Decoding the ribosome's hidden language: rRNA modifications as key players in cancer dynamics and targeted therapies

Li Cui , Jiarong Zheng , Yunfan Lin , Pei Lin , Ye Lu , Yucheng Zheng , Bing Guo , Xinyuan Zhao

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (5) : e1705

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (5) : e1705 DOI: 10.1002/ctm2.1705
REVIEW

Decoding the ribosome's hidden language: rRNA modifications as key players in cancer dynamics and targeted therapies

Author information +
History +
PDF

Abstract

Ribosomal RNA (rRNA) modifications, essential components of ribosome structure and function, significantly impact cellular proteomics and cancer biology. These chemical modifications transcend structural roles, critically shaping ribosome functionality and influencing cellular protein profiles. In this review, the mechanisms by which rRNA modifications regulate both rRNA functions and broader cellular physiological processes are critically discussed. Importantly, by altering the translational output, rRNA modifications can shift the cellular equilibrium towards oncogenesis, thus playing a key role in cancer development and progression. Moreover, a special focus is placed on the functions of mitochondrial rRNA modifications and their aberrant expression in cancer, an area with profound implications yet largely uncharted. Dysregulation in these modifications can lead to metabolic dysfunction and apoptosis resistance, hallmark traits of cancer cells. Furthermore, the current challenges and future perspectives in targeting rRNA modifications are highlighted as a therapeutic approach for cancer treatment. In conclusion, rRNA modifications represent a frontier in cancer research, offering novel insights and therapeutic possibilities. Understanding and harnessing these modifications can pave the way for breakthroughs in cancer treatment, potentially transforming the approach to combating this complex disease.

Keywords

cancer biology / rRNA modification / therapeutic potential

Cite this article

Download citation ▾
Li Cui, Jiarong Zheng, Yunfan Lin, Pei Lin, Ye Lu, Yucheng Zheng, Bing Guo, Xinyuan Zhao. Decoding the ribosome's hidden language: rRNA modifications as key players in cancer dynamics and targeted therapies. Clinical and Translational Medicine, 2024, 14(5): e1705 DOI:10.1002/ctm2.1705

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jiang J, Seo H, Chow CS. Post-transcriptional Modifications Modulate rRNA Structure and Ligand Interactions. Acc Chem Res. 2016;49(5):893-901.

[2]

Higa-Nakamine S, Suzuki T, Uechi T, et al. Loss of ribosomal RNA modification causes developmental defects in zebrafish. Nucleic Acids Res. 2012;40(1):391-398.

[3]

Begik O, Lucas MC, Pryszcz LP, et al. Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing. Nat Biotechnol. 2021;39(10):1278-1291.

[4]

Liberman N, Rothi MH, Gerashchenko MV, et al. 18S rRNA methyltransferases DIMT1 and BUD23 drive intergenerational hormesis. Mol Cell. 2023;83(18):3268-3282.

[5]

Knorr AG, Schmidt C, Tesina P, et al. Ribosome-NatA architecture reveals that rRNA expansion segments coordinate N-terminal acetylation. Nat Struct Mol Biol. 2019;26(1):35-39.

[6]

Wang X, He C. Dynamic RNA modifications in posttranscriptional regulation. Mol Cell. 2014;56(1):5-12.

[7]

Bellodi C, Krasnykh O, Haynes N, et al. Loss of function of the tumor suppressor DKC1 perturbs p27 translation control and contributes to pituitary tumorigenesis. Cancer Res. 2010;70(14):6026-6035.

[8]

Weeks SE, Metge BJ, Samant RS. The nucleolus: a central response hub for the stressors that drive cancer progression. Cell Mol Life Sci. 2019;76(22):4511-4524.

[9]

Truitt ML, Ruggero D. New frontiers in translational control of the cancer genome. Nat Rev Cancer. 2016;16(5):288-304.

[10]

Bastide A, David A. Interaction of rRNA with mRNA and tRNA in translating mammalian ribosome: functional implications in health and disease. Biomolecules. 2018;8(4).

