Analyzing the impact of COVID-19 on the electricity demand in Austin, TX using an ensemble-model based counterfactual and 400,000 smart meters

Ting-Yu Dai , Praveen Radhakrishnan , Kingsley Nweye , Robert Estrada , Dev Niyogi , Zoltan Nagy

Computational Urban Science ›› 2023, Vol. 3 ›› Issue (1) : 20

PDF
Computational Urban Science ›› 2023, Vol. 3 ›› Issue (1) : 20 DOI: 10.1007/s43762-023-00095-w
Original Paper

Analyzing the impact of COVID-19 on the electricity demand in Austin, TX using an ensemble-model based counterfactual and 400,000 smart meters

Author information +
History +
PDF

Abstract

The COVID-19 pandemic caused lifestyle changes and has led to the new electricity demand patterns in the presence of non-pharmaceutical interventions such as work-from-home policy and lockdown. Quantifying the effect on electricity demand is critical for future electricity market planning yet challenging in the context of limited smart metered buildings, which leads to limited understanding of the temporal and spatial variations in building energy use. This study uses a large scale private smart meter electricity demand data from the City of Austin, combined with publicly available environmental data, and develops an ensemble regression model for long term daily electricity demand prediction. Using 15-min resolution data from over 400,000 smart meters from 2018 to 2020 aggregated by building type and zip code, our proposed model precisely formalizes the counterfactual universe in the without COVID-19 scenario. The model is used to understand building electricity demand changes during the pandemic and to identify relationships between such changes and socioeconomic patterns. Results indicate the increase in residential usage , demonstrating the spatial redistribution of energy consumption during the work-from-home period. Our experiments demonstrate the effectiveness of our proposed framework by assessing multiple socioeconomic impacts with the comparison between the counterfactual universe and observations.

Cite this article

Download citation ▾
Ting-Yu Dai,Praveen Radhakrishnan,Kingsley Nweye,Robert Estrada,Dev Niyogi,Zoltan Nagy. Analyzing the impact of COVID-19 on the electricity demand in Austin, TX using an ensemble-model based counterfactual and 400,000 smart meters. Computational Urban Science, 2023, 3(1): 20 DOI:10.1007/s43762-023-00095-w

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

197

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/