Rictor/mTORC2 signalling contributes to renal vascular endothelial-to-mesenchymal transition and renal allograft interstitial fibrosis by regulating BNIP3-mediated mitophagy

Dengyuan Feng , Zeping Gui , Zhen Xu , Jianjian Zhang , Bin Ni , Zijie Wang , Jiawen Liu , Shuang Fei , Hao Chen , Li Sun , Min Gu , Ruoyun Tan

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (5) : e1686

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (5) : e1686 DOI: 10.1002/ctm2.1686
RESEARCH ARTICLE

Rictor/mTORC2 signalling contributes to renal vascular endothelial-to-mesenchymal transition and renal allograft interstitial fibrosis by regulating BNIP3-mediated mitophagy

Author information +
History +
PDF

Abstract

Background: Renal allograft interstitial fibrosis/tubular atrophy (IF/TA) constitutes the principal histopathological characteristic of chronic allograft dysfunction (CAD) in kidney-transplanted patients. While renal vascular endothelial-mesenchymal transition (EndMT) has been verified as an important contributing factor to IF/TA in CAD patients, its underlying mechanisms remain obscure. Through single-cell transcriptomic analysis, we identified Rictor as a potential pivotal mediator for EndMT. This investigation sought to elucidate the role of Rictor/mTORC2 signalling in the pathogenesis of renal allograft interstitial fibrosis and the associated mechanisms.

Methods: The influence of the Rictor/mTOR2 pathway on renal vascular EndMT and renal allograft fibrosis was investigated by cell experiments and Rictor depletion in renal allogeneic transplantation mice models. Subsequently, a series of assays were conducted to explore the underlying mechanisms of the enhanced mitophagy and the ameliorated EndMT resulting from Rictor knockout.

Results: Our findings revealed a significant activation of the Rictor/mTORC2 signalling in CAD patients and allogeneic kidney transplanted mice. The suppression of Rictor/mTORC2 signalling alleviated TNFα-induced EndMT in HUVECs. Moreover, Rictor knockout in endothelial cells remarkably ameliorated renal vascular EndMT and allograft interstitial fibrosis in allogeneic kidney transplanted mice. Mechanistically, Rictor knockout resulted in an augmented BNIP3-mediated mitophagy in endothelial cells. Furthermore, Rictor/mTORC2 facilitated the MARCH5-mediated degradation of BNIP3 at the K130 site through K48-linked ubiquitination, thereby regulating mitophagy activity. Subsequent experiments also demonstrated that BNIP3 knockdown nearly reversed the enhanced mitophagy and mitigated EndMT and allograft interstitial fibrosis induced by Rictor knockout.

Conclusions: Consequently, our study underscores Rictor/mTORC2 signalling as a critical mediator of renal vascular EndMT and allograft interstitial fibrosis progression, exerting its impact through regulating BNIP3-mediated mitophagy. This insight unveils a potential therapeutic target for mitigating renal allograft interstitial fibrosis.

Keywords

mitophagy / renal allograft interstitial fibrosis / Rictor/mTORC2 / vascular endothelial cells

Cite this article

Download citation ▾
Dengyuan Feng,Zeping Gui,Zhen Xu,Jianjian Zhang,Bin Ni,Zijie Wang,Jiawen Liu,Shuang Fei,Hao Chen,Li Sun,Min Gu,Ruoyun Tan. Rictor/mTORC2 signalling contributes to renal vascular endothelial-to-mesenchymal transition and renal allograft interstitial fibrosis by regulating BNIP3-mediated mitophagy. Clinical and Translational Medicine, 2024, 14(5): e1686 DOI:10.1002/ctm2.1686

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

VooraS, AdeyDB. Management of kidney transplant recipients by general nephrologists: core Curriculum 2019. Am J Kidney Dis.. 2019;73(6):866-879.

[2]

DavisS, MohanS. Managing patients with failing kidney allograft: many questions remain. Clin J Am Soc Nephrol. 2022;17(3):444-451.

[3]

McDanielsJM, ShettyAC, KuscuC, et al. Single nuclei transcriptomics delineates complex immune and kidney cell interactions contributing to kidney allograft fibrosis. Kidney Int. 2023;103(6):1077-1092.

[4]

YangC, QiR, YangB. Pathogenesis of chronic allograft dysfunction progress to renal fibrosis. Adv Exp Med Biol. 2019;1165:101-116.

[5]

GranataS, Benedetti C, GambaroG, et al. Kidney allograft fibrosis: what we learned from latest translational research studies. J Nephrol. 2020;33(6):1201-1211.