[11]

Wu J, Xiao J, Zhang Z, Wang X, Hu S, Yu J. Ribogenomics: the science and knowledge of RNA. Genomics Proteomics Bioinf. 2014;12(2):57-63.

[12]

Penzo M, Montanaro L, Trere D, Derenzini M. The ribosome biogenesis-cancer connection. Cells. 2019;8(1):55.

[13]

Shi Y, Liu X, Li R, et al. Retention of OsNMD3 in the cytoplasm disturbs protein synthesis efficiency and affects plant development in rice. J Exp Bot. 2014;65(12):3055-3069.

[14]

Cherlin T, Magee R, Jing Y, Pliatsika V, Loher P, Rigoutsos I. Ribosomal RNA fragmentation into short RNAs (rRFs) is modulated in a sex- and population of origin-specific manner. BMC Biol. 2020;18(1):38.

[15]

Lafontaine DL. Noncoding RNAs in eukaryotic ribosome biogenesis and function. Nat Struct Mol Biol. 2015;22(1):11-19.

[16]

Höfler S, Lukat P, Blankenfeldt W, Carlomagno T. Eukaryotic box C/D methylation machinery has two non-symmetric protein assembly sites. Sci Rep. 2021;11(1):17561.

[17]

Cappannini A, Ray A, Purta E, et al. MODOMICS: a database of RNA modifications and related information. 2023 update. Nucleic Acids Res. 2024;52(D1):D239-d244.

[18]

Sloan KE, Warda AS, Sharma S, Entian KD, Lafontaine DLJ, Bohnsack MT. Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol. 2017;14(9):1138-1152.

[19]

Burroughs AM, Aravind L. A highly conserved family of domains related to the DNA-glycosylase fold helps predict multiple novel pathways for RNA modifications. RNA Biol. 2014;11(4):360-372.

[20]

Schosserer M, Minois N, Angerer TB, et al. Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nat Commun. 2015;6:6158.

[21]

Janin M, Coll-SanMartin L, Esteller M. Disruption of the RNA modifications that target the ribosome translation machinery in human cancer. Mol Cancer. 2020;19(1):70.

[22]

Natchiar SK, Myasnikov AG, Kratzat H, Hazemann I, Klaholz BP. Visualization of chemical modifications in the human 80S ribosome structure. Nature. 2017;551(7681):472-477.

[23]

Burke MF, Logan MK, Hebert MD. Identification of additional regulatory RNPs that impact rRNA and U6 snRNA methylation. Biol Open. 2018;7(8).

[24]

Singh M, Wang Z, Cascio D, Feigon J. Structure and interactions of the CS domain of human H/ACA RNP assembly protein Shq1. J Mol Biol. 2015;427(4):807-823.

[25]

Jourdain AA, Popow J, de la Fuente MA, Martinou JC, Anderson P, Simarro M. The FASTK family of proteins: emerging regulators of mitochondrial RNA biology. Nucleic Acids Res. 2017;45(19):10941-10947.

[26]

Song B, Chen K, Tang Y, Ma J, Meng J, Wei Z. PSI-MOUSE: predicting mouse pseudouridine sites from sequence and genome-derived features. Evol Bioinform Online. 2020;16:1-9.

[27]

Lacoux C, Wacheul L, Saraf K, et al. The catalytic activity of the translation termination factor methyltransferase Mtq2-Trm112 complex is required for large ribosomal subunit biogenesis. Nucleic Acids Res. 2020;48(21):12310-12325.

[28]

Lee WL, Sinha A, Lam LN, et al. An RNA modification enzyme directly senses reactive oxygen species for translational regulation in Enterococcus faecalis. Nat Commun. 2023;14(1):4093.

[29]

Barozzi C, Zacchini F, Asghar S, Montanaro L. Ribosomal RNA rseudouridylation: will newly available methods finally define the contribution of this modification to human ribosome plasticity?Front Genet. 2022;13:920987.

