The nuclear export protein exportin-1 in solid malignant tumours: From biology to clinical trials

Chuanxi Lai , Lingna Xu , Sheng Dai

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (5) : e1684

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (5) : e1684 DOI: 10.1002/ctm2.1684
REVIEW

The nuclear export protein exportin-1 in solid malignant tumours: From biology to clinical trials

Author information +
History +
PDF

Abstract

• Exportin-1 (XPO1) plays a critical role in mediating nucleocytoplasmic transport and cell cycle.

• XPO1 dysfunction promotes tumourigenesis and drug resistance within solid tumours.

• The therapeutic potential and ongoing researches on XPO1 inhibitors in the treatment of solid tumours.

• Additional researches are essential to address safety concerns and identify biomarkers for predicting patient response to XPO1 inhibitors.

Keywords

cancer / drug resistance / XPO1 / XPO1 inhibitor

Cite this article

Download citation ▾
Chuanxi Lai, Lingna Xu, Sheng Dai. The nuclear export protein exportin-1 in solid malignant tumours: From biology to clinical trials. Clinical and Translational Medicine, 2024, 14(5): e1684 DOI:10.1002/ctm2.1684

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

NiggEA. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature. 1997;386(6627):779-787.

[2]

KnockenhauerKE, Schwartz TU. The nuclear pore complex as a flexible and dynamic gate. Cell. 2016;164(6):1162-1171.

[3]

AzmiAS, Mohammad RM. Targeting cancer at the nuclear pore. J Clin Oncol. 2016;34(34):4180-4182.

[4]

MahipalA, MalafaM. Importins and exportins as therapeutic targets in cancer. Pharmacol Ther. 2016;164:135-143.

[5]

WingCE, FungHYJ, ChookYM. Karyopherin-mediated nucleocytoplasmic transport. Nat Rev Mol Cell Biol. 2022;23(5):307-3328.

[6]

CookA, BonoF, JinekM, Conti E. Structural biology of nucleocytoplasmic transport. Annu Rev Biochem. 2007;76:647-671.

[7]

SaulinoDM, YounesPS, BaileyJM, Younes M. CRM1/XPO1 expression in pancreatic adenocarcinoma correlates with survivin expression and the proliferative activity. Oncotarget. 2018;9(30):21289-21295.

[8]

SubhashVV, YeoMS, WangLZ, et al. Anti-tumor efficacy of Selinexor (KPT-330) in gastric cancer is dependent on nuclear accumulation of p53 tumor suppressor. Sci Rep. 2018;8:12248.

[9]

AladhraeiM, Kassem Al-Thobhani A, PoungvarinN, SuwannalertP. Association of XPO1 Overexpression with NF-kappaB and Ki67 in colorectal cancer. Asian Pac J Cancer Prev. 2019;20(12):3747-3754.

[10]

Abdul RazakAR, Mau-Soerensen M, GabrailNY, et al. First-in-class, first-in-human phase i study of selinexor, a selective inhibitor of nuclear export, in patients with advanced solid tumors. J Clin Oncol. 2016;34(34):4142-4150.

[11]

JardinF, PujalsA, PelletierL, et al. Recurrent mutations of the exportin 1 gene (XPO1) and their impact on selective inhibitor of nuclear export compounds sensitivity in primary mediastinal B-cell lymphoma. Am J Hematol. 2016;91(9):923-930.

[12]

DolginE. XPO1 inhibitor approved for multiple myeloma. Cancer Discov. 2019;9(9):1150-1151.

[13]

KasamonYL, PriceLSL, OkusanyaOO, et al. FDA approval summary: selinexor for relapsed or refractory diffuse large B-cell lymphoma. Oncologist. 2021;26(10):879-886.

[14]

AdachiY, Yanagida M. Higher-order chromosome structure is affected by cold-sensitive mutations in a Schizosaccharomyces-pombe gene crm1+ which encodes a 115-kD protein preferentially localized in the nucleus and at its periphery. J Cell Biol. 1989;108(4):1195-1207.

[15]

StadeK, FordCS, GuthrieC, Weis K. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell. 1997;90(6):1041-1050.

[16]

OssarehNazariB, Bachelerie F, DargemontC. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science. 1997;278(5335):141-144.

[17]

FukudaM, AsanoS, NakamuraT, et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature. 1997;390(6657):308-311.

[18]

HuttenS, Kehlenbach RH. CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol. 2007;17(4):193-201.

[19]

Ossareh-NazariB, Dargemont C. Domains of Crm1 involved in the formation of the Crm1, RanGTP, and leucine-rich nuclear export sequences trimeric complex. Exp Cell Res. 1999;252(1):236-241.

[20]

MacaraIG. Transport into and out of the nucleus. Microbiol Mol Biol R. 2001;65(4):570-594.

[21]

TanDS, BedardPL, KuruvillaJ, Siu LL, RazakAR. Promising SINEs for embargoing nuclear-cytoplasmic export as an anticancer strategy. Cancer Discov. 2014;4(5):527-537.

[22]

IshizawaJ, KojimaK, HailN, Tabe Y, AndreeffM. Expression, function, and targeting of the nuclear exporter chromosome region maintenance 1 (CRM1) protein. Pharmacol Ther. 2015;153:25-35.

[23]

NemergutME, Lindsay ME, BrownawellAM, MacaraIG. Ran-binding protein 3 links Crm1 to the Ran guanine nucleotide exchange factor. J Biol Chem. 2002;277(20):17385-17388.

[24]

AzmiAS, UddinMH, MohammadRM. The nuclear export protein XPO1—from biology to targeted therapy. Nat Rev Clin Oncol. 2021;18(3):152-169.

[25]

DongXH, BiswasA, SuelKE, et al. Structural basis for leucine-rich nuclear export signal recognition by CRM1. Nature. 2009;461(7263):1136-1141.

[26]

AndradeMA, BorkP. HEAT repeats in the Huntington's disease protein. Nat Genet. 1995;11(2):115-116.

[27]

PetosaC, Schoehn G, AskjaerP, et al. Architecture of CRM1/exportin1 suggests how cooperativity is achieved during formation of a nuclear export complex. Mol Cell. 2004;16(5):761-775.

[28]

FornerodM, vanDeursen J, vanBaalS, et al. The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. Embo J. 1997;16(4):807-816.