[6]

BoorP, FloegeJ. Renal allograft fibrosis: biology and therapeutic targets. Am J Transplant. 2015;15(4):863-886.

[7]

VanhoveT, Goldschmeding R, KuypersD. Kidney fibrosis: origins and interventions. Transplantation. 2017;101(4):713-726.

[8]

ZeisbergEM, Potenta SE, SugimotoH, et al. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol. 2008;19(12):2282-2287.

[9]

PérezL, Muñoz-Durango N, RiedelCA, et al. Endothelial-to-mesenchymal transition: cytokine-mediated pathways that determine endothelial fibrosis under inflammatory conditions. Cytokine Growth Factor Rev. 2017;33:41-54.

[10]

Xu-DuboisYC, Peltier J, BrocheriouI, et al. Markers of endothelial-to-mesenchymal transition: evidence for antibody-endothelium interaction during antibody-mediated rejection in kidney recipients. J Am Soc Nephrol. 2016;27(1):324-332.

[11]

WangZ, HanZ, TaoJ, et al. Role of endothelial-to-mesenchymal transition induced by TGF-β1 in transplant kidney interstitial fibrosis. J Cell Mol Med. 2017;21(10):2359-2369.

[12]

GuiZ, SuoC, WangZ, et al. Impaired ATG16L-dependent autophagy promotes renal interstitial fibrosis in chronic renal graft dysfunction through inducing EndMT by NF-κB signal pathway. Front Immunol. 2021;12:650424.

[13]

YoshimatsuY, Wakabayashi I, KimuroS, et al. TNF-α enhances TGF-β-induced endothelial-to-mesenchymal transition via TGF-β signal augmentation. Cancer Sci. 2020;111(7):2385-2399.

[14]

SaxtonRA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168(6):960-976.

[15]

MaoZ, TanY, TaoJ, et al. Renal mTORC1 activation is associated with disease activity and prognosis in lupus nephritis. Rheumatology (Oxford). 2022;61(9):3830-3840.

[16]

JiangL, XuL, MaoJ, et al. Rheb/mTORC1 signaling promotes kidney fibroblast activation and fibrosis. J Am Soc Nephrol. 2013;24(7):1114-1126.

[17]

AndrikopoulosP, Kieswich J, PachecoS, et al. The MEK inhibitor trametinib ameliorates kidney fibrosis by suppressing ERK1/2 and mTORC1 signaling. J Am Soc Nephrol. 2019;30(1):33-49.

[18]

LiJ, RenJ, LiuX, et al. Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis. Kidney Int. 2015;88(3):515-527.

[19]

GuiY, LiJ, LuQ, et al. Yap/Taz mediates mTORC2-stimulated fibroblast activation and kidney fibrosis. J Biol Chem. 2018;293(42):16364-16375.

[20]

RenJ, LiJ, FengY, et al. Rictor/mammalian target of rapamycin complex 2 promotes macrophage activation and kidney fibrosis. J Pathol. 2017;242(4):488-499.

[21]

AshrafiG, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013;20(1):31-42.

[22]

TangC, Livingston MJ, LiuZ, et al. Autophagy in kidney homeostasis and disease. Nat Rev Nephrol. 2020;16(9):489-508.

[23]

FuZJ, WangZY, XuL, et al. HIF-1α-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury. Redox Biol. 2020;36:101671.

[24]

ZhouD, ZhouM, WangZ, et al. PGRN acts as a novel regulator of mitochondrial homeostasis by facilitating mitophagy and mitochondrial biogenesis to prevent podocyte injury in diabetic nephropathy. Cell Death Dis. 2019;10(7):524.

[25]

BhatiaD, ChungKP, NakahiraK, et al. Mitophagy-dependent macrophage reprogramming protects against kidney fibrosis. JCI insight. 2019;4(23):e132826.

[26]

LiS, LinQ, ShaoX, et al. Drp1-regulated PARK2-dependent mitophagy protects against renal fibrosis in unilateral ureteral obstruction. Free Radical Biol Med. 2020;152:632-649.

[27]

Ballesteros-ÁlvarezJ, AndersenJK. mTORC2: the other mTOR in autophagy regulation. Aging Cell. 2021;20(8):e13431.

[28]

ZhouB, Kreuzer J, KumstaC, et al. Mitochondrial permeability uncouples elevated autophagy and lifespan extension. Cell. 2019;177(2):299-314.e216.