[30]

Lopez Sanchez MIG, Cipullo M, Gopalakrishna S, Khawaja A, Rorbach J. Methylation of ribosomal RNA: a mitochondrial perspective. Front Genet. 2020;11:761.

[31]

Zhang W, Pan T. Pseudouridine RNA modification detection and quantification by RT-PCR. Methods. 2022;203:1-4.

[32]

Trahan C, Oeffinger M. The Importance of Being RNA-est: considering RNA-mediated ribosome plasticity. RNA Biol. 2023;20(1):177-185.

[33]

Abou Assi H, Rangadurai AK, Shi H, et al. 2'-O-Methylation can increase the abundance and lifetime of alternative RNA conformational states. Nucleic Acids Res. 2020;48(21):12365-12379.

[34]

Khoshnevis S, Dreggors-Walker RE, Marchand V, Motorin Y, Ghalei H. Ribosomal RNA 2'-O-methylations regulate translation by impacting ribosome dynamics. Proc Natl Acad Sci U S A. 2022;119(12):e2117334119.

[35]

Gigova A, Duggimpudi S, Pollex T, Schaefer M, Koš M. A cluster of methylations in the domain IV of 25S rRNA is required for ribosome stability. RNA. 2014;20(10):1632-1644.

[36]

Jansson MD, Häfner SJ, Altinel K, et al. Regulation of translation by site-specific ribosomal RNA methylation. Nat Struct Mol Biol. 2021;28(11):889-899.

[37]

Motorin Y, Quinternet M, Rhalloussi W, Marchand V. Constitutive and variable 2'-O-methylation (Nm) in human ribosomal RNA. RNA Biol. 2021;18(sup1):88-97.

[38]

Aquino GRR, Krogh N, Hackert P, et al. RNA helicase-mediated regulation of snoRNP dynamics on pre-ribosomes and rRNA 2'-O-methylation. Nucleic Acids Res. 2021;49(7):4066-4084.

[39]

Kanwal N, Krogh N, Memet I, et al. GPATCH4 regulates rRNA and snRNA 2'-O-methylation in both DHX15-dependent and DHX15-independent manners. Nucleic Acids Res. 2023;52(4):1953-1974.

[40]

Yi Y, Li Y, Meng Q, et al. A PRC2-independent function for EZH2 in regulating rRNA 2'-O methylation and IRES-dependent translation. Nat Cell Biol. 2021;23(4):341-354.

[41]

Yelland JN, Bravo JPK, Black JJ, Taylor DW, Johnson AW. A single 2'-O-methylation of ribosomal RNA gates assembly of a functional ribosome. Nat Struct Mol Biol. 2023;30(1):91-98.

[42]

Sekulski K, Cruz VE, Weirich CS, Erzberger JP. rRNA methylation by Spb1 regulates the GTPase activity of Nog2 during 60S ribosomal subunit assembly. Nat Commun. 2023;14(1):1207.

[43]

Lei K, Lin S, Yuan Q. N6-methyladenosine (m6A) modification of ribosomal RNAs (rRNAs): critical roles in mRNA translation and diseases. Genes Dis. 2023;10(1):126-134.

[44]

Sergeeva O, Sergeev P, Melnikov P, Prikazchikova T, Dontsova O, Zatsepin T. Modification of adenosine196 by Mettl3 methyltransferase in the 5'-external transcribed spacer of 47S Pre-rRNA affects rRNA maturation. Cells. 2020;9(4):1061.

[45]

Pinto R, Vågbø CB, Jakobsson ME, et al. The human methyltransferase ZCCHC4 catalyses N6-methyladenosine modification of 28S ribosomal RNA. Nucleic Acids Res. 2020;48(2):830-846.

[46]

Liu K, Santos DA, Hussmann JA, et al. Regulation of translation by methylation multiplicity of 18S rRNA. Cell Rep. 2021;34(10):108825.

[47]

Stojković V, Fujimori DG. Mutations in RNA methylating enzymes in disease. Curr Opin Chem Biol. 2017;41:20-27.

