Melanocyte stem cells in the skin: Origin, biological characteristics, homeostatic maintenance and therapeutic potential

Luling Huang , Yuzhi Zuo , Shuli Li , Chunying Li

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (5) : e1720

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (5) : e1720 DOI: 10.1002/ctm2.1720
REVIEW

Melanocyte stem cells in the skin: Origin, biological characteristics, homeostatic maintenance and therapeutic potential

Author information +
History +
PDF

Abstract

This review provides a concise summary of the origin, biological characteristics, homeostatic maintenance and therapeutic potential of cutaneous MSCs.

The role and potential application value of MSCs in skin pigmentation disorders are discussed.

The significance of single-cell RNA sequencing, CRISPR-Cas9 technology and practical models in MSCs research is highlighted.

Keywords

hair follicle / melanocyte replenishment / melanocyte stem cells / niche / regenerative medicine

Cite this article

Download citation ▾
Luling Huang, Yuzhi Zuo, Shuli Li, Chunying Li. Melanocyte stem cells in the skin: Origin, biological characteristics, homeostatic maintenance and therapeutic potential. Clinical and Translational Medicine, 2024, 14(5): e1720 DOI:10.1002/ctm2.1720

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

García-CastroM, Bronner-Fraser M. Induction and differentiation of the neural crest. Curr Opin Cell Biol. 1999;11(6):695-698.

[2]

SerbedzijaGN, FraserSE, Bronner-FraserM. Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labelling. Development. 1990;108(4):605-612.

[3]

SunQ, LeeW, HuH, et al. Dedifferentiation maintains melanocyte stem cells in a dynamic niche. Nature. 2023;616(7958):774-782.

[4]

LiL, Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science. 2010;327(5965):542-545.

[5]

CotsarelisG, SunTT, LavkerRM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell. 1990;61(7):1329-1337.

[6]

Schmidt-UllrichR, Paus R. Molecular principles of hair follicle induction and morphogenesis. Bioessays. 2005;27(3):247-261.

[7]

LiA. The biology of melanocyte and melanocyte stem cell. Acta Biochim Biophys Sin (Shanghai). 2014;46(4):255-260.

[8]

AdameykoI, Lallemend F, AquinoJB, et al. Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell. 2009;139(2):366-379.

[9]

NitzanE, Pfaltzgraff ER, LaboskyPA, KalcheimC. Neural crest and Schwann cell progenitor-derived melanocytes are two spatially segregated populations similarly regulated by Foxd3. Proc Natl Acad Sci U S A. 2013;110(31):12709-12714.

[10]

BlanpainC, FuchsE. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol. 2009;10(3):207-217.

[11]

BlanpainC, Sotiropoulou PA. A dominant role of the hair follicle stem cell niche in regulating melanocyte stemness. Cell Stem Cell. 2010;6(2):95-96.

[12]

MyungP, ItoM. Dissecting the bulge in hair regeneration. J Clin Invest. 2012;122(2):448-454.

[13]

HorikawaT, NorrisDA, JohnsonTW, et al. DOPA-negative melanocytes in the outer root sheath of human hair follicles express premelanosomal antigens but not a melanosomal antigen or the melanosome-associated glycoproteins tyrosinase, TRP-1, and TRP-2. J Invest Dermatol. 1996;106(1):28-35.

[14]

NarisawaY, KohdaH, TanakaT. Three-dimensional demonstration of melanocyte distribution of human hair follicles: special reference to the bulge area. Acta Derm Venereol. 1997;77(2):97-101.

[15]

LinJY, FisherDE. Melanocyte biology and skin pigmentation. Nature. 2007;445(7130):843-850.

[16]

LiA, MaY, JinM, et al. Activated mutant NRas(Q61K) drives aberrant melanocyte signaling, survival, and invasiveness via a Rac1-dependent mechanism. J Invest Dermatol. 2012;132(11):2610-2621.

[17]

NakamuraM, Fukunaga-Kalabis M, YamaguchiY, et al. Site-specific migration of human fetal melanocytes in volar skin. J Dermatol Sci. 2015;78(2):143-148.

[18]

EshibaS, NamikiT, MohriY, et al. Stem cell spreading dynamics intrinsically differentiate acral melanomas from nevi. Cell Rep. 2021;36(5):109492.

[19]

IkedaY, WadaA, HasegawaT, Yokota M, KoikeM, IkedaS. Melanocyte progenitor cells reside in human subcutaneous adipose tissue. PLoS One. 2021;16(8):e0256622.

[20]

UenoM, AotoT, MohriY, Yokozeki H, NishimuraEK. Coupling of the radiosensitivity of melanocyte stem cells to their dormancy during the hair cycle. Pigment Cell Melanoma Res. 2014;27(4):540-551.

