injury Repair And Wound Healing (Electronic Edition). 2023 ; 18(4): 368.

[8]

Liu Y. Several issues that need attention to improve the diagnosis and treatment level of infectious wounds. Chinese Journal of Burns and wounds. 2024 ; 40(2): 119-124.

[9]

Hao J, Zhang Q. Prevention and treatment of chronic wounds caused by chronic diseases. Chinese Journal of Injury Repair and Wound Healing (Electronic Edition). 2021 ; 16(2): 93-96.

[10]

Secchi E, Savorana G, Vitale A, et al. The structural role of bacterial eDNA in the formation of biofilm streamers. Proc Natl Acad Sci U S A. 2022; 119(12): e2113723119. https://doi.org/10.1073/pnas.2113723119

[11]

Tian F, Li J, Nazir A, et al. Bacteriophage - A promising alternative measure for bacterial biofilm control. Infect Drug Resist. 2021; 14: 205-217. PMid:33505163. https://doi.org/10.2147/IDR.S290093

[12]

Uruén C, Chopo-Escuin G, Tommassen J, et al. Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics (Basel). 2020; 10(1): 3. PMid:33374551. https://doi.org/10.3390/antibiotics10010003

[13]

Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010; 8(9): 623-633. PMid:20676145. https://doi.org/10.1038/nrmicro2415

[14]

Schilcher K, Horswill AB. Staphylococcal biofilm development: structurn, regulation, and treatment strategies. Microbiol Mol Biol Rev. 2020; 84(3): e00026-19. https://doi.org/10.1128/MMBR.00026-19

[15]

Liu S, Lu H, Zhang S, et al. Phages against pathogenic bacterial biofilms and biofilm-based infections: a review. Pharmaceutics. 2022; 14(2): 427. PMid:35214158. https://doi.org/10.3390/pharmaceutics14020427

[16]

Sauer K, Stoodley P, Goeres DM, et al. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol. 2022; 20(10): 608-620. https://doi.org/10.1038/s41579-022-00767-0

[17]

Co AD, Brenner MP. Tracing cell trajectories in a biofilm. Science. 2020; 369(6499): 30-31. PMid:32631880. https://doi.org/10.1126/science.abd1225

[18]

Scribano D, Sarshar M, Prezioso C, et al. D-mannose treatment neither affects uropathogenic Escherichia coli properties nor induces stable FimH modifications. Molecules. 2020; 25(2): 316. PMid:31941080. https://doi.org/10.3390/molecules25020316

[19]

Pompilio A, Scribano D, Sarshar M, et al. Gram-negative bacteria holding together in a biofilm: the Acinetobacter baumannii way. Microorganisms. 2021; 9(7): 1353. PMid:34206680. https://doi.org/10.3390/microorganisms9071353

[20]

Skariyachan S, Sridhar VS, Packirisamy S, et al. Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia Microbiologica. 2018; 63(4): 413-432. PMid:29352409. https://doi.org/10.1007/s12223-018-0585-4

[21]

Chai L, Zaburdaev V, Kolterf R. How bacteria actively use passive physics to make biofilms. PNAS. 2024; 121(40): e2403842121. PMid:39264745. https://doi.org/10.1073/pnas.2403842121

[22]

Li X. Effects and management of bacterial biofilm in wounds. Chinese Journal of Injury Repair and Wound Healing (Electronic Edition). 2020 ; 5(5): 422.

[23]

Cuzzi B, Herasimenka Y, Silipo A, et al. Versatility of the Burkholderia cepacia complex for the biosynthesis of exopolysaccharides: A comparative structural investigation. PLoS One. 2014; 9(4): e94372. PMid:24722641. https://doi.org/10.1371/journal.pone.0094372

[24]

Sarshar M, Scribano D, Ambrosi C, et al. Fecal microRNAs as innovative biomarkers of intestinal diseases and effective players in host-microbiome interactions. Cancels. 2020; 12(8): 2174. PMid:32764361. https://doi.org/10.3390/cancers12082174

[25]

Sun M, Lv YK, Liu Y. Research progresses on photosynthetic bacterial biofilm. Ecological Scienc. 2015 ; 34(5): 228-232.