[48]

Liao H, Gaur A, McConie H, et al. Human NOP2/NSUN1 regulates ribosome biogenesis through non-catalytic complex formation with box C/D snoRNPs. Nucleic Acids Res. 2022;50(18):10695-10716.

[49]

Bourgeois G, Ney M, Gaspar I, et al. Eukaryotic rRNA modification by yeast 5-methylcytosine-methyltransferases and human proliferation-associated antigen p120. PLoS One. 2015;10(7):e0133321.

[50]

Dai X, Gonzalez G, Li L, et al. YTHDF2 binds to 5-methylcytosine in RNA and modulates the maturation of ribosomal RNA. Anal Chem. 2020;92(1):1346-1354.

[51]

Alawi F, Lin P. Dyskerin localizes to the mitotic apparatus and is required for orderly mitosis in human cells. PLoS One. 2013;8(11):e80805.

[52]

Hardin JW, Batey RT. The bipartite architecture of the sRNA in an archaeal box C/D complex is a primary determinant of specificity. Nucleic Acids Res. 2006;34(18):5039-5051.

[53]

Kotrys AV, Szczesny RJ. Mitochondrial gene expression and beyond-novel aspects of cellular physiology. Cells. 2019;9(1).

[54]

Zhao Y, Rai J, Li H. Regulation of translation by ribosomal RNA pseudouridylation. Sci Adv. 2023;9(33):eadg8190.

[55]

Rajan KS, Madmoni H, Bashan A, et al. A single pseudouridine on rRNA regulates ribosome structure and function in the mammalian parasite Trypanosoma brucei. Nat Commun. 2023;14(1):7462.

[56]

Peifer C, Sharma S, Watzinger P, Lamberth S, Kötter P, Entian KD. Yeast Rrp8p, a novel methyltransferase responsible for m1A 645 base modification of 25S rRNA. Nucleic Acids Res. 2013;41(2):1151-1163.

[57]

Wang H, Huang R, Li L, et al. CPA-seq reveals small ncRNAs with methylated nucleosides and diverse termini. Cell Discov. 2021;7(1):25.

[58]

Nagao A, Ohara M, Miyauchi K, et al. Hydroxylation of a conserved tRNA modification establishes non-universal genetic code in echinoderm mitochondria. Nat Struct Mol Biol. 2017;24(9):778-782.

[59]

Bortolin-Cavaillé ML, Quillien A, Thalalla Gamage S, et al. Probing small ribosomal subunit RNA helix 45 acetylation across eukaryotic evolution. Nucleic Acids Res. 2022;50(11):6284-6299.

[60]

Sharma S, Hartmann JD, Watzinger P, et al. A single N(1)-methyladenosine on the large ribosomal subunit rRNA impacts locally its structure and the translation of key metabolic enzymes. Sci Rep. 2018;8(1):11904.

[61]

Wang W, Li T, Wang Z, et al. Bibliometric analysis of research on neurodegenerative diseases and single-cell RNA sequencing: opportunities and challenges. iScience. 2023;26(10):107833.

[62]

Dai Q, Zhang LS, Sun HL, et al. Quantitative sequencing using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution. Nat Biotechnol. 2023;41(3):344-354.

[63]

Zhang LS, Ye C, Ju CW, et al. BID-seq for transcriptome-wide quantitative sequencing of mRNA pseudouridine at base resolution. Nat Protoc. 2024;19(2):517-538.

[64]

Schwartz S, Motorin Y. Next-generation sequencing technologies for detection of modified nucleotides in RNAs. RNA Biol. 2017;14(9):1124-1137.

[65]

Motorin Y, Marchand V. Analysis of RNA modifications by second- and third-generation deep sequencing: 2020 update. Genes (Basel). 2021;12(2).

[66]

Kadumuri RV, Janga SC. Epitranscriptomic code and its alterations in human disease. Trends Mol Med. 2018;24(10):886-903.