[29]

WenW, Meinkoth JL, TsienRY, TaylorSS. Identification of a signal for rapid export of proteins from the nucleus. Cell. 1995;82(3):463-473.

[30]

GuttlerT, MadlT, NeumannP, et al. NES consensus redefined by structures of PKI-type and Rev-type nuclear export signals bound to CRM1. Nat Struct Mol Biol. 2010;17(11):1367-1376.

[31]

KudoN, Matsumori N, TaokaH, et al. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci USA. 1999;96(16):9112-9117.

[32]

YashirodaY, Yoshida M. Nucleo-cytoplasmic transport of proteins as a target for therapeutic drugs. Curr Med Chem. 2003;10(9):741-748.

[33]

TaylorJ, Sendino M, GorelickAN, et al. Altered Nuclear export signal recognition as a driver of oncogenesis. Cancer Discov. 2019;9(10):1452-1467.

[34]

NagasakaM, AsadMFB, Al HallakMN, et al. Impact of XPO1 mutations on survival outcomes in metastatic non-small cell lung cancer (NSCLC). Lung Cancer. 2021;160:92-98.

[35]

Garcia-SantistebanI, Arregi I, Alonso-MarinoM, et al. A cellular reporter to evaluate CRM1 nuclear export activity: functional analysis of the cancer-related mutant E571K. Cell Mol Life Sci. 2016;73(24):4685-4699.

[36]

CamusV, Stamatoullas A, MareschalS, et al. Detection and prognostic value of recurrent exportin 1 mutations in tumor and cell-free circulating DNA of patients with classical Hodgkin lymphoma. Haematologica. 2016;101(9):1094-1101.

[37]

ForbesDJ, Travesa A, NordMS, BernisC. Reprint of “Nuclear transport factors: global regulation of mitosis”. Curr Opin Cell Biol. 2015;34:122-134.

[38]

FischerU, HuberJ, BoelensWC, Mattaj IW, LuhrmannR. The Hiv-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell. 1995;82(3):475-483.

[39]

FuSC, HuangHC, HortonP, Juan HF. ValidNESs: a database of validated leucine-rich nuclear export signals. Nucleic Acids Res. 2013;41(D1):D338-D343.

[40]

GravinaGL, Mancini A, SanitaP, et al. KPT-330, a potent and selective exportin-1 (XPO-1) inhibitor, shows antitumor effects modulating the expression of cyclin D1 and survivin in prostate cancer models. BMC Cancer. 2015;15:941.

[41]

MoriK, OshimaY, NoseK, Shibanuma M. Competitive nuclear export of cyclin D1 and Hic-5 regulates anchorage-dependence of cell growth and survival. Mol Biol Cell. 2009;20(1):218-232.

[42]

MartinAPJ, Jacquemyn M, LipeckaJ, et al. STK38 kinase acts as XPO1 gatekeeper regulating the nuclear export of autophagy proteins and other cargoes. Embo Rep. 2019;20(11):e48150.

[43]

TaageperaS, McDonald D, LoebJE, et al. Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase. Proc Natl Acad Sci USA. 1998;95(13):7457-7462.

[44]

DominguezD, Montserrat-Sentis B, Virgos-SolerA, et al. Phosphorylation regulates the subcellular location and activity of the snail transcriptional repressor. Mol Cell Biol. 2003;23(14):5078-5089.

[45]

AzizianNG, LiYL. XPO1-dependent nuclear export as a target for cancer therapy. J Hematol Oncol. 2020;13(1):61.

[46]

KirliK, KaracaS, DehneHJ, et al. A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. Elife. 2015;4:e11466.

[47]

JohnsonAW, LundE, DahlbergJ. Nuclear export of ribosomal subunits. Trends Biochem Sci. 2002;27(11):580-585.

[48]

MuqbilI, BaoB, Abou-SamraAB, MohammadRM, AzmiAS. Nuclear export mediated regulation of microRNAs: potential target for drug intervention. Curr Drug Targets. 2013;14(10):1094-1100.

[49]

MoyTI, SilverPA. Requirements for the nuclear export of the small ribosomal subunit. J Cell Sci. 2002;115(14):2985-2995.

[50]

ThomasF, KutayU. Biogenesis and nuclear export of ribosomal subunits in higher eukaryotes depend on the CRM1 export pathway. J Cell Sci. 2003;116(12):2409-2419.

[51]

TschochnerH, HurtE. Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends Cell Biol. 2003;13(5):255-263.

[52]

WillCL, Luhrmann R. Spliceosomal UsnRNP biogenesis, structure and function. Curr Opin Cell Biol. 2001;13(3):290-301.

[53]

MerkwirthC, Jovaisaite V, DurieuxJ, et al. Two conserved histone demethylases regulate mitochondrial stress-induced longevity. Cell. 2016;165(5):1209-1223.

[54]

SleemanJ. A regulatory role for CRM1 in the multi-directional trafficking of splicing snRNPs in the mammalian nucleus. J Cell Sci. 2007;120(9):1540-1550.

[55]

OhnoM, SegrefA, BachiA, Wilm M, MattajIW. PHAX, a mediator of U snRNA nuclear export whose activity is regulated by phosphorylation. Cell. 2000;101(2):187-198.

[56]

FornerodM, OhnoM, YoshidaM, Mattaj IW. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell. 1997;90(6):1051-1060.

[57]

IzaurraldeE, KutayU, vonKobbeC, Mattaj IW, GorlichD. The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. Embo J. 1997;16(21):6535-6547.

[58]

IzaurraldeE, LewisJ, GamberiC, Jarmolowski A, McguiganC, MattajIW. A cap-binding protein complex mediating U snRNA export. Nature. 1995;376(6542):709-712.

[59]

HeroldA, Teixeira L, IzaurraldeE. Genome-wide analysis of nuclear mRNA export pathways in Drosophila. EMBO J. 2003;22(10):2472-2483.

[60]

HodgeCA, ColotHV, StaffordP, Cole CN. Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells. Embo J. 1999;18(20):5778-5788.

[61]

OkamuraM, InoseH, MasudaS. RNA export through the NPC in eukaryotes. Genes. 2015;6(1):124-149.