[26]

Mirzaei R, Ranjbar R. Hijacking host components for bacterial biofilm formation: An advanced mechanism. Int Immunopharmacol. 2022; 103: 108471. PMid:34952466. https://doi.org/10.1016/j.intimp.2021.108471

[27]

ArciolaR CR, Campoccia D, Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nature Reviews Microbiology. 2018; 16(7): 397-409. PMid:29720707. https://doi.org/10.1038/s41579-018-0019-y

[28]

Kragh KN, Tolker-Nielsen T, Lichtenberg M. The non-attached biofilm aggregate. Commun Biol. 2023; 6(1): 898. PMid:37658117. https://doi.org/10.1038/s42003-023-05281-4

[29]

Kim S, Lix H, Hwang HJ, et al. Thermoregulation of Pseudomonas aeruginosa biofilm formation. Appl Environ Microbiol. 2020; 86(22): e01584-20. PMid:32917757. https://doi.org/10.1128/AEM.01584-20

[30]

Bisht K, Moore JL, Caprioli RM, et al. Impact of temperaturedependent phage expression on Pseudomonas aeruginosa biofilm formation. NPJ Biofilms Microbiomes. 2021; 7(1): 22. PMid:33727555. https://doi.org/10.1038/s41522-021-00194-8

[31]

Boeck L. Antibiotic tolerance: targeting bacterial survival. Curr Opin Microbiol. 2023; 74: 102328. https://doi.org/10.1016/j.mib.2023.102328

[32]

Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Diseov. 2003; 2: 114-122. PMid:12563302. https://doi.org/10.1038/nrd1008

[33]

Zhou TL, Sun Y. New progress in the study of tolerance, drug resistance and treatment strategies of bacterial biofilms. Zhejiang Medical Journal. 2024 ; 46(3): 234-239, 256.

[34]

Kranjec C, Angeles DM, Marli MT, et al. Staphylococcal biofilms: challenges and novel therapeutic perspectives. Antibiotics (Basel). 2021; 10(2): 131. PMid:33573022. https://doi.org/10.3390/antibiotics10020131

[35]

Ciofu O, Moser C, Jensen PO, et al. Tolerance and resistance of microbial biofilms. Nat Rev Microbiol. 2022; 20(10): 621-635. PMid:35115704. https://doi.org/10.1038/s41579-022-00682-4

[36]

Mushtaq F, Nadeem A, Yabrag A, et al. Colony phase variation switch modulates antimicrobial tolerance and biofilm formation in Acinetobacter baumannii. Microbiology Spectrum. 2024; 12(2): 1-18. PMid:38205963. https://doi.org/10.1128/spectrum.02956 -23

[37]

Wang Y, Bian Z, Wang Y. Biofilm formation and inhibition mediated by bacterial quorum sensing. Appl Microbiol Biotechnol. 2022; 106: 6365-6381. PMid:36089638. https://doi.org/10.1007/s00253-022-12150-3

[38]

Wu K, Zheng YY, Wu QP, et al. Erratum to: Vibrio parahaemolyticus cqsA controls production of quorum sensing signal molecule 3-hydroxyundecan-4-one and regulates colony morphology. Journal of Microbiology. 2020; 58(1): 78. PMid:31898256. https://doi.org/10.1007/s12275-020-9721-3

[39]

Mohamad F, Alzahrani RR, Alsaadi A, et al. An explorative review on advanced approaches to overcome bacterial resistance by curbing bacterial biofilm formation. Infection and Drug Resistance. 2023; 16: 19-49. PMid:36636380. https://doi.org/10.2147/IDR.S380883

[40]

Costerton JW, Stewat PS, Greenberg EP. Bacterial Bioflms: a common cause of persistent infections. Science. 1999; 284: 1318-1322. PMid:10334980. https://doi.org/10.1126/science.284.5418.1318