[21]

HarrisML, BuacK, ShakhovaO, et al. A dual role for SOX10 in the maintenance of the postnatal melanocyte lineage and the differentiation of melanocyte stem cell progenitors. PLoS Genet. 2013;9(7):e1003644.

[22]

GoldsteinNB, KosterMI, HoaglinLG, et al. Narrow band ultraviolet B treatment for human vitiligo is associated with proliferation, migration, and differentiation of melanocyte precursors. J Invest Dermatol. 2015;135(8):2068-2076.

[23]

OsawaM, EgawaG, MakSS, et al. Molecular characterization of melanocyte stem cells in their niche. Development. 2005;132(24):5589-5599.

[24]

LiuLP, LiYM, GuoNN, et al. Therapeutic potential of patient iPSC-derived iMelanocytes in autologous transplantation. Cell Rep. 2019;27(2):455-466.e455.

[25]

NishimuraEK. Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation. Pigment Cell Melanoma Res. 2011;24(3):401-410.

[26]

Nishikawa-TorikaiS, Osawa M, NishikawaS. Functional characterization of melanocyte stem cells in hair follicles. J Invest Dermatol. 2011;131(12):2358-2367.

[27]

YamadaT, Hasegawa S, InoueY, et al. Comprehensive analysis of melanogenesis and proliferation potential of melanocyte lineage in solar lentigines. J Dermatol Sci. 2014;73(3):251-257.

[28]

JoshiSS, Tandukar B, PanL, et al. CD34 defines melanocyte stem cell subpopulations with distinct regenerative properties. PLoS Genet. 2019;15(4):e1008034.

[29]

BrombinA, Simpson DJ, TravnickovaJ, et al. Tfap2b specifies an embryonic melanocyte stem cell that retains adult multifate potential. Cell Rep. 2022;38(2):110234.

[30]

NishimuraEK, JordanSA, OshimaH, et al. Dominant role of the niche in melanocyte stem-cell fate determination. Nature. 2002;416(6883):854-860.

[31]

TandukarB, Kalapurakal E, HornyakTJ. B6-Dct-H2BGFP bitransgenic mice: a standardized mouse model for in vivo characterization of melanocyte development and stem cell differentiation. Pigment Cell Melanoma Res. 2021;34(5):905-917.

[32]

MakSS, Moriyama M, NishiokaE, OsawaM, Nishikawa S. Indispensable role of Bcl2 in the development of the melanocyte stem cell. Dev Biol. 2006;291(1):144-153.

[33]

YamadaT, Hasegawa S, InoueY, et al. Wnt/beta-catenin and kit signaling sequentially regulate melanocyte stem cell differentiation in UVB-induced epidermal pigmentation. J Invest Dermatol. 2013;133(12):2753-2762.

[34]

WangY, LiS, LiC. Clinical features, immunopathogenesis, and therapeutic strategies in vitiligo. Clin Rev Allergy Immunol. 2021;61(3):299-323.

[35]

SinghC, ParsadD, KanwarAJ, Dogra S, KumarR. Comparison between autologous noncultured extracted hair follicle outer root sheath cell suspension and autologous noncultured epidermal cell suspension in the treatment of stable vitiligo: a randomized study. Br J Dermatol. 2013;169(2):287-293.

[36]

ParsadD, PandhiR, DograS, Kumar B. Clinical study of repigmentation patterns with different treatment modalities and their correlation with speed and stability of repigmentation in 352 vitiliginous patches. J Am Acad Dermatol. 2004;50(1):63-67.

[37]

DavidsLM, du Toit E, KidsonSH, ToddG. A rare repigmentation pattern in a vitiligo patient: a clue to an epidermal stem-cell reservoir of melanocytes?Clin Exp Dermatol. 2009;34(2):246-248.

[38]

OkamotoN, AotoT, UharaH, et al. A melanocyte-melanoma precursor niche in sweat glands of volar skin. Pigment Cell Melanoma Res. 2014;27(6):1039-1050.

[39]

CleversH, LohKM, NusseR. Stem cell signaling. An integral program for tissue renewal and regeneration: wnt signaling and stem cell control. Science. 2014;346(6205):1248012.

[40]

MooreKA, Lemischka IR. Stem cells and their niches. Science. 2006;311(5769):1880-1885.

[41]

LeiM, ChuongCM. Stem cells. Aging, alopecia, and stem cells. Science. 2016;351(6273):559-560.