[62]

YangJ, BogerdHP, WangPJ, Page DC, CullenBR. Two closely related human nuclear export factors utilize entirely distinct export pathways. Mol Cell. 2001;8(2):397-406.

[63]

SiddiquiN, BordenKL. mRNA export and cancer. Wiley Interdiscip Rev RNA. 2012;3(1):13-25.

[64]

LeeY, KimM, HanJ, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051-4060.

[65]

DenliAM, TopsBB, PlasterkRH, Ketting RF, HannonGJ. Processing of primary microRNAs by the microprocessor complex. Nature. 2004;432(7014):231-235.

[66]

GregoryRI, YanKP, AmuthanG, et al. The microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432(7014):235-240.

[67]

HanJ, LeeY, YeomKH, Kim YK, JinH, KimVN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004;18(24):3016-3027.

[68]

YiR, QinY, MacaraIG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011-3016.

[69]

LundE, Guttinger S, CaladoA, DahlbergJE, KutayU. Nuclear export of microRNA precursors. Science. 2004;303(5654):95-98.

[70]

MartinezI, HayesKE, BarrJA, et al. An Exportin-1-dependent microRNA biogenesis pathway during human cell quiescence. Proc Natl Acad Sci USA. 2017;114(25):E4961-E4970.

[71]

XieM, LiM, VilborgA, et al. Mammalian 5'-capped microRNA precursors that generate a single microRNA. Cell. 2013;155(7):1568-1580.

[72]

KudoN, Khochbin S, NishiK, et al. Molecular cloning and cell cycle-dependent expression of mammalian CRM1, a protein involved in nuclear export of proteins. J Biol Chem. 1997;272(47):29742-29751.

[73]

ArnaoutovA, AzumaY, RibbeckK, et al. Crm1 is a mitotic effector of Ran-GTP in somatic cells. Nat Cell Biol. 2005;7(6):626-632.

[74]

ArnaoutovA, DassoM. Ran-GTP regulates kinetochore attachment in somatic cells. Cell Cycle. 2005;4(9):1161-1165.

[75]

BlanvillainR, Boavida LC, McCormickS, OwDW. EXPORTIN1 genes are essential for development and function of the gametophytes in Arabidopsis thaliana. Genetics. 2008;180(3):1493-1500.

[76]

LiuQY, JiangQ, ZhangCM. A fraction of Crm1 locates at centrosomes by its CRIME domain and regulates the centrosomal localization of pericentrin. Biochem Biophys Res Commun. 2009;384(3):383-388.

[77]

NoguchiE, SaitohYH, SazerS, Nishimoto T. Disruption of the YRB2 gene retards nuclear protein export, causing a profound mitotic delay, and can be rescued by overexpression of XPO1/CRM1. J Biochem. 1999;125(3):574-585.

[78]

FunabikiH, HaganI, UzawaS, Yanagida M. Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast. J Cell Biol. 1993;121(5):961-976.

[79]

CallananM, KudoN, GoutS, et al. Developmentally regulated activity of CRM1/XPO1 during early Xenopus embryogenesis. J Cell Sci. 2000;113(3):451-459.

[80]

NguyenKT, Holloway MP, AlturaRA. The CRM1 nuclear export protein in normal development and disease. Int J Biochem Mol Biol. 2012;3(2):137-151.

[81]

YaoH. The expression of CRM1 is associated with prognosis in human osteosarcoma. Oncol Rep. 1994;21(1):229-235.

[82]

ShenA, WangY, ZhaoY, Zou L, SunL, ChengC. Expression of CRM1 in human gliomas and its significance in p27 expression and clinical prognosis. Neurosurgery. 2009;65(1):153-159; discussion 159-160.

[83]

GaoW, LuC, ChenL, Keohavong P. Overexpression of CRM1: a characteristic feature in a transformed phenotype of lung carcinogenesis and a molecular target for lung cancer adjuvant therapy. J Thorac Oncol. 2015;10(5):815-825.

[84]

NoskeA, Weichert W, NiesporekS, et al. Expression of the nuclear export protein chromosomal region maintenance/exportin 1/Xpo1 is a prognostic factor in human ovarian cancer. Cancer. 2008;112(8):1733-1743.

[85]

HuangWY, YueL, QiuWS, Wang LW, ZhouXH, SunYJ. Prognostic value of CRM1 in pancreas cancer. Clin Invest Med. 2009;32(6):E315.

[86]

van der WattPJ, Zemanay W, GovenderD, HendricksDT, ParkerMI, LeanerVD. Elevated expression of the nuclear export protein, Crm1 (exportin 1), associates with human oesophageal squamous cell carcinoma. Oncol Rep. 2014;32(2):730-738.

[87]

ZhouF, QiuWS, YaoRY, et al. CRM1 is a novel independent prognostic factor for the poor prognosis of gastric carcinomas. Med Oncol. 2013;30(4):726.

[88]

KosynaFK, Depping R. Controlling the gatekeeper: therapeutic targeting of nuclear transport. Cells. 2018;7(11):221.

[89]

SunQX, ChenXQ, ZhouQ, Burstein E, YangSY, JiaD. Inhibiting cancer cell hallmark features through nuclear export inhibition. Signal Transduct Tar. 2016;1:16010.

[90]

GravinaGL, Senapedis W, McCauleyD, BalogluE, Shacham S, FestucciaC. Nucleo-cytoplasmic transport as a therapeutic target of cancer. J Hematol Oncol. 2014;7:85.

[91]

BaekHB, Lombard AP, LibertiniSJ, et al. XPO1 inhibition by selinexor induces potent cytotoxicity against high grade bladder malignancies. Oncotarget. 2018;9(77):34567-34581.

[92]

ZhengY, GeryS, SunHB, Shacham S, KauffmanM, KoefflerHP. KPT-330 inhibitor of XPO1-mediated nuclear export has anti-proliferative activity in hepatocellular carcinoma. Cancer Chemother Pharmacol. 2014;74(3):487-495.

[93]

YuanZL, GuanYJ, ChatterjeeD, Chin YE. Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science. 2005;307(5707):269-273.

[94]

WangR, Cherukuri P, LuoJ. Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation. J Biol Chem. 2005;280(12):11528-11534.

