The safety of Chuangyuling (CYL) dressing—a multifunctional medicine carrying biomaterial was evaluated in order to provide foundation for the application of CYL as material used in the wound healing. The traditional Chinese medicine (TCM) extract solution was compounded with scaffolds (gelatin and Bletilla hyacinthine gum), and then frozen and dried to form spongy and porous material CYL. According to the standard of biological evaluation of medical devices that was instituted by the ministry of health of China[1], the biological evaluation of CYL dressing was conducted. The results showed that all the contents of biological evaluation test consisting of acute toxicity, skin irritation, sensitization and cytotoxicity met the requirement of standards. It was concluded that the biomaterial carrying TCM (CYL dressing) is safe for application of wound healing.
In order to study the effects of electromagnetic fields (EMFs) on proliferation, differentiation and intercellular cyclic AMP (cAMP) in mouse bone marrow mesenchymal stem cells (MSCs)in vitro, the mouse bone MSCs were isolated and culturedin vitro. The third passage MSCs were divided into 4 groups and stimulated with EMFs. The cellular proliferation (MTT), the cellular differentiation (alkaline phosphatase activity, ALP), and the intercellular cAMP level were investigated at different time points. The results showed that EMF (50Hz pulse burst 2 mT peak) inhibited the cellular proliferation (P<0.05), enhanced the cellular differentiation (P<0.05), and increased the intercellular cAMP level (P<0.01) in the early time of the stimulation (1–3 days), but the intercellular cAMP level did not increased further in the later days. We are led to conclude that the cAMP may be involved in the mediation of the growth inhibitory and differentiation-inducing signals of specific EMFsin vitro.
To investigate the underlying mechanism of the exacerbation of myasthenia gravis by aminoglycoside antibiotics. C57/BL6 mice were immunized with acetylcholine receptor (AChR). extracted from electric organ of Narcine timilei according to Xu Haopeng’s methods, in complete Fruend’s adjuvant (CFA) to establish experimental autoimmune myasthenia gravis (EAMG). EAMG mice were divided randomly into 5 groups: MG group, NS group and three antibiotics groups. The clinical symptom scores of mice were evaluated on d7 after the last immunization and d14 of antibiotics treatment. Repetitive nerve stimulation (RNS) was performed and the levels of anti-AChR antibody (AChR-Ab) were tested at the same time. The mean clinical symptom grades of gentamycin group (1. 312, 2.067), amikacin group (1.111, 1.889) and etimicin group (1.263, 1.632) were significantly higher than those of MG group (1.000, 1.200) (P<0.05). The positive rates of RNS of three antibiotics groups were 69.23%, 58.82% and 63.16% respectively, which were significantly higher than those of MG group and NS group (40.00%, 40.00%,P<0.05). The AChR-Ab level in serum and the expression of AChR on neuromuscular junction (NMJ) of mice in three antibiotics groups were also higher than those of MG group. Our results indicated that aminoglycoside antibiotics could aggravate the symptom of myasthenia gravis. The exacerbation of myasthenia gravis by these antibiotics probably involves competitively restraining the release of acetylcholine from presynaptic membrane, impairing the depolarization of postsynaptic membrane, depressing the irritability of myocyte membrane around the end-plate membrane and consequently leading to the blockade of neuromuscular junction.
To compare the expression level of metastasis associated-1 (MTA1) gene in high and low metastatic human osteosarcoma cell lines and examine the relationship of MTA1 expression and the metastasis potentiality of osteosarcoma cells the expression of MTA1 in MG-63 osteosarcoma cell lines with high and low metastasis potential was detected by semiquantitative TR-PCR. Boyden chamber invasion assay was used to evaluate the invasive capacityin vitro in two osteosarcoma cell lines. The low metastasis MG-63 cells were transfected with MTA1 full-length cDNA expression plasmid by lipofectamine and the changes of MTA1 expression andin vitro invasion potential were examined after the transfection. Our results showed that MG63 cell line with high metastasis potential expressed significantly higher MTA1 than that of MG63 cells with low metastasis as reavealed by RT-PCR. The invasion potential of low metastasis MG63 cell line was increased after MTA1 gene transfection. It is concluded that there may be a relationship between MTA1 and invasive potentiality of human osteosarcoma cells, and the mechanism of MTA1 in osteosarcoma metastasis and its possible role in associated gene therapy deserve further study.