[41]

De Vor L, Rooijakkers SHM, Staphylococci evade the innate immune response by disarming neutrophils and forming biofilms. FEBS Lett. 2020; 594(16): 2556-2569. PMid:32144756. https://doi.org/10.1002/1873-3468.13767

[42]

Abe K, Nomura N, Suzuki S. Biofilms: hot spots of horizon-tal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol Ecol. 2020; 96(5): fiaa031. PMid:32109282. https://doi.org/10.1093/femsec/fiaa031

[43]

Suh GA, Patel R. Clinical phage microbiology: a narrative summary. Clin Microbiol Infect. 2023; 29(6): 710-713. PMid:36805835. https://doi.org/10.1016/j.cmi.2023.02.006

[44]

Zhang Y, Cai Y, Zhang B, et al. Spatially structured exchange of metabolites enhances bacterial survival and resilience in biofilms. Nat Commun. 2024; 15: 7575. PMid:39217184. https://doi.org/10.1038/s41467-024-51940-3

[45]

Patel H, Buchad H, Gajjar D. Pseudomonas aeruginosa persister cell formation upon antibiotic exposure in planktonic and biofilm state. Sci Rep. 2022; 12(1): 16151. PMid:36168027. https://doi.org/10.1038/s41598-022-20323-3

[46]

Zhang Y. Persisters, persistent infections and the YinYang model. Emerg Microbes Infect. 2014; 3(1): e3. PMid:26038493. https://doi.org/10.1038/emi.2014.3

[47]

Chang CY, Bajic D, Vila J, et al. Emergent coexistence in multispecies microbial communities. Science. 2023; 381(6655): 343-348. PMid:37471535. https://doi.org/10.1126/science.adg0727

[48]

Omar A, Wright JB, Schultz G, et al. Microbial biofilms and chronic wounds. Microorganisms. 2017; 5(1): 9. PMid:28272369. https://doi.org/10.3390/microorganisms5010009

[49]

Johani K, Malone M, Jensen SO, et al. Evaluation of short exposure times of antimicrobial wound solutions against microbial biofilms: from in vitro to in vivo. J Antimicrob Chemother. 2018; 73(2): 494-502. PMid:29165561. https://doi.org/10.1093/jac/dkx391

[50]

Haidar BN, Marais S, De E, et al. Chronic wound healing: a specific antibiofilm protein-asymmetric release system. Mater Sci Eng C Mater Biol Appl. 2020; 106: 110130. https://doi.org/10.1016/j.msec.2019.110130

[51]

Abirami G, Durgadevi R, Velmurugan P, et al. Gene expressing analysis indicates the role of Pyrogallol as a novel antibiofihn and antivirulence agent against Acinetobacter baumannii. Arch Microbiol. 2021; 203(1): 251-260. PMid:32918098. https://doi.org/10.1007/s00203-020-02026-3

[52]

Selvaraj A, Valliammai A, Sivasankar C, et al. Antibiofilm and antivirulence efficacy of myrtenol enhances the antibiotic susceptibility of Acinetobacter baumannii. Sci Rep. 2020; 10(1): 21975. PMid:33319862. https://doi.org/10.1038/s41598-020-79128-x

[53]

Styles MJ, Boursier ME, McEwan MA, et al. Autoinducer fluorophore conjugates enable FRET in LuxR proteins in vitro and in cells. Nat Chem Biol. 2022; 18(10): 1115-1124. PMid:35927585. https://doi.org/10.1038/s41589-022-01089-1

[54]

Alves S, Duarte A, Sousa S, et al. Study of the major essential oil compounds of Coriandrum sativum against Acinetobacter baumannii and the effect of linalool on adhesion, biofilms and quorum sensing. Biofouling. 2016; 32(2): 155-165. PMid:26901586. https://doi.org/10.1080/08927014.2015.1133810

[55]