[95]

ChengY, Holloway MP, NguyenK, et al. XPO1 (CRM1) inhibition represses STAT3 activation to drive a survivin-dependent oncogenic switch in triple-negative breast cancer. Mol Cancer Ther. 2014;13(3):675-686.

[96]

GolombL, BublikDR, WilderS, et al. Importin 7 and exportin 1 link c-Myc and p53 to regulation of ribosomal biogenesis. Mol Cell. 2012;45(2):222-232.

[97]

PourdehnadaM, TruittML, SiddiqiIN, Ducker GS, ShokatKM, RuggeroD. Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers. Proc Natl Acad Sci USA. 2013;110(29):11988-11993.

[98]

WendelHG, De Stanchina E, FridmanJS, et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature. 2004;428(6980):332-337.

[99]

LiS, FuJ, WalkerCJ, Yang J, et al. Dual targeting of protein translation and nuclear protein export results in enhanced antimyeloma effects. Blood Adv. 2023;7(12):2926-2937.

[100]

AzmiAS, LiY, MuqbilI, et al. Exportin 1 (XPO1) inhibition leads to restoration of tumor suppressor miR-145 and consequent suppression of pancreatic cancer cell proliferation and migration. Oncotarget. 2017;8(47):82144-82155.

[101]

El-TananiM, Dakir el H, RaynorB, MorganR. Mechanisms of nuclear export in cancer and resistance to chemotherapy. Cancers. 2016;8(3):35.

[102]

ConfortiF, WangY, RodriguezJA, Alberobello AT, ZhangYW, GiacconeG. Molecular pathways: anticancer activity by inhibition of nucleocytoplasmic shuttling. Clin Cancer Res. 2015;21(20):4508-4513.

[103]

SantivasiWL, WangH, WangT, et al. Association between cytosolic expression of BRCA1 and metastatic risk in breast cancer. Brit J Cancer. 2015;113(3):453-459.

[104]

WangZ, PanB, YaoY, et al. XPO1 intensifies sorafenib resistance by stabilizing acetylation of NPM1 and enhancing epithelial-mesenchymal transition in hepatocellular carcinoma. Biomed Pharmacother. 2023;160:114402.

[105]

TurnerJG, Sullivan DM. CRM1-mediated nuclear export of proteins and drug resistance in cancer. Curr Med Chem. 2008;15(26):2648-2655.

[106]

YangJY, HungMC. A new fork for clinical application: targeting forkhead transcription factors in cancer. Clin Cancer Res. 2009;15(3):752-757.

[107]

YanR, ZhuH, HuangP, et al. Liquidambaric acid inhibits Wnt/beta-catenin signaling and colon cancer via targeting TNF receptor-associated factor 2. Cell Rep. 2022;38(5):110319.

[108]

TakenakaY, Fukumori T, YoshiiT, et al. Nuclear export of phosphorylated galectin-3 regulates its antiapoptotic activity in response to chemotherapeutic drugs. Mol Cell Biol. 2004;24(10):4395-4406.

[109]

SantosSN, Junqueira MS, FranciscoG, et al. O-glycan sialylation alters galectin-3 subcellular localization and decreases chemotherapy sensitivity in gastric cancer. Oncotarget. 2016;7(50):83570-83587.

[110]

FukumoriT, Kanayama HO, RazA. The role of galectin-3 in cancer drug resistance. Drug Resist Updat. 2007;10(3):101-108.

[111]

ChenY, Camacho SC, SilversTR, et al. Inhibition of the nuclear export receptor XPO1 as a therapeutic target for platinum-resistant ovarian cancer. Clin Cancer Res. 2017;23(6):1552-1563.

[112]

HaudekKC, SpronkKJ, VossPG, Patterson RJ, WangJL, ArnoysEJ. Dynamics of galectin-3 in the nucleus and cytoplasm. Biochim Biophys Acta. 2010;1800(2):181-189.

[113]

GillespieKP, PirnieR, MesarosC, Blair IA. Cisplatin dependent secretion of immunomodulatory high mobility group box 1 (HMGB1) protein from lung cancer cells. Biomolecules. 2023;13(9):1335.

[114]

CornoC, Stucchi S, De CesareM, et al. FoxO-1 contributes to the efficacy of the combination of the XPO1 inhibitor selinexor and cisplatin in ovarian carcinoma preclinical models. Biochem Pharmacol. 2018;147:93-103.

[115]

GaoW, LiangJ, YeY, et al. FUT4siRNA augments the chemosensitivity of non-small cell lung cancer to cisplatin through activation of FOXO1-induced apoptosis. BMC Cancer. 2020;20(1):895.

[116]

SongY, ZouX, ZhangD, Liu S, DuanZ, LiuL. Self-enforcing HMGB1/NF-kappaB/HIF-1alpha feedback loop promotes cisplatin resistance in hepatocellular carcinoma cells. J Cancer. 2020;11(13):3893-3902.

[117]

Hazar-RethinamM, de Long LM, GannonOM, et al. A novel E2F/sphingosine kinase 1 axis regulates anthracycline response in squamous cell carcinoma. Clin Cancer Res. 2015;21(2):417-427.

[118]

Hazar-RethinamM, de Long LM, GannonOM, et al. RacGAP1 is a novel downstream effector of E2F7-dependent resistance to doxorubicin and is prognostic for overall survival in squamous cell carcinoma. Mol Cancer Ther. 2015;14(8):1939-1950.

[119]

Saenz-PonceN, PillayR, de LongLM, et al. Targeting the XPO1-dependent nuclear export of E2F7 reverses anthracycline resistance in head and neck squamous cell carcinomas. Sci Transl Med. 2018;10(447):eaar7223.

[120]

PyneNJ, El Buri A, AdamsDR, PyneS. Sphingosine 1-phosphate and cancer. Adv Biol Regul. 2018;68:97-106.

[121]

JohnsonKR, BeckerKP, FacchinettiMM, HannunYA, ObeidLM. PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane. Extracellular release of sphingosine-1-phosphate induced by phorbol 12-myristate 13-acetate (PMA). J Biol Chem. 2002;277(38):35257-35262.

[122]

YaoC, WuSJ, LiD, et al. Co-administration phenoxodiol with doxorubicin synergistically inhibit the activity of sphingosine kinase-1 (SphK1), a potential oncogene of osteosarcoma, to suppress osteosarcoma cell growth both and. Mol Oncol. 2012;6(4):392-404.