[42]

KumanoK, MasudaS, SataM, et al. Both Notch1 and Notch2 contribute to the regulation of melanocyte homeostasis. Pigment Cell Melanoma Res. 2008;21(1):70-78.

[43]

SchouweyK, AydinIT, RadtkeF, Beermann F. RBP-Jκ-dependent Notch signaling enhances retinal pigment epithelial cell proliferation in transgenic mice. Oncogene. 2011;30(3):313-322.

[44]

BorggrefeT, OswaldF. The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci. 2009;66(10):1631-1646.

[45]

MoriyamaM, OsawaM, MakSS, et al. Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells. J Cell Biol. 2006;173(3):333-339.

[46]

Aubin-HouzelsteinG, Djian-Zaouche J, BernexF, et al. Melanoblasts' proper location and timed differentiation depend on Notch/RBP-J signaling in postnatal hair follicles. J Invest Dermatol. 2008;128(11):2686-2695.

[47]

NusseR, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169(6):985-999.

[48]

RabbaniP, TakeoM, ChouW, et al. Coordinated activation of Wnt in epithelial and melanocyte stem cells initiates pigmented hair regeneration. Cell. 2011;145(6):941-955.

[49]

LimX, TanSH, YuKL, LimSB, NusseR. Axin2 marks quiescent hair follicle bulge stem cells that are maintained by autocrine Wnt/β-catenin signaling. Proc Natl Acad Sci U S A. 2016;113(11):E1498-E1505.

[50]

MasunagaT, Shimizu H, YeeC, et al. The extracellular domain of BPAG2 localizes to anchoring filaments and its carboxyl terminus extends to the lamina densa of normal human epidermal basement membrane. J Invest Dermatol. 1997;109(2):200-206.

[51]

NishikawaS, OsawaM. Generating quiescent stem cells. Pigment Cell Res. 2007;20(4):263-270.

[52]

KubicJD, YoungKP, PlummerRS, Ludvik AE, LangD. Pigmentation PAX-ways: the role of Pax3 in melanogenesis, melanocyte stem cell maintenance, and disease. Pigment Cell Melanoma Res. 2008;21(6):627-645.

[53]

NishimuraEK, SuzukiM, IgrasV, et al. Key roles for transforming growth factor beta in melanocyte stem cell maintenance. Cell Stem Cell. 2010;6(2):130-140.

[54]

MassaguéJ. TGFbeta in cancer. Cell. 2008;134(2):215-230.

[55]

FranzkeCW, Tasanen K, SchumannH, Bruckner-TudermanL. Collagenous transmembrane proteins: collagen XVII as a prototype. Matrix Biol. 2003;22(4):299-309.

[56]

MatsumuraH, MohriY, BinhNT, et al. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science. 2016;351(6273):aad4395.

[57]

AdamRC, YangH, GeY, et al. NFI transcription factors provide chromatin access to maintain stem cell identity while preventing unintended lineage fate choices. Nat Cell Biol. 2020;22(6):640-650.

[58]

ChangCY, Pasolli HA, GiannopoulouEG, et al. NFIB is a governor of epithelial-melanocyte stem cell behaviour in a shared niche. Nature. 2013;495(7439):98-102.

[59]

LiH, FanL, ZhuS, et al. Epilation induces hair and skin pigmentation through an EDN3/EDNRB-dependent regenerative response of melanocyte stem cells. Sci Rep. 2017;7(1):7272.

[60]

TakeoM, LeeW, RabbaniP, et al. EdnrB governs regenerative response of melanocyte stem cells by crosstalk with Wnt signaling. Cell Rep. 2016;15(6):1291-1302.

[61]

BelmadaniA, JungH, RenD, MillerRJ. The chemokine SDF-1/CXCL12 regulates the migration of melanocyte progenitors in mouse hair follicles. Differentiation. 2009;77(4):395-411.

[62]

YamadaT, Hasegawa S, HasebeY, et al. CXCL12 regulates differentiation of human immature melanocyte precursors as well as their migration. Arch Dermatol Res. 2019;311(1):55-62.

[63]

WilsonMM, Danielian PS, SalusG, FerrettiR, Whittaker CA, LeesJA. BMI1 is required for melanocyte stem cell maintenance and hair pigmentation. Pigment Cell Melanoma Res. 2023;36(5):399-406.

[64]

ZhangB, MaS, RachminI, et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature. 2020;577(7792):676-681.

[65]

ChuehSC, LinSJ, ChenCC, et al. Therapeutic strategy for hair regeneration: hair cycle activation, niche environment modulation, wound-induced follicle neogenesis, and stem cell engineering. Expert Opin Biol Ther. 2013;13(3):377-391.