Razvi E, DiFrancesco BR, Wasney GA, et al. Small molecule inhibition of an exopolysaccharide modification enzyme is a viable strategy to block pseudomonas aeruginosa pel biofilm formation. Microbiol Spectr. 2023; 11(3): e0029623. PMid:37098898. https://doi.org/10.1128/spectrum.00296-23

[56]

Weldrick PJ, Hardman MJ, Paunov VN. Enhanced clearing of woundrelated pathogenic bacterial biofihns using protease-fiinction-alized antibiotic nanocarriers. ACS Appl Mater Interfaces. 2019; 11(47): 43902-43919. PMid:31718141. https://doi.org/10.1021/acsami.9b16119

[57]

Bi YF, Xia GX, Shi C, et al. Therapeutic strategies against bacterial biofilms. Fundam Res. 2021; 1(2): 193-212. https://doi.org/10.1016/j.fmre.2021.02.003

[58]

Duraes F, Pahneira A, Cruz B, et al. Antimicrobial activity of a library of thioxanthones and their potential as efflux pump inhibitors. Pharmaceuticals (Basel). 2021; 14(6): 572. PMid:34203998. https://doi.org/10.3390/ph14060572

[59]

Aygiil A. The importance of efflux systems in antibiotic resistance and efflux pump inhibitors in the management of resistance. Mikrobiyol Bui. 2015; 49(2): 278-291. PMid:26167829. https://doi.org/10.5578/mb.8964

[60]

Gao F, Zhai GX, Wang H, et al. Protective effects of anti-alginate monoclonal antibody against Pseudomonas aeruginosa infection of HeLa cells. Microb Pathog. 2020; 145: 104240. PMid:32360522. https://doi.org/10.1016/j.micpath.2020.104240

[61]

Raafat D, Otto M, Reppschlager K, et al. Fighting Staphylococcus aureus biafilms with monoclonal antibodies. Trends Microbiol. 2019; 27(4): 303-322. PMid:30665698. https://doi.org/10.1016/j.tim.2018.12.009

[62]

Kaplan AR, Wuest WM. Promiscuous Pseudomonas: uptake of nonendogenous ligands for iron acquisition. Tetrahedron Lett. 2021; 75: 153204. PMid:34248214. https://doi.org/10.1016/j.tetlet.2021.153204

[63]

Zhang YP, Pan XH, Wang LQ, et al. Iron metabolism in Pseudomonas aeruginosa biofilm and the involved iron-targeted anti-biofilm strategies. J Drug Target. 2021; 29(3): 249-258. PMid:32969723. https://doi.org/10.1080/1061186X.2020.1824235

[64]

Moreau-Marquis S, Coutermarsh B, Stanton BA. Combination of hypothiocyanite and lactoferrin (ALX-109) enhances the ability of tobramycin and aztreonam to eliminate Pseudomonas aeruginosa biofilms growing on cystic fibrosis airway epithelial cells. J Antimicrob Chemother. 2015; 70(1): 160-166. PMid:25213272. https://doi.org/10.1093/jac/dku357

[65]

Bechinger B, Gorr SU. Antimicrobial peptides: mechanisms of action and resistance. J Dent Res. 2017; 96(3): 254-260. PMid:27872334. https://doi.org/10.1177/0022034516679973

[66]

Magana M, Pushpanathan M, Santos AL, et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect Dis. 2020; 20(9): e216-e230. PMid:32653070. https://doi.org/10.1016/S1473-3099(20)30327-3

[67]

Yan X, Chirume WM, Lin Y, et al. Research progress of new treatment options for clinical bacterial biofilm infection. West China Medical Journal. 2023 ; 38(8): 1276-1280.