[123]

RenX, SuC, Sphingosine kinase 1 contributes to doxorubicin resistance and glycolysis in osteosarcoma. Mol Med Rep. 2020;22(3):2183-2190.

[124]

Cervantes-BadilloMG, Paredes-Villa A, Gomez-RomeroV, et al. IFI27/ISG12 downregulates estrogen receptor alpha transactivation by facilitating its interaction with CRM1/XPO1 in breast cancer cells. Front Endocrinol. 2020;11:568375.

[125]

WrobelK, ZhaoYC, KulkoyluogluE, et al. ERalpha-XPO1 cross talk controls tamoxifen sensitivity in tumors by altering ERK5 cellular localization. Mol Endocrinol. 2016;30(10):1029-1045.

[126]

HosfordSR, MillerTW. Clinical potential of novel therapeutic targets in breast cancer: CDK4/6, Src, JAK/STAT, PARP, HDAC, and PI3K/AKT/mTOR pathways. Pharmgenomics Pers Med. 2014;7:203-215.

[127]

CuiJJ, GermerK, WuTY, et al. Cross-talk between HER2 and MED1 regulates tamoxifen resistance of human breast cancer cells. Cancer Res. 2012;72(21):5625-5634.

[128]

GiriDK, Ali-Seyed M, LiLY, et al. Endosomal transport of ErbB-2: mechanism for nuclear entry of the cell surface receptor. Mol Cell Biol. 2005;25(24):11005-11018.

[129]

IgnatovA, Ignatov T, WeissenbornC, et al. G-protein-coupled estrogen receptor GPR30 and tamoxifen resistance in breast cancer. Breast Cancer Res Treat. 2011;128(2):457-466.

[130]

YuT, YangG, HouY, et al. Cytoplasmic GPER translocation in cancer-associated fibroblasts mediates cAMP/PKA/CREB/glycolytic axis to confer tumor cells with multidrug resistance. Oncogene. 2017;36(15):2131-2145.

[131]

TianY, ChenZH, WuP, et al. MIR497HG-derived miR-195 and miR-497 mediate tamoxifen resistance via PI3K/AKT signaling in breast cancer. Adv Sci. 2023;10(12):e2204819.

[132]

CaffaI, Spagnolo V, VernieriC, et al. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature. 2020;583(7817):620-624.

[133]

Kulkoyluoglu-CotulE, Smith BP, WrobelK, et al. Combined targeting of estrogen receptor alpha and XPO1 prevent Akt activation, remodel metabolic pathways and induce autophagy to overcome tamoxifen resistance. Cancers. 2019;11(4):479.

[134]

CotulEK, ZuoQ, Santaliz-CasianoA, et al. Combined targeting of estrogen receptor alpha and Exportin 1 in metastatic breast cancers. Cancers. 2020;12(9):2397.

[135]

ChenW, ZhengR, BaadePD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115-132.

[136]

WuM, YuanY, PanYY, Zhang Y. Combined gefitinib and pemetrexed overcome the acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Mol Med Rep. 2014;10(2):931-938.

[137]

SunC, GaoW, LiuJ, ChengH, HaoJ. FGL1 regulates acquired resistance to Gefitinib by inhibiting apoptosis in non-small cell lung cancer. Respir Res. 2020;21(1):210.

[138]

ZhaoG, WangQ, ZhangY, et al. DDX17 induces epithelial-mesenchymal transition and metastasis through the miR-149-3p/CYBRD1 pathway in colorectal cancer. Cell Death Dis. 2023;14(1):1.

[139]

LiK, MoC, GongD, et al. DDX17 nucleocytoplasmic shuttling promotes acquired gefitinib resistance in non-small cell lung cancer cells via activation of beta-catenin. Cancer Lett. 2017;400:194-202.

[140]

ShinS, RossowKL, GrandeJP, Janknecht R. Involvement of RNA helicases p68 and p72 in colon cancer. Cancer Res. 2007;67(16):7572-7578.

[141]

LiuJ, XiaoQ, XiaoJ, Niu C, et al. Wnt/beta-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7(1):3.

[142]

GuanS, ChenX, ChenY, et al. FOXM1 variant contributes to Gefitinib resistance via activating wnt/beta-catenin signal pathway in patients with non-small cell lung cancer. Clin Cancer Res. 2022;28(17):3770-3784.

[143]

FangX, GuP, ZhouC, et al. Beta-catenin overexpression is associated with gefitinib resistance in non-small cell lung cancer cells. Pulm Pharmacol Ther. 2014;28(1):41-48.

[144]

GuZ, DuY, ZhaoX, Wang C. Tumor microenvironment and metabolic remodeling in gemcitabine-based chemoresistance of pancreatic cancer. Cancer Lett. 2021;521:98-108.

[145]

YangG, GuanW, CaoZ, et al. Integrative genomic analysis of gemcitabine resistance in pancreatic cancer by patient-derived xenograft models. Clin Cancer Res. 2021;27(12):3383-3396.

[146]

KazimS, MalafaMP, CoppolaD, et al. Selective nuclear export inhibitor KPT-330 enhances the antitumor activity of gemcitabine in human pancreatic cancer. Mol Cancer Ther. 2015;14(7):1570-1581.

[147]

UddinMH, Al-Hallak MN, KhanHY, et al. Molecular analysis of XPO1 inhibitor and gemcitabine-nab-paclitaxel combination in KPC pancreatic cancer mouse model. Clin Transl Med. 2023;13(12):e1513.

[148]

QuintK, Tonigold M, Di FazioP, et al. Pancreatic cancer cells surviving gemcitabine treatment express markers of stem cell differentiation and epithelial-mesenchymal transition. Int J Oncol. 2012;41(6):2093-2102.

[149]

HoseinAN, Brekken RA, MaitraA. Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nat Rev Gastroenterol Hepatol. 2020;17(8):487-505.

[150]

LiuXL, WangBB, WangY, et al. Unbiased screening reveals that blocking exportin 1 overcomes resistance to PI3Kalpha inhibition in breast cancer. Signal Transduct Target Ther. 2019;4:49.

[151]

KhanHY, GeJ, NagasakaM, et al. Targeting XPO1 and PAK4 in 8505C anaplastic thyroid cancer cells: putative implications for overcoming lenvatinib therapy resistance. Int J Mol Sci. 2019;21(1):237.

