Outwardly rectifying swelling-activated chloride conductance (ICl,Swell) in rabbit heart plays a critical role in cardioprotection following ischemic preconditioning (IP). But the functional characterization and molecular basis of this chloride conductance in rabbit heart ventricular myocytes is not clear. Candidate chloride channel clones (e.g. ClC-2, ClC-3, ClC-4 and ClC-5) were determined using RT-PCR and Western blot analysis.Whole cell ICl,Swell was recorded from isolated rabbit ventricular myocytes using patch clamp techniques during hypo-osmotic stress. The inhibitory effects of 4,4′ isothiocyanato-2,2-disulfonic acid (DIDS), 5-nitro-2(3-phenylroylamino) benzoic acid (NPPB) and indanyloxyacetic acid 94 (IAA-94) on ICl,Swell were examined. The expected size of PCR products for ClC-2, ClC-3 and ClC-4 but not for ClC-5 was obtained. ClC-2 and ClC-3 expression was confirmed by automated fluorescent DNA sequencing. RT-PCR and Western blot showed that ClC-4 was expressed in abundance and ClC-2 was expressed at somewhat lower levels. The biological and pharmacological properties of ICl,Swell, including outward rectification, activation due to cell volume change, sensitivity to DIDS, IAA-94 and NPPB were identical to those known properties of ICl,Swell in exogenously expressed systems and other mammals hearts. It was concluded that ClC-3 or ClC-4 might be responsible for the outwardly rectifying part of ICl,Swell and may be the molecular targets of cardioprotection associated with ischemic preconditioning or hypo-osmotic shock.
In order to identify the differentially expressing gene of bone marrow mesenchymal stem cells (MSCs) stimulated by electromagnetic field (EMF) with osteogenesis microarray analysis, the bone marrow MSCs of SD rats were isolated and cultured in vitro. The third-passage cells were stimulated by EMFs and total RNA was extracted, purified and then used for the synthesis of cDNA and cRNA. The cRNA of stimulated group and the control group was hybridized with the rat oligo osteogenesis microarray respectively. The hybridization signals were acquired by using X-ray film after chemiluminescent detection and the data obtained were analyzed by employing the web-based completely integrated GEArray Expression Analysis Suite. RT-PCR was used to identify the target genes: Bmp1, Bmp7, Egf and Egfr. The results showed that 19 differentially expressing genes were found between the stimulated group and the control group. There were 6 up-regulated genes and 13 down-regulated genes in the stimulated group. Semi-quantitative RT-PCR confirmed that the expressions of Bmp1, Bmp7 mRNA of the stimulated group were up-regulated (P<0.05) and those of Egf, Egfr were down-regulated (P<0.05). It was suggested that the gene expression profiles of osteogenesis of the bone marrow MSCs were changed after EMF treatment. It is concluded that the genes are involved in skeletal development, bone mineral metabolism, cell growth and differentiation, cell adhesion etc.
In current study, the effect of angiotensin receptor blocker Micardis on the localization and expression of aquaporin-2 (AQP2) was investigated in the renal medullary collecting duct of mice with diabetic nephropathy (DN). Mice were divided into three groups: normal group, DN group and Micardis-treated group. Six weeks after establishment of STZ-induced DN model in mice, the expression of AQP2 in renal medulla was detected measured by semiquantitative immunofluorescence histochemistry and Western blot techniques, and the localization of AQP2 by confocal immunofluorescence laser scanning microscopy. The results showed that the urinary osmolality was decreased in DN group as compared with normal group (2.39±0.11 vs 3.16±0.16, P<0.05). Although the localization of AQP2 on the renal medulla was unchanged, the expression of AQP2 was increased significantly in DN group as compared with normal group. Micardis could partly attenuate above changes. It was concluded that treatment with Micardis could partly rectify the abnormal expression of AQP2 in renal medulla of DN mice, which suggested that rennin-angiotensin system (RAS) is implicated in the pathogenesis of DN by regulating the expression of AQP2.
Inflammatory bowel disease is thought to be regulated by the balance between Th1 and Th2 cytokines secreted by T cells, and NF-κB p65 also plays a predominant role in the intestinal inflammation. We evaluated the potency of oxymatrine, one of active components of Sophora Root, in inhibiting the immune responses and inflammation in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. The inflammation was markedly ameliorated in the oxymatrine-treated rats. The level of IL-2 was increased and that of IL-10 was decreased in colon tissue in the rat model, which was reversed by the treatment of oxymatrine. Moreover, the elevated expression of NF-κB p65 in colon tissue in the model was also improved by oxymatrine treatment. Our results suggest that oxymatrine might be beneficial for the abnormal immune responses and inflammation by regulating the unbalance of Th1 and Th2 cytokines secretion and inhibiting the expression of NF-κB p65 in colon tissue.
The changes of proto-oncogene c-fos and c-jun mRNA expression in angiotensin II (Ang II)-induced hypertrophy and effects of sodium tanshinone IIA sulfonate (STS) in the primary culture of neonatal rat cardiomyocytes were investigated. Twelve neonatal clean grade Wistar rats were selected. The cardiomyocytes were isolated, cultured and divided according to different treatments in the medium. The cardiomyocyte size was determined by phase contrast microscope, and the rate of protein synthesis was measured by [3H]-Leucine incorporation. The c-fos and c-jun mRNA expression in cardiomyocytes was detected by reverse transcription polymerase chain reaction (RT-PCR). It was found after cardiomyocytes were treated with Ang II for 30 min, the c-fos and c-jun mRNA expression in cardiomyocytes was increased significantly (P<0.01). After treatment with Ang II for 24 h, the rate of protein synthesis in Ang II group was significantly increased as compared with control group (P<0.01). After treatment with Ang II for 7 days, the size of cardiomyocytes in Ang II group was increased obviously as compared with control group (P<0.05). After pretreatment with STS or Valsartan before Ang II treatment, both of them could inhibit the above effects of Ang II (P<0.05 or P<0.01). It was suggested that STS could ameliorate Ang II-induced cardiomyocyte hypertrophy by inhibiting c-fos and c-jun mRNA expression and reducing protein synthesis rate of cardiomyocytes.
To investigate the role of platelet membrane glycoprotein (GP) Ib/IX/V complex and its subunit GP Ibα in patients with hemorrhagic thrombopathy (HT), the expressions of GP Ib/IX/V complex and GP Ibα, defined as mean fluorescence intensity (MFI), were assessed by flow cytometry. The maximum aggregation of platelet was determined by turbidity method. These indicators were compared among 68 HT patients with the presenting complaint of hemorrhage, 33 well-controlled HT patients and 32 normal healthy subjects. The results showed that the MFI of GP Ib/IX/V complex and GP Ibα was markedly lower in HT patients with current hemorrhage than that in the healthy subjects, with difference being statistically significant (P<0.05). There was no significant difference in the expressions of GP Ib/IX/V complex and GP Ibα between well-controlled HT patients and normal healthy subjects (P>0.05). It was concluded that the expression of GP Ib/IX/V complex, the receptor of thrombin and von Willebrand factor, was down-regulated in HT patients with current hemorrhage, which might result in the dysfunction of platelet aggregation and recurrence of HT.