[66]

CuiYZ, XuF, ZhouY, et al. SPRY1 deficiency in keratinocytes induces follicular melanocyte stem cells migration to epidermis through p53/SCF/C-KIT signaling. J Invest Dermatol. 2024.

[67]

O'SullivanJDB, NicuC, PicardM, et al. The biology of human hair greying. Biol Rev Camb Philos Soc. 2021;96(1):107-128.

[68]

NishimuraEK, Granter SR, FisherDE. Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche. Science. 2005;307(5710):720-724.

[69]

CinatD, CoppesRP, BarazzuolL. DNA damage-induced inflammatory microenvironment and adult stem cell response. Front Cell Dev Biol. 2021;9:729136.

[70]

HastyP, Campisi J, HoeijmakersJ, van SteegH, VijgJ. Aging and genome maintenance: lessons from the mouse?Science. 2003;299(5611):1355-1359.

[71]

InomataK, AotoT, BinhNT, et al. Genotoxic stress abrogates renewal of melanocyte stem cells by triggering their differentiation. Cell. 2009;137(6):1088-1099.

[72]

KudlovaN, SlavikH, DuskovaP, et al. An efficient, non-invasive approach for in-vivo sampling of hair follicles: design and applications in monitoring DNA damage and aging. Aging. 2021;13(23):25004-25024.

[73]

RachminI, LeeJH, ZhangB, et al. Stress-associated ectopic differentiation of melanocyte stem cells and ORS amelanotic melanocytes in an ex vivo human hair follicle model. Exp Dermatol. 2021;30(4):578-587.

[74]

EzzedineK, Eleftheriadou V, WhittonM, van GeelN. Vitiligo. Lancet North Am Ed. 2015;386(9988):74-84.

[75]

Le PooleIC, van den Wijngaard RM, WesterhofW, DutrieuxRP, DasPK. Presence or absence of melanocytes in vitiligo lesions: an immunohistochemical investigation. J Invest Dermatol. 1993;100(6):816-822.

[76]

StariccoRG. Amelanotic melanocytes in the outer sheath of the human hair follicle. J Invest Dermatol. 1959;33:295-297.

[77]

MeyerKC, KlatteJE, DinhHV, et al. Evidence that the bulge region is a site of relative immune privilege in human hair follicles. Br J Dermatol. 2008;159(5):1077-1085.

[78]

ItoT, ItoN, SaatoffM, et al. Maintenance of hair follicle immune privilege is linked to prevention of NK cell attack. J Invest Dermatol. 2008;128(5):1196-1206.

[79]

WuY, DaiY, PengJ, Xu A, SongX. Increased expression of beta2-adrenoceptors is involved in vitiligo-associated grey hair. J Eur Acad Dermatol Venereol. 2022;36(11):e949-e951.

[80]

HanX, ChangL, QiuZ, et al. Micro-injury induces hair regeneration and vitiligo repigmentation through Wnt/β-catenin pathway. Stem Cells Dev. 2022;31(5-6):111-118.

[81]

LinX, MengX, LinJ. The possible role of Wnt/beta-catenin signalling in vitiligo treatment. J Eur Acad Dermatol Venereol. 2023;37(11):2208-2221.

[82]

BirleaSA, CostinGE, RoopDR, Norris DA. Trends in regenerative medicine: repigmentation in vitiligo through melanocyte stem cell mobilization. Med Res Rev. 2017;37(4):907-935.

[83]

MuraseD, Hachiya A, AmanoY, OhuchiA, Kitahara T, TakemaY. The essential role of p53 in hyperpigmentation of the skin via regulation of paracrine melanogenic cytokine receptor signaling. J Biol Chem. 2009;284(7):4343-4353.

[84]

MinderEI, Barman-Aksoezen J, Schneider-YinX. Pharmacokinetics and pharmacodynamics of afamelanotide and its clinical use in treating dermatologic disorders. Clin Pharmacokinet. 2017;56(8):815-823.

[85]

TohJJH, ChuahSY, JhinganA, Chong WS, ThngSTG. Afamelanotide implants and narrow-band ultraviolet B phototherapy for the treatment of nonsegmental vitiligo in Asians. J Am Acad Dermatol. 2020;82(6):1517-1519.

[86]

LimHW, GrimesPE, AgbaiO, et al. Afamelanotide and narrowband UV-B phototherapy for the treatment of vitiligo: a randomized multicenter trial. JAMA Dermatol. 2015;151(1):42-50.

[87]

VinayK, DograS, ParsadD, et al. Clinical and treatment characteristics determining therapeutic outcome in patients undergoing autologous non-cultured outer root sheath hair follicle cell suspension for treatment of stable vitiligo. J Eur Acad Dermatol Venereol. 2015;29(1):31-37.