[152]

NishiK, Yoshida M, FujiwaraD, NishikawaM, Horinouchi S, BeppuT. Leptomycin-B targets a regulatory cascade of crm1, a fission yeast nuclear-protein, involved in control of higher-order chromosome structure and gene expression. J Biol Chem. 1994;269(9):6320-6324.

[153]

WachJY, Guttinger S, KutayU, GademannK. The cytotoxic styryl lactone goniothalamin is an inhibitor of nucleocytoplasmic transport. Bioorg Med Chem Lett. 2010;20(9):2843-2846.

[154]

HamamotoT, UozumiT, BeppuT. Leptomycins A and B, new antifungal antibiotics. III. Mode of action of leptomycin B on Schizosaccharomyces pombe. J Antibiot. 1985;38(11):1573-1580.

[155]

KosterM, Lykke-Andersen S, ElnakadyYA, et al. Ratjadones inhibit nuclear export by blocking CRM1/exportin 1. Exp Cell Res. 2003;286(2):321-331.

[156]

FerreiraBI, Cautain B, GrenhoI, LinkW. Small molecule inhibitors of CRM1. Front Pharmacol. 2020;11:625.

[157]

KudoN, WolffB, SekimotoT, et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp Cell Res. 1998;242(2):540-547.

[158]

LuCW, ShaoCX, CobosE, Singh KP, GaoWM. Chemotherapeutic sensitization of leptomycin B resistant lung cancer cells by pretreatment with doxorubicin. PLoS ONE. 2012;7(3):e32895.

[159]

NewlandsES, RustinGJS, BramptonMH. Phase I trial of elactocin. Brit J Cancer. 1996;74(4):648-649.

[160]

HayakawaY, SohdaKY, Shin-YaK, Hidaka T, SetoH. Anguinomycins C and D, new antitumor antibiotics with selective cytotoxicity against transformed cells. J Antibiot. 1995;48(9):954-961.

[161]

MeissnerT, KrauseE, VinkemeierU. Ratjadone and leptomycin B block CRM1-dependent nuclear export by identical mechanisms. Febs Letters. 2004;576(1-2):27-30.

[162]

GongLH, ChenXX, WangH, et al. Piperlongumine induces apoptosis and synergizes with cisplatin or paclitaxel in human ovarian cancer cells. Oxid Med Cell Longev. 2014;2014:906804.

[163]

DuanCQ, ZhangB, DengC, et al. Piperlongumine induces gastric cancer cell apoptosis and G2/M cell cycle arrest both in vitro and in vivo. Tumor Biol. 2016;37(8):10793-10804.

[164]

RohJL, KimEH, ParkJY, Kim JW, KwonM, LeeBH. Piperlongumine selectively kills cancer cells and increases cisplatin antitumor activity in head and neck cancer. Oncotarget. 2014;5(19):9227-9238.

[165]

MosieniakG, Adamowicz M, AlsterO, et al. Curcumin induces permanent growth arrest of human colon cancer cells: link between senescence and autophagy. Mech Ageing Dev. 2012;133(6):444-455.

[166]

HowellsLM, IwujiCOO, IrvingGRB, et al. Curcumin combined with FOLFOX chemotherapy is safe and tolerable in patients with metastatic colorectal cancer in a randomized phase IIa trial. J Nutr. 2019;149(7):1133-1139.

[167]

WangJY, WangX, WangXJ, et al. Curcumin inhibits the growth via Wnt/beta-catenin pathway in non-small-cell lung cancer cells. Eur Rev Med Pharmacol Sci. 2018;22(21):7492-7499.

[168]

SuYJ, LiuLG, WangYL, et al. Curcumin inhibits the proliferation and invasion of MG-63 cells through inactivation of the p-JAK2/p-STAT3 pathway. Oncotargets Ther. 2019;12:2011-2021.

[169]

SinhaS, PalK, ElkhananyA, et al. Plumbagin inhibits tumorigenesis and angiogenesis of ovarian cancer cells in vivo. Int J Cancer. 2013;132(5):1201-1212.

[170]

YanW, TuB, LiuYY, et al. Suppressive effects of plumbagin on invasion and migration of breast cancer cells via the inhibition of STAT3 signaling and down-regulation of inflammatory cytokine expressions. Bone Res. 2013;1:362-370.

[171]

FujitaE, NagaoY, NodeM, Kaneko K, NakazawaS, KurodaH. Antitumor activity of the isodon diterpenoids: structural requirements for the activity. Experientia. 1976;32(2):203-206.

[172]

WangMY, LinC, ZhangTM. Cytokinetic effects of oridonin on leukemia-L1210 cells. Acta Pharmacol Sin. 1985;6(3):195-198.

[173]

LiuQQ, ChenK, YeQ, JiangXH, SunYW. Oridonin inhibits pancreatic cancer cell migration and epithelial-mesenchymal transition by suppressing Wnt/beta-catenin signaling pathway. Cancer Cell Int. 2016;16:57.

[174]

MutkaSC, YangWQ, DongSD, et al. Identification of nuclear export inhibitors with potent anticancer activity in vivo. Cancer Res. 2009;69(2):510-517.

[175]

SakakibaraK, SaitoN, SatoT, et al. CBS9106 is a novel reversible oral CRM1 inhibitor with CRM1 degrading activity. Blood. 2011;118(14):3922-3931.

[176]

KalidO, Toledo Warshaviak D, ShechterS, ShermanW, Shacham S. Consensus Induced Fit Docking (cIFD): methodology, validation, and application to the discovery of novel Crm1 inhibitors. J Comput Aided Mol Des. 2012;26(11):1217-1228.

[177]

MendoncaJ, SharmaA, KimHS, et al. Selective inhibitors of nuclear export (SINE) as novel therapeutics for prostate cancer. Oncotarget. 2014;5(15):6102-6112.

[178]

SextonR, MahdiZ, ChaudhuryR, et al. Targeting nuclear exporter protein XPO1/CRM1 in gastric cancer. Int J Mol Sci. 2019;20(19):4826.

[179]

EtchinJ, SunQ, KentsisA, et al. Antileukemic activity of nuclear export inhibitors that spare normal hematopoietic cells. Leukemia. 2013;27(1):66-74.