[68]

Fleeman RM, Davies BW. Polyproline peptide aggregation with Klebsiella pneumoniae extracellular polysaccharides exposes biofilm associated bacteria. Microbiol Spectr. 2022; 10(2): e0202721. PMid:35254120. https://doi.org/10.1128/spectrum.02027-21

[69]

Goda RM, EI-Baz AM, Khalaf EM, et al. Combating bacterial biofilm formation in urinary catheter by green silver nanoparticle. Antibiotics (Basel). 2022; 11(4): 495. PMid:35453246. https://doi.org/10.3390/antibiotics11040495

[70]

Li X, Chen D, Xie S. Current progress and prospects of organic nanoparticles against bacterial biofilm. Adv Colloid Interface Sci. 2021; 294: 102475. PMid:34280601. https://doi.org/10.1016/j.cis.2021.102475

[71]

Li CH, Landis RF, Makabenta JM, et al. Nanotherapeutics using allnatural materials. Effective treatment of wound biofilm infections using crosslinked nanoemulsions. Mater Horiz. 2021; 8(6): 1776-1782. PMid:34594564. https://doi.org/10.1039/D0MH01826K

[72]

Hetta HF, Al-Kadmy IMS, Khazaal SS, et al. antibiofilm and antivirulence potential of silver nanoparticles against multidrugresistant Acinetobacter baumannii. Scientific Reports. 2021; 11(1): 10751. PMid:34031472. https://doi.org/10.1038/s41598-021-90208-4

[73]

Cui F, Li T, Wang D, et al. Recent advances in carbon-based nanomaterials for combating bacterial biofilm-associated infections. J Hazard Mater. 2022; 431: 128597. PMid:35247736. https://doi.org/10.1016/j.jhazmat.2022.128597

[74]

Wang L, Li Q, Cao S, etc. Review and prospect of large-scale burn treatment in China. Chinese Journal of Injury Repair And Wound Healing (Electronic Edition). 2022 ; 17(5): 369-378.

[75]

Singh A, Padmesh S, Dwivedi M, et al. How good are bacteriophages as an alternative therapy to mitigate biofilms of nosocomial infections. Infection and Drug Resistance. 2022; 15: 503-532. PMid:35210792. https://doi.org/10.2147/IDR.S348700

[76]

Kazmierczak N, Grygorcewicz B, Roszak M, et al. Comparative assessment of bacteriophage and antibiotic activity against multidrug resistant Staphylococcus aureus biofilms. Int J Mol Sci. 2022; 23(3): 1274. PMid:35163197. https://doi.org/10.3390/ijms23031274

[77]

Oliveira VC, Bim FL, Monteiro RM, et al. Identification and characterization of new bacteriophages to control multidrug-resistant Pseudomonas aeruginosa biofilm on endotracheal tubes. Front Microbiol. 2020; 11: 580779. PMid:33123112. https://doi.org/10.3389/fmicb.2020.580779

[78]

Holger DJ, El Ghali A, Bhutani N, et al. Phage-antibiotic combinations against multidrug-resistant Pseudomonas aeruginosa in in vitro static and dynamic biofilm models. Antimicrob Agents Chemother. 2023; 67(11): e0057823. PMid:37855639. https://doi.org/10.1128/aac.00578-23

[79]

Hussain W, Yang X, Ullah M, et al. Genetic engineering of bacteriophages: Key concepts, strategies, and applications. Biotechnology Advances. 2023; 64: 108116. PMid:36773707. https://doi.org/10.1016/j.biotechadv.2023.108116

[80]

Strathdee1 SA, Hatfull GF, Mutalik VK, et al. Phage therapy: From biological mechanisms to future directions. Cell. 2023; 186(1): 17-31. PMid:36608652. https://doi.org/10.1016/j.cell.2022.11.017

[81]

Liang S, Qi Y, Yu H, et al. Bacteriophage therapy as an application for bacterial infection in China. Antibiotics (Basel). 2023; 12(2): 417. PMid:36830327. https://doi.org/10.3390/antibiotics12020417

[82]

Ruan C, Ramoneda J, Kan A, et al. Phage predation accelerates the spread of plasmid-encoded antibiotic resistance. Nature Communications. 2024; 15: 5397. PMid:38926498. https://doi.org/10.1038/s41467-024-49840-7

[83]

Koncz 1 M, Stirling T, Mehdil HH, et al. Genomic surveillance as a scalable framework for precision phage therapy against antibioticresistant pathogens. Cell. 2024; 187: 1-18. PMid:39332413. https://doi.org/10.1016/j.cell.2024.09.009

[84]

Du ZY, Huang YY, Chen Y, et al. Combination effects of baiealin with levofloxacin againsl biofilm-related infections. Am J Transl Res. 2019 ; 11(3): 1270-1281.