[67]

Amalric A, Bastide A, Attina A, et al. Quantifying RNA modifications by mass spectrometry: a novel source of biomarkers in oncology. Crit Rev Clin Lab Sci. 2022;59(1):1-18.

[68]

Amalric A, Attina A, Bastide A, et al. Mass spectrometry-based pipeline for identifying RNA modifications involved in a functional process: application to cancer cell adaptation. Anal Chem. 2024;96(5):1825-1833.

[69]

Barros-Silva D, Tsui J, Jerónimo C, Jenster G, Martens-Uzunova ES. Site-specific analysis of ribosomal 2'O-methylation by quantitative reverse transcription PCR under low deoxynucleotide triphosphate concentrations. Biotechniques. 2023;74(5):225-235.

[70]

Marchand V, Pichot F, Neybecker P, et al. HydraPsiSeq: a method for systematic and quantitative mapping of pseudouridines in RNA. Nucleic Acids Res. 2020;48(19):e110.

[71]

Kofman C, Watkins AM, Kim DS, et al. Computationally-guided design and selection of high performing ribosomal active site mutants. Nucleic Acids Res. 2022;50(22):13143-13154.

[72]

Häfner SJ, Jansson MD, Altinel K, et al. Ribosomal RNA 2'-O-methylation dynamics impact cell fate decisions. Dev Cell. 2023;58(17):1593-1609.

[73]

Heissenberger C, Rollins JA, Krammer TL, et al. The ribosomal RNA m(5)C methyltransferase NSUN-1 modulates healthspan and oogenesis in Caenorhabditis elegans. eLife. 2020;9:e56205.

[74]

Yang G, Schmid-Siegel M, Heissenberger C, et al. 2'-O-ribose methylation levels of ribosomal RNA distinguish different types of growth arrest in human dermal fibroblasts. J Cell Sci. 2024;137(3):jcs261930.

[75]

Kanwal N, Krogh N, Memet I, et al. GPATCH4 regulates rRNA and snRNA 2'-O-methylation in both DHX15-dependent and DHX15-independent manners. Nucleic Acids Res. 2024;52(4):1953-1974.

[76]

Metge BJ, Kammerud SC, Pruitt HC, Shevde LA, Samant RS. Hypoxia re-programs 2'-O-Me modifications on ribosomal RNA. iScience. 2021;24(1):102010.

[77]

Ignatova VV, Stolz P, Kaiser S, et al. The rRNA m(6)A methyltransferase METTL5 is involved in pluripotency and developmental programs. Genes Dev. 2020;34(9-10):715-729.

[78]

Xing M, Liu Q, Mao C, et al. The 18S rRNA m(6) a methyltransferase METTL5 promotes mouse embryonic stem cell differentiation. EMBO Rep. 2020;21(10):e49863.

[79]

Wang L, Liang Y, Lin R, et al. Mettl5 mediated 18S rRNA N6-methyladenosine (m(6)A) modification controls stem cell fate determination and neural function. Genes Dis. 2022;9(1):268-274.

[80]

Leismann J, Spagnuolo M, Pradhan M, et al. The 18S ribosomal RNA m(6) a methyltransferase Mettl5 is required for normal walking behavior in Drosophila. EMBO Rep. 2020;21(7):e49443.

[81]

Sepich-Poore C, Zheng Z, Schmitt E, et al. The METTL5-TRMT112 N6-methyladenosine methyltransferase complex regulates mRNA translation via 18S rRNA methylation. J. Biol. Chem. 2022;298(3):101590.

[82]

Jiang W, Li R, Zhang Y, et al. Mitochondrial DNA mutations associated with type 2 diabetes mellitus in Chinese Uyghur population. Sci Rep. 2017;7(1):16989.

[83]

Magistrati M, Gilea AI, Ceccatelli Berti C, Baruffini E, Dallabona C. Modopathies caused by mutations in genes encoding for mitochondrial RNA modifying enzymes: molecular mechanisms and yeast disease models. Int J Mol Sci. 2023;24(3):2178.