[180]

RazakARA, Mau-Soerensen M, GabrailNY, et al. First-in-class, first-in-human phase I study of selinexor, a selective inhibitor of nuclear export, in patients with advanced solid tumors. J Clin Oncol. 2016;34(34):4142.

[181]

AlexanderTB, LacayoNJ, ChoiJK, Ribeiro RC, PuiCH, RubnitzJE. Phase I study of selinexor, a selective inhibitor of nuclear export, in combination with fludarabine and cytarabine, in pediatric relapsed or refractory acute leukemia. J Clin Oncol. 2016;34(34):4094-4101.

[182]

GreenAL, Ramkissoon SH, McCauleyD, et al. Preclinical antitumor efficacy of selective exportin 1 inhibitors in glioblastoma. Neuro Oncol. 2015;17(5):697-707.

[183]

AttiyehEF, MarisJM, LockR, et al. Pharmacodynamic and genomic markers associated with response to the XPO1/CRM1 inhibitor selinexor (KPT-330): a report from the pediatric preclinical testing program. Pediatr Blood Cancer. 2016;63(2):276-286.

[184]

ZhuZC, LiuJW, YangC, Zhao M, XiongZQ. XPO1 inhibitor KPT-330 synergizes with Bcl-xL inhibitor to induce cancer cell apoptosis by perturbing rRNA processing and Mcl-1 protein synthesis. Cell Death Dis. 2019;10(6):395.

[185]

ShangEY, ZhangYR, ShuC, et al. Dual inhibition of Bcl-2/Bcl-xL and XPO1 is synthetically lethal in glioblastoma model systems. Sci Rep. 2018;8:15383.

[186]

WahbaA, RathBH, O'NeillJW, Camphausen K, TofilonPJ. The XPO1 inhibitor selinexor inhibits translation and enhances the radiosensitivity of glioblastoma cells grown in vitro and in vivo. Mol Cancer Ther. 2018;17(8):1717-1726.

[187]

DeSistoJA, Flannery P, LemmaR, et al. Exportin 1 inhibition induces nerve growth factor receptor expression to inhibit the NF-kappaB pathway in preclinical models of pediatric high-grade glioma. Mol Cancer Ther. 2020;19(2):540-551.

[188]

SunH, Hattori N, ChienW, et al. KPT-330 has antitumour activity against non-small cell lung cancer. Brit J Cancer. 2014;111(2):281-291.

[189]

WangJ, SunT, MengZ, et al. XPO1 inhibition synergizes with PARP1 inhibition in small cell lung cancer by targeting nuclear transport of FOXO3a. Cancer Lett. 2021;503:197-212.

[190]

Quintanal-VillalongaA, Taniguchi H, HaoY, et al. Inhibition of XPO1 sensitizes small cell lung cancer to first- and second-line chemotherapy. Cancer Res. 2022;82(3):472-483.

[191]

KhanHY, Nagasaka M, LiY, et al. Inhibitor of the nuclear transport protein XPO1 enhances the anticancer efficacy of KRAS G12C inhibitors in preclinical models of KRAS G12C-mutant cancers. Cancer Res Commun. 2022;2(5):342-352.

[192]

KimJ, McMillan E, KimHS, et al. XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer. Nature. 2016;538(7623):114-117.

[193]

RosenJC, WeissJ, PhamNA, et al. Antitumor efficacy of XPO1 inhibitor Selinexor in KRAS-mutant lung adenocarcinoma patient-derived xenografts. Transl Oncol. 2021;14(10):101179.

[194]

DeppingR, von Fallois M, LandesmanY, KosynaFK. The nuclear export inhibitor selinexor inhibits hypoxia signaling pathways and 3D spheroid growth of cancer cells. Onco Targets Ther. 2019;12:8387-8399.

[195]

ArangoNP, YucaE, ZhaoM, et al. Selinexor (KPT-330) demonstrates anti-tumor efficacy in preclinical models of triple-negative breast cancer. Breast Cancer Res. 2017;19(1):93.

[196]

MiyakeT, Pradeep S, WuSY, et al. XPO1/CRM1 inhibition causes antitumor effects by mitochondrial accumulation of eIF5A. Clin Cancer Res. 2015;21(14):3286-3297.

[197]

RashidNS, HairrNS, MurrayG, et al. Identification of nuclear export inhibitor-based combination therapies in preclinical models of triple-negative breast cancer. Transl Oncol. 2021;14(12):101235.

[198]

MartiniS, FiginiM, CroceA, et al. Selinexor sensitizes TRAIL-R2-positive TNBC cells to the activity of TRAIL-R2xCD3 bispecific antibody. Cells. 2020;9(10):2231.

[199]

MarijonH, GeryS, ChangH, et al. Selinexor, a selective inhibitor of nuclear export, enhances the anti-tumor activity of olaparib in triple negative breast cancer regardless of BRCA1 mutation status. Oncotarget. 2021;12(18):1749-1762.

[200]

MartiniS, ZucoV, TortoretoM, et al. miR-34a-mediated survivin inhibition improves the antitumor activity of selinexor in triple-negative breast cancer. Pharmaceuticals. 2021;14(6):523.

[201]

ShiY, XuS, LiS. Selinexor improves the anti-cancer effect of tucidinostat on TP53 wild-type breast cancer. Mol Cell Endocrinol. 2022;545:111558.

[202]

GaoJ, AzmiAS, AboukameelA, Kauffman M, ShachamS, Abou-SamraAB, Mohammad RM. Nuclear retention of Fbw7 by specific inhibitors of nuclear export leads to Notch1 degradation in pancreatic cancer. Oncotarget. 2014;5(11):3444-3454.

[203]

AzmiAS, KhanHY, MuqbilI, et al. Preclinical assessment with clinical validation of selinexor with gemcitabine and nab-paclitaxel for the treatment of pancreatic ductal adenocarcinoma. Clin Cancer Res. 2020;26(6):1338-1348.

[204]

WuT, ChenW, ZhongY, et al. Nuclear export of ubiquitinated proteins determines the sensitivity of colorectal cancer to proteasome inhibitor. Mol Cancer Ther. 2017;16(4):717-728.