[85]

Meng Q, Peng Q, Ling B. In vitro activity of antibacterial agents in combination with traditional Chinese medicine monomers on the biofilm of extensively drug-resistant Acinetobacter baumannii. Chinese Journal of Antibiotics. 2022 ; 47(7): 697.

[86]

Kim HR, Shin DS, Jang HI, et al. Anti-biofilm and anti-virulence effects of zerumbone against Acinetobacter baumannii. Microbiology (Reading). 2020; 166(8): 717-726. PMid:32463353. https://doi.org/10.1099/mic.0.000930

[87]

Aqawi M, Sionv RV, Gallil YR, et al. Anti-Biofilm Activity of Cannabigerol against Streptococcus mutans. Microorganisms. 2021; 9(10): 2031. PMid:34683353. https://doi.org/10.3390/microorganisms9102031

[88]

Borowski RGV, Barros MP, da Silva DB, et al. Red pepper peptide coatings control Staphylococcus epidermidis adhesion and biofilm formation. Int J Pharm. 2020; 574: 118872. PMid:31812797. https://doi.org/10.1016/j.ijpharm.2019.118872

[89]

Li JG, Chen XF, Lu TY, et al. Increased activity of beta-lactam antibiotics in combination with carvacrol against MRSA bacteremia and catheter-associated biofilm infections. ACS Infect Dis. 2023; 9(12): 2482-2493. PMid:38019707. https://doi.org/10.1021/acsinfecdis.3c00338

[90]

Sharifi A, Nayeri FB. Selected plant essential oils inhibit biofilm formation and luxS-and pfs-mediated quorum sensing by Escherichia coli O157:H7. Lett Appl Microbiol. 2022; 74(6): 916-923. PMid:35152462. https://doi.org/10.1111/lam.13673

[91]

Jeong YJ, Kim HE, Han SJ, et al. Antibacterial and antibiofilm activities of cinnamon essential oil nanoemulsion against multispecies oral biofilms. Sci Rep. 2021; 11(1): 5199. PMid:33723345. https://doi.org/10.1038/s41598-021-85375-3

[92]

Carvalho FM, Teixeira-Santos R, Mergulhao FJM, et al. The use of probiotics to fight biofilms in medical devices: a systematic review and meta-analysis. Microorganisms. 2020; 9(1): 27. PMid:33374844. https://doi.org/10.3390/microorganisms9010027

[93]

Murali SK, Mansell TJ. Next generation probiotics: Engineering live biotherapeutics. Biotechnology Advances. 2024; 72: 108336. PMid:38432422. https://doi.org/10.1016/j.biotechadv.2024.108336

[94]

Hu X, Huang YY, Wang Y, et al. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Front Microbiol. 2018; 9: 1299. PMid:29997579. https://doi.org/10.3389/fmicb.2018.01299

[95]

Pourhajibagher M, Mahmoudi H, Rezaei-Soufi L, et al. Potentiation effects of antimicrobial photodynamic therapy on quorum sensing genes expression: a promising treatment for multi-species bacterial biofilms in burn wound infections. Photodiagnosis Photodyn Ther. 2020; 30: 101717. PMid:32165339. https://doi.org/10.1016/j.pdpdt.2020.101717

[96]