[84]

Wan W, Zhang L, Lin Y, et al. Mitochondria-derived peptide MOTS-c: effects and mechanisms related to stress, metabolism and aging. J Transl Med. 2023;21(1):36.

[85]

Chen H, Shi Z, Guo J, et al. The human mitochondrial 12S rRNA m4C methyltransferase METTL15 is required for mitochondrial function. J Biol Chem. 2020;295(25):8505-8513.

[86]

Van Haute L, Hendrick AG, D'Souza AR, et al. METTL15 introduces N4-methylcytidine into human mitochondrial 12S rRNA and is required for mitoribosome biogenesis. Nucleic Acids Res. 2019;47(19):10267-10281.

[87]

Chen H, Shi Z, Guo J, et al. The human mitochondrial 12S rRNA m(4)C methyltransferase METTL15 is required for mitochondrial function. J Biol Chem. 2020;295(25):8505-8513.

[88]

Shi Z, Xu S, Xing S, et al. Mettl17, a regulator of mitochondrial ribosomal RNA modifications, is required for the translation of mitochondrial coding genes. FASEB J. 2019;33(11):13040-13050.

[89]

Rebelo-Guiomar P, Pellegrino S, Dent KC, et al. A late-stage assembly checkpoint of the human mitochondrial ribosome large subunit. Nat Commun. 2022;13(1):929.

[90]

Powell CA, Minczuk M. TRMT2B is responsible for both tRNA and rRNA m(5)U-methylation in human mitochondria. RNA Biol. 2020;17(4):451-462.

[91]

Barozzi C, Zacchini F, Corradini AG, et al. Alterations of ribosomal RNA pseudouridylation in human breast cancer. NAR Cancer. 2023;5(2):zcad026.

[92]

Krogh N, Asmar F, Côme C, Munch-Petersen HF, Grønbæk K, Nielsen H. Profiling of ribose methylations in ribosomal RNA from diffuse large B-cell lymphoma patients for evaluation of ribosomes as drug targets. NAR Cancer. 2020;2(4):zcaa035.

[93]

Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15(2):81-94.

[94]

Belin S, Beghin A, Solano-Gonzàlez E, et al. Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells. PLoS One. 2009;4(9):e7147.

[95]

Marcel V, Kielbassa J, Marchand V, et al. Ribosomal RNA 2'O-methylation as a novel layer of inter-tumour heterogeneity in breast cancer. NAR Cancer. 2020;2(4):zcaa036.

[96]

Dong Z, Pu L, Cui H. Mitoepigenetics and its emerging roles in cancer. Front Cell Dev Biol. 2020;8:4.

[97]

Zhang H, Wang Q, Gu J, et al. Elevated mitochondrial SLC25A29 in cancer modulates metabolic status by increasing mitochondria-derived nitric oxide. Oncogene. 2018;37(19):2545-2558.

[98]

Wang P, Li J, Wu M, Ye M, Huang K, Zhu X. Human mitochondrial ribosomal RNA modification-based classification contributes to discriminate the prognosis and immunotherapy response of glioma patients. Front Immunol. 2021;12:722479.

[99]

Rong B, Zhang Q, Wan J, et al. Ribosome 18S m(6)A methyltransferase METTL5 promotes translation initiation and breast cancer cell growth. Cell Rep. 2020;33(12):108544.

[100]

Dai Z, Zhu W, Hou Y, et al. METTL5-mediated 18S rRNA m(6)A modification promotes oncogenic mRNA translation and intrahepatic cholangiocarcinoma progression. Mol Ther. 2023;31(11):3225-3242.

[101]

Huang H, Li H, Pan R, et al. Ribosome 18S m(6)A methyltransferase METTL5 promotes pancreatic cancer progression by modulating c‑Myc translation. Int J Oncol. 2022;60(1):9.

[102]

Peng H, Chen B, Wei W, et al. N(6)-methyladenosine (m(6)A) in 18S rRNA promotes fatty acid metabolism and oncogenic transformation. Nat Metab. 2022;4(8):1041-1054.