[29]

ShermanBT, HaoM, QiuJ, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216-w221.

[30]

Huang daW, Sherman BT, LempickiRA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44-57.

[31]

ZhangY, ZhangJ, FengD, et al. IRF1/ZNF350/GPX4-mediated ferroptosis of renal tubular epithelial cells promote chronic renal allograft interstitial fibrosis. Free Radical Biol Med. 2022;193(Pt 2):579-594.

[32]

PalikarasK, Lionaki E, TavernarakisN. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol. 2018;20(9):1013-1022.

[33]

LangewischE, MannonRB. Chronic allograft injury. Clin J Am Soc Nephrol. 2021;16(11):1723-1729.

[34]

SaritasT, Kramann R. Kidney allograft fibrosis: diagnostic and therapeutic strategies. Transplantation. 2021;105(10):e114-e130.

[35]

LiL, FuH, LiuY. The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat Rev Nephrol. 2022;18(9):545-557.

[36]

FranzinR, StasiA, SallustioF, et al. Extracellular vesicles derived from patients with antibody-mediated rejection induce tubular senescence and endothelial to mesenchymal transition in renal cells. Am J Transplant. 2022;22(9):2139-2157.

[37]

GloverEK, JordanN, SheerinNS, et al. Regulation of endothelial-to-mesenchymal transition by MicroRNAs in chronic allograft dysfunction. Transplantation. 2019;103(4):e64-e73.

[38]

CaoH, LuoJ, ZhangY, et al. Tuberous sclerosis 1 (Tsc1) mediated mTORC1 activation promotes glycolysis in tubular epithelial cells in kidney fibrosis. Kidney Int. 2020;98(3):686-698.

[39]

Garcia-MaciaM, Santos-Ledo A, LeslieJ, et al. A Mammalian target of rapamycin-perilipin 3 (mTORC1-Plin3) pathway is essential to activate lipophagy and protects against hepatosteatosis. Hepatology (Baltimore, MD). 2021;74(6):3441-3459.

[40]

LiuQ, YangQ, WuZ, et al. IL-1β-activated mTORC2 promotes accumulation of IFN-γ(+) γδ T cells by upregulating CXCR3 to restrict hepatic fibrosis. Cell Death Dis. 2022;13(4):289.

[41]

LuQ, JiXJ, ZhouYX, et al. Quercetin inhibits the mTORC1/p70S6K signaling-mediated renal tubular epithelial-mesenchymal transition and renal fibrosis in diabetic nephropathy. Pharmacol Res. 2015;99:237-247.

[42]

SuoC, GuiZ, WangZ, et al. Bortezomib limits renal allograft interstitial fibrosis by inhibiting NF-κB/TNF-α/Akt/mTOR/P70S6K/Smurf2 pathway via IκBα protein stabilization. Clin. Sci (London, England: 1979). 2021;135(1):53-69.

[43]

XueX, RenJ, SunX, et al. Protein kinase Cα drives fibroblast activation and kidney fibrosis by stimulating autophagic flux. J Biol Chem. 2018;293(28):11119-11130.

[44]

EidS, Boutary S, BraychK, et al. mTORC2 signaling regulates Nox4-induced podocyte depletion in diabetes. Antioxid Redox Signaling. 2016;25(13):703-719.

[45]

GuiZ, SuoC, TaoJ, et al. Everolimus alleviates renal allograft interstitial fibrosis by inhibiting epithelial-to-mesenchymal transition not only via inducing autophagy but also via stabilizing IκB-α. Front Immunol. 2021;12:753412.

[46]

WongVKW, ZengW, ChenJ, et al. Tetrandrine, an activator of autophagy, induces autophagic cell death via PKC-α inhibition and mTOR-dependent mechanisms. Front Pharmacol. 2017;8:351.

[47]

AspernigH, Heimbucher T, QiW, et al. Mitochondrial perturbations couple mTORC2 to autophagy in C. elegans. Cell Rep. 2019;29(6):1399-1409.e1395.

[48]

CaoY, ZhengJ, WanH, et al. A mitochondrial SCF-FBXL4 ubiquitin E3 ligase complex degrades BNIP3 and NIX to restrain mitophagy and prevent mitochondrial disease. EMBO J. 2023;42(13):e113033.

[49]

HeYL, LiJ, GongSH, et al. BNIP3 phosphorylation by JNK1/2 promotes mitophagy via enhancing its stability under hypoxia. Cell Death Dis. 2022;13(11):966.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

173

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/