Perez-Laguna V, Garcla-Luque I, Ballesta S, et al. Photodynamic therapy using methylene blue, combined or not with gentamicin, against Staphylococcus aureus and Pseudomonas aeruginosa. Photodiagnosis Photodyn Ther. 2020; 31: 101810. PMid:32437976. https://doi.org/10.1016/j.pdpdt.2020.101810

[97]

Dai T. The antimicrobial effect of blue light: What are behind? Virulence. 2017; 8(6): 649-652. PMid:28051916. https://doi.org/10.1080/21505594.2016.1276691

[98]

Xia LJ, Chen M, Li GY, et al. Can photocatalysis inhibit interspecies bacterial cooperation to quench the formation of robust complex bacterial biofilms in water environments? Water Research. 2024; 262: 122137. PMid:39059198. https://doi.org/10.1016/j.watres.2024.122137

[99]

Lutheryn G, Hind C, Campbell C, et al. Bactericidal and antibiofilm effects of uncharged and cationic ultrasound-responsive nitric oxide microbubbles on Pseudomonas aeruginosa biofilms. Front Cell Infect Microbiol. 2022; 12: 956808. PMid:35992170. https://doi.org/10.3389/fcimb.2022.956808

[100]

Nahum Y, Gross N, Cerrone A, et al. Effect of biofilm physical characteristics on their susceptibility to antibiotics: impacts of low-frequency ultrasound. Npj Biofilms Microbiomes. 2024; 10: 70. PMid:39160204. https://doi.org/10.1038/s41522-024-00544-2

[101]

Dey N, Vickram S, Thanigaivel S, et al. Graphene materials: Armor against nosocomial infections and biofilm formation - A review. Environ Res. 2022; 214(Pt 2): 113867. PMid:35843279. https://doi.org/10.1016/j.envres.2022.113867

[102]

Van Hengel IAJ, Tierolf MWAM, Fratila-Apachitei LE, et al. Antibacterial Titanium Implants Biofunctionalized by Plasma Electrolytic Oxidation with Silver, Zinc, and Copper: A Systematic Review. Int J Mol Sci. 2021; 22(7): 3800. PMid:33917615. https://doi.org/10.3390/ijms22073800

[103]

Fan L, Li B, Zhang H, etc. Fabrication of Antibacterial Coatings and Their Applications in Biomedical Materials. Acta Polymerica Sinica. 2021 ; 52(3): 253-271.

[104]

Khan F, Pham DTN, Oloketuyi SF, et al. Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria. Colloids Surf B Biointerfaces. 2020; 185: 110627. PMid:31732391. https://doi.org/10.1016/j.colsurfb.2019.110627

[105]

Tewes F, Bahamondez-Canas TF, Moraga-Espinoza D, et al. In vivo efficacy of a dry powder formulation of ciprofloxacin-copper complex in a chronic lung infection model of bioluminescent Pseudomonas aeruginosa. Eur J Pharm Biopharm. 2020; 152: 210-217. PMid:32442738. https://doi.org/10.1016/j.ejpb.2020.05.014

[106]

Kolpen M, Mousavi N, Sams T, et al. Reinforcement of the bactericidal effect of ciprofloxacin on Pseudomonas aeruginosa biofilm by hyperbaric oxygen treatment. Int J Antimicrob Agents. 2016; 47(2): 163-167. PMid:26774522. https://doi.org/10.1016/j.ijantimicag.2015.12.005

[107]

Maura D, Rahme LG. Pharmacological inhibition of the Pseudomonas aeruginosa MvfR quorum-sensing system interferes with biofilm formation and potentiates antibiotic-mediated biofilm disruption. Antimicrob Agents Chemother. 2017; 61(12): e01362-17. PMid:28923875. https://doi.org/10.1128/AAC.01362-17

[108]

Mwangi J, Yin YZ, Wang G, et al. The antimicrobial peptide ZY 4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection. Proc Natl Acad Sci USA. 2019; 116(52): 26516-26522. PMid:31843919. https://doi.org/10.1073/pnas.1909585117

AI Summary AI Mindmap
PDF (244KB)

708

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/