[103]

Chen B, Huang Y, He S, Yu P, Wu L, Peng H. N(6)-methyladenosine modification in 18S rRNA promotes tumorigenesis and chemoresistance via HSF4b/HSP90B1/mutant p53 axis. Cell Chem Biol. 2023;30(2):144-158.

[104]

Li M, Tao Z, Zhao Y, et al. 5-methylcytosine RNA methyltransferases and their potential roles in cancer. J Transl Med. 2022;20(1):214.

[105]

Zhou J, Kong YS, Vincent KM, et al. RNA cytosine methyltransferase NSUN5 promotes protein synthesis and tumorigenic phenotypes in glioblastoma. Mol Oncol. 2023;17(9):1763-1783.

[106]

Janin M, Ortiz-Barahona V, de Moura MC, et al. Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program. Acta Neuropathol. 2019;138(6):1053-1074.

[107]

Bian Z, Xu C, Xie Y, et al. SNORD11B-mediated 2'-O-methylation of primary let-7a in colorectal carcinogenesis. Oncogene. 2023;42(41):3035-3046.

[108]

Wang K, Wang S, Zhang Y, Xie L, Song X, Song X. SNORD88C guided 2'-O-methylation of 28S rRNA regulates SCD1 translation to inhibit autophagy and promote growth and metastasis in non-small cell lung cancer. Cell Death Differ. 2023;30(2):341-355.

[109]

Pauli C, Liu Y, Rohde C, et al. Site-specific methylation of 18S ribosomal RNA by SNORD42A is required for acute myeloid leukemia cell proliferation. Blood. 2020;135(23):2059-2070.

[110]

Liu Z, Pang Y, Jia Y, et al. SNORA23 inhibits HCC tumorigenesis by impairing the 2'-O-ribose methylation level of 28S rRNA. Cancer Biol Med. 2021;19(1):104-119.

[111]

Newhart A, Powers SL, Shastrula PK, et al. RNase P protein subunit Rpp29 represses histone H3.3 nucleosome deposition. Mol Biol Cell. 2016;27(7):1154-1169.

[112]

Wu H, Qin W, Lu S, et al. Long noncoding RNA ZFAS1 promoting small nucleolar RNA-mediated 2'-O-methylation via NOP58 recruitment in colorectal cancer. Mol Cancer. 2020;19(1):95.

[113]

Zhu Y, Xiao B, Liu M, et al. N6-methyladenosine-modified oncofetal lncRNA MIR4435-2HG contributed to stemness features of hepatocellular carcinoma cells by regulating rRNA 2'-O methylation. Cell Mol Biol Lett. 2023;28(1):89.

[114]

Faucher-Giguère L, Roy A, Deschamps-Francoeur G, et al. High-grade ovarian cancer associated H/ACA snoRNAs promote cancer cell proliferation and survival. NAR Cancer. 2022;4(1):zcab050.

[115]

Xu C, Bian Z, Wang X, et al. SNORA56-mediated pseudouridylation of 28 S rRNA inhibits ferroptosis and promotes colorectal cancer proliferation by enhancing GCLC translation. J Exp Clin Cancer Res. 2023;42(1):331.

[116]

Guerrieri AN, Zacchini F, Onofrillo C, et al. DKC1 overexpression induces a more aggressive cellular behavior and increases intrinsic ribosomal activity in immortalized mammary gland cells. Cancers (Basel). 2020;12(12):3512.

[117]

McMahon M, Contreras A, Holm M, et al. A single H/ACA small nucleolar RNA mediates tumor suppression downstream of oncogenic RAS. eLife. 2019;8:e48847

[118]

Marcel V, Ghayad SE, Belin S, et al. p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell. 2013;24(3):318-330.

[119]

Pacilli A, Ceccarelli C, Treré D, Montanaro L. SnoRNA U50 levels are regulated by cell proliferation and rRNA transcription. Int J Mol Sci. 2013;14(7):14923-14935.

[120]

Ma H, Wang X, Cai J, et al. N(6-)methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat Chem Biol. 2019;15(1):88-94.