[88]

MohantyS, KumarA, DhawanJ, Sreenivas V, GuptaS. Noncultured extracted hair follicle outer root sheath cell suspension for transplantation in vitiligo. Br J Dermatol. 2011;164(6):1241-1246.

[89]

RodriguesM, Kosaric N, BonhamCA, GurtnerGC. Wound healing: a cellular perspective. Physiol Rev. 2019;99(1):665-706.

[90]

MorassoMI, Tomic-Canic M. Epidermal stem cells: the cradle of epidermal determination, differentiation and wound healing. Biol Cell. 2005;97(3):173-183.

[91]

ChouWC, TakeoM, RabbaniP, et al. Direct migration of follicular melanocyte stem cells to the epidermis after wounding or UVB irradiation is dependent on Mc1r signaling. Nat Med. 2013;19(7):924-929.

[92]

GarcinCL, AnsellDM, HeadonDJ, Paus R, HardmanMJ. Hair follicle bulge stem cells appear dispensable for the acute phase of wound re-epithelialization. Stem Cells. 2016;34(5):1377-1385.

[93]

GarciaAM, McLaren CE. Melanoma: is hair the root of the problem?Pigment Cell Melanoma Res. 2011;24(1):110-118.

[94]

MoonH, Donahue LR, ChoiE, et al. Melanocyte stem cell activation and translocation initiate cutaneous melanoma in response to UV exposure. Cell Stem Cell. 2017;21(5):665-678.e666.

[95]

HarrisML, PavanWJ. Postnatal lineage mapping of follicular melanocytes with the Tyr::CreER(T) (2) transgene. Pigment Cell Melanoma Res. 2013;26(2):269-274.

[96]

BosenbergM, Muthusamy V, CurleyDP, et al. Characterization of melanocyte-specific inducible Cre recombinase transgenic mice. Genesis. 2006;44(5):262-267.

[97]

SunQ, LeeW, MohriY, et al. A novel mouse model demonstrates that oncogenic melanocyte stem cells engender melanoma resembling human disease. Nat Commun. 2019;10(1):5023.

[98]

KöhlerC, Nittner D, RambowF, et al. Mouse cutaneous melanoma induced by mutant BRaf arises from expansion and dedifferentiation of mature pigmented melanocytes. Cell Stem Cell. 2017;21(5):679-693.e676.

[99]

VirosA, Sanchez-Laorden B, PedersenM, et al. Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53. Nature. 2014;511(7510):478-482.

[100]

HoerterJD, Bradley P, CasillasA, et al. Does melanoma begin in a melanocyte stem cell?J Skin Cancer. 2012;2012:571087.

[101]

AnL, KimD, DonahueLR, et al. Sexual dimorphism in melanocyte stem cell behavior reveals combinational therapeutic strategies for cutaneous repigmentation. Nat Commun. 2024;15(1):796.

[102]

PotterSS. Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol. 2018;14(8):479-492.

[103]

JovicD, LiangX, ZengH, Lin L, XuF, LuoY. Single-cell RNA sequencing technologies and applications: a brief overview. Clin Transl Med. 2022;12(3):e694.

[104]

ZhangJZ, Termglinchan V, ShaoNY, et al. A human iPSC double-reporter system enables purification of cardiac lineage subpopulations with distinct function and drug response profiles. Cell Stem Cell. 2019;24(5):802-811.e805.

[105]

HsuMN, ChangYH, TruongVA, Lai PL, NguyenTKN, HuYC. CRISPR technologies for stem cell engineering and regenerative medicine. Biotechnol Adv. 2019;37(8):107447.

[106]

AntaoAM, Karapurkar JK, LeeDR, KimKS, Ramakrishna S. Disease modeling and stem cell immunoengineering in regenerative medicine using CRISPR/Cas9 systems. Comput Struct Biotechnol J. 2020;18:3649-3665.

[107]

BaggioliniA, Callahan SJ, MontalE, et al. Developmental chromatin programs determine oncogenic competence in melanoma. Science. 2021;373(6559):eabc1048.

[108]

Motter CatarinoC, Cigaran SchuckD, Dechiario L, KarandeP. Incorporation of hair follicles in 3D bioprinted models of human skin. Sci Adv. 2023;9(41):eadg0297.

[109]

MahlaRS. Stem cells applications in regenerative medicine and disease therapeutics. Int J Cell Biol. 2016;2016:6940283.

[110]

TangJ, Fewings E, ChangD, et al. The genomic landscapes of individual melanocytes from human skin. Nature. 2020;586(7830):600-605.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

283

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/