[205]

InoueA, Robinson FS, MinelliR, et al. Sequential administration of XPO1 and ATR inhibitors enhances therapeutic response in TP53-mutated colorectal cancer. Gastroenterology. 2021;161(1):196-210.

[206]

von FalloisM, Depping R. Radiation response enhanced by inhibition of XPO1 in preclinical rectal cancer models. Strahlenther Onkol. 2016;192(12):961-962.

[207]

Ferreiro-NeiraI, TorresNE, LiesenfeldLF, et al. XPO1 inhibition enhances radiation response in preclinical models of rectal cancer. Clin Cancer Res. 2016;22(7):1663-1673.

[208]

SeerviM, SumiS, ChandrasekharanA, SharmaAK, SanthoshKumar TR. Molecular profiling of anastatic cancer cells: potential role of the nuclear export pathway. Cell Oncol. 2019;42(5):645-661.

[209]

AlzahraniA, Natarajan U, RathinaveluA. Enhancement of MDM2 inhibitory effects through blocking nuclear export mechanisms in ovarian cancer cells. Cancer Genet. 2022;266:57-68.

[210]

HandleyKF, Rodriguez-Aguayo C, MaS, et al. Rational combination of CRM1 inhibitor selinexor and olaparib shows synergy in ovarian cancer cell lines and mouse models. Mol Cancer Ther. 2021;20(12):2352-2361.

[211]

MiyakeTM, Pradeep S, BayraktarE, et al. NRG1/ERBB3 pathway activation induces acquired resistance to XPO1 inhibitors. Mol Cancer Ther. 2020;19(8):1727-1735.

[212]

GravinaGL, Tortoreto M, ManciniA, et al. XPO1/CRM1-Selective Inhibitors of Nuclear Export (SINE) reduce tumor spreading and improve overall survival in preclinical models of prostate cancer (PCa) , J Hematol Oncol. 2014;7:46.

[213]

GravinaGL, Mancini A, ColapietroA, et al. Correction: pharmacological treatment with inhibitors of nuclear export enhances the antitumor activity of docetaxel in human prostate cancer. Oncotarget. 2019;10(59):6393-6395.

[214]

MuqbilI, LiYW, BalogluE, et al. Down-regulation of AR splice variants through XPO1 suppression contributes to the inhibition of prostate cancer progression. Clin Cancer Res. 2018;78(13):35327-35342.

[215]

UddinMH, LiY, KhanHY, et al. Nuclear export inhibitor KPT-8602 synergizes with PARP inhibitors in escalating apoptosis in castration resistant cancer cells. Int J Mol Sci. 2021;22(13):6676.

[216]

NakayamaR, ZhangYX, CzaplinskiJT, et al. Preclinical activity of selinexor, an inhibitor of XPO1, in sarcoma. Oncotarget. 2016;7(13):16581-16592.

[217]

MengW, GaoSJ. Targeting XPO1 enhances innate immune response and inhibits KSHV lytic replication during primary infection by nuclear stabilization of the p62 autophagy adaptor protein. Cell Death Dis. 2021;12(1):29.

[218]

BreitbachJT, LoukeDS, TobinSJ, Watts MR, DaviesAE, FengerJM. The selective inhibitor of nuclear export (SINE) verdinexor exhibits biologic activity against canine osteosarcoma cell lines. Vet Comp Oncol. 2021;19(2):362-373.

[219]

SunH, LinDC, CaoQ, et al. CRM1 inhibition promotes cytotoxicity in Ewing sarcoma cells by repressing EWS-FLI1-dependent IGF-1 signaling. Cancer Res. 2016;76(9):2687-2697.

[220]

NairJS, MusiE, SchwartzGK. Selinexor (KPT-330) induces tumor suppression through nuclear sequestration of IkappaB and downregulation of survivin. Clin Cancer Res. 2017;23(15):4301-4311.

[221]

GargM, Kanojia D, MayakondaA, et al. Molecular mechanism and therapeutic implications of selinexor (KPT-330) in liposarcoma. Oncotarget. 2017;8(5):7521-7532.

[222]

ZucoV, Pasquali S, TortoretoM, et al. Selinexor versus doxorubicin in dedifferentiated liposarcoma PDXs: evidence of greater activity and apoptotic response dependent on p53 nuclear accumulation and survivin down-regulation. J Exp Clin Cancer Res. 2021;40(1):83.

[223]

JeitanyM, PrabhuA, DakleP, et al. Novel carfilzomib-based combinations as potential therapeutic strategies for liposarcomas. Cell Mol Life Sci. 2021;78(4):1837-1851.

[224]

von FalloisM, KosynaFK, MandlM, Landesman Y, DunstJ, DeppingR. Selinexor decreases HIF-1alpha via inhibition of CRM1 in human osteosarcoma and hepatoma cells associated with an increased radiosensitivity. J Cancer Res Clin Oncol. 2021;147(7):2025-2033.

[225]

YangJ, BillMA, YoungGS, et al. Novel small molecule XPO1/CRM1 inhibitors induce nuclear accumulation of TP53, phosphorylated MAPK and apoptosis in human melanoma cells. PLoS One. 2014;9(7):e102983.

[226]

BreitMN, Kisseberth WC, BearMD, et al. Biologic activity of the novel orally bioavailable selective inhibitor of nuclear export (SINE) KPT-335 against canine melanoma cell lines. BMC Vet Res. 2014;10:160.

[227]

TylerPM, ServosMM, de VriesRC, et al. Clinical dosing regimen of selinexor maintains normal immune homeostasis and t-cell effector function in mice: implications for combination with immunotherapy. Mol Cancer Ther. 2017;16(3):428-439.

[228]

FarrenMR, Hennessey RC, et al. The Exportin-1 inhibitor selinexor exerts superior antitumor activity when combined with T-cell checkpoint inhibitors. Mol Cancer Ther. 2017;16(3):417-427.

[229]

LassmanAB, WenPY, van den BentMJ, et al. A phase II study of the efficacy and safety of oral selinexor in recurrent glioblastoma. Clin Cancer Res. 2022;28(3):452-460.

[230]

ShafiqueM, Ismail-Khan R, ExtermannM, et al. A phase II trial of selinexor (KPT-330) for metastatic triple-negative breast cancer. Oncologist. 2019;24(7):887. e416.

[231]

WestinSN, FuS, TsimberidouA, et al