2025-03-22 2005, Volume 25 Issue 2

  • Select all
  • Huang Yinping , Ye Duyun , Wu Ping , Huang Yanjun , Zhang Li , Zhou Xiaoyan , Huang Yunfeng , Yuan Ping , Zhang Daijuan , Wan Jingyuan

    In order to investigate the expression of cyclooxygenase-2 (COX-2) in human lower segments of myometrium obtained from women in labor and those not in labor and identify the splicing variant of COX-2, reverse transcriptase-polymerase chain reaction (RT-PCR) was used to detect the expression of COX-2. The primers were designed and synthesized according to the sequence of rat COX-2 splice variant which was discovered firstly by us. Then the splicing variant of COX-2 in human myometrium from woman in labor was identified, cloned into vector and sequenced. The results showed that the expression of COX-2 mRNA was lower in human myometrium obtained from women who were not in labor than that in labor women and a new band of COX-2 was obtained in myometrium from labor woman. The fragment included an unspliced intron, which pitched between exons 7 and 8. It was suggested that COX-2 gene was not only expressed highly in human myometrium from woman in labor, but also produced splicing variant by alternative splicing.

  • Zhang Jicheng , Lu Wenli , Li Yirong , Wu Jianmin , Zhang Chunguang
    2005, 25(2): 117-120. https://doi.org/10.1007/BF02873553

    The expression of synaptotagmin II (Syt2) in RBL-2H3 (RBL) and its role during exocytosis of RBL was investigated. The expression of Syt2 in RBL was detected by western blot and Syt2 gene was amplified by PCR. The anti-sense full length Syt2 cDNA expression vector was conselected with pEGFP-N1 and transfected into RBL by electroporation, and stable transfectants were selected by using G418. To analyze the role of Syt2 during exocytosis of RBL, the release of cathepsin D was assayed by immunoblotting. The results showed that Syt2 was expressed in RBL. The anti-sense expression vector pEGFP-N1-Syt2-AS was constructed and the sequence of insertion was completely consistent with rat Syt2 (accession number in GeneBank: NM012665). The stable transfectants (RBL-Syt2-AS) were obtained. Western blot showed that RBL-Syt2-AS expressed a lower level of Syt2 (8% and 10% of control cells), indicating that the expression of Syt2 in RBL-Syt2-AS was markedly down-regulated by anti-RNA. Compared with control, the release of cathepsin D by RBL-Syt2-AS was increased. It was concluded that Syt2 expressed in RBL and could inhibit exocytosis of lysosomes in RBL.

  • Sun Jun , Xia Jinsong , Wang Yu , Wang Yuzhe , Zong Yiqiang , Qu Shen
    2005, 25(2): 234-235. https://doi.org/10.1007/BF02828128

    Receptor mediated gene delivery is a new gene transfer strategy. Asialoglycoprotein receptor (ASGP-R), the receptor of asialoorosomucoid (Asor), is specially expressed on the surface of hepatocyte. In this paper, the nuclide131I was combined with Asor to form a kind of soluble nuclide-protein complex, which can be specifically endocytosed into hepatocyte by ASGP-R. After intravenous injection of the complex into experimental animals, the deposition of Asorin vivo and the targeting quality of hepatocyte was detected by ECT. This research testified the feasibility of targeting Asor complex delivery to hepatocyte mediated by ASGP-Rin vivo, and provided foundation for the genetic diagnosis and gene therapy of hepatic cell-related diseases.

  • Chen Juan , Zhou Jie , Feng Youmei , Wang Janzhi
    2005, 25(2): 375-377. https://doi.org/10.1007/BF02828200

    In this study, we studied the effect of glycogen synthase kinase-3 (GSK-3) overactivation on neurofilament phosphorylation in cultured cells. After N2a cells were treated with the specific inhibitor (wortmannin) of phosphoinositol-3 kinase (PI-3K) or treated with wortmannin and the specific inhibitor (LiCl) of glycogen synthase kinase-3 (GSK-3), GSK-3 activity and neurofilament phosphorylation were detected by using GSK-3 activity assay, Western blots and immunofluoresence. Our results showed that after treatment of N2a cells with wortmannin for 1 h, overactivation of GSK-3 caused a reduced staining with antibody SMI32 and an enhanced staining with antibody SMI31. When N2a cells were treated with wortmannin and LiCl, the activity of GSK-3 was reduced substantially. At the same time, the phosphorylation of neurofilament was also reduced. The study demonstrated that overactivation of GSK-3 induced hyperphosphorylation of neurofilament and suggested thatin vitro overactivation of GSK-3 resulted in neurofilament hyperphosphorylation and this may be the underlying mechanism for Alzheimer's disease.