[121]

Ruggero D, Grisendi S, Piazza F, et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science. 2003;299(5604):259-262.

[122]

Yokogami K, Kikuchi T, Watanabe T, et al. Methionine regulates self-renewal, pluripotency, and cell death of GIC through cholesterol-rRNA axis. BMC Cancer. 2022;22(1):1351.

[123]

Paraqindes H, Mourksi NE, Ballesta S, et al. Isocitrate dehydrogenase wt and IDHmut adult-type diffuse gliomas display distinct alterations in ribosome biogenesis and 2'O-methylation of ribosomal RNA. Neuro Oncol. 2023;25(12):2191-2206.

[124]

Babaian A, Rothe K, Girodat D, et al. Loss of m(1)acp(3)Ψ ribosomal RNA modification is a major feature of cancer. Cell Rep. 2020;31(5):107611.

[125]

Zeng Y, Wang S, Gao S, et al. Refined RIP-seq protocol for epitranscriptome analysis with low input materials. PLoS Biol. 2018;16(9):e2006092.

[126]

Baysoy A, Bai Z, Satija R, Fan R. The technological landscape and applications of single-cell multi-omics. Nat Rev Mol Cell Biol. 2023;24(10):695-713.

[127]

Zhong ZD, Xie YY, Chen HX, et al. Systematic comparison of tools used for m(6)A mapping from nanopore direct RNA sequencing. Nat Commun. 2023;14(1):1906.

[128]

He Y, Chen Y, Li Z, Wu C. The m(6)A demethylase FTO targets POLQ to promote ccRCC cell proliferation and genome stability maintenance. J Cancer Res Clin Oncol. 2024;150(2):30.

[129]

Frye M, Jaffrey SR, Pan T, Rechavi G, Suzuki T. RNA modifications: what have we learned and where are we headed?Nat Rev Genet. 2016;17(6):365-372.

[130]

Shi H, Chai P, Jia R, Fan X. Novel insight into the regulatory roles of diverse RNA modifications: re-defining the bridge between transcription and translation. Mol Cancer. 2020;19(1):78.

[131]

Chen H, Liu H, Zhang C, et al. RNA methylation-related inhibitors: biological basis and therapeutic potential for cancer therapy. Clin Transl Med. 2024;14(4):e1644.

[132]

Chen DH, Zhang JG, Wu CX, Li Q. Non-Coding RNA m6A modification in cancer: mechanisms and therapeutic targets. Front Cell Dev Biol. 2021;9:778582.

[133]

Yankova E, Blackaby W, Albertella M, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021;593(7860):597-601.

[134]

Garbo S, Zwergel C, Battistelli C. m6A RNA methylation and beyond—the epigenetic machinery and potential treatment options. Drug Discov Today. 2021;26(11):2559-2574.

[135]

Gilbert WV. Functional specialization of ribosomes?Trends Biochem Sci. 2011;36(3):127-132.

[136]

Zheng J, Lu Y, Lin Y, et al. Epitranscriptomic modifications in mesenchymal stem cell differentiation: advances, mechanistic insights, and beyond. Cell Death Differ. 2024;31(1):9-27.

[137]

Barbieri I, Kouzarides T. Role of RNA modifications in cancer. Nat Rev Cancer. 2020;20(6):303-322.

[138]

Huang H, Weng H, Chen J. m(6)A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell. 2020;37(3):270-288.

[139]

Nombela P, Miguel-López B, Blanco S. The role of m(6)A, m(5)C and Ψ RNA modifications in cancer: novel therapeutic opportunities. Mol Cancer. 2021;20(1):18.

[140]

Yang J, Xu J, Wang W, Zhang B, Yu X, Shi S. Epigenetic regulation in the tumor microenvironment: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 2023;8(1):210.

[141]

Zhou Z, Lv J, Yu H, et al. Mechanism of RNA modification N6-methyladenosine in human cancer. Mol Cancer. 2020;19(1):104.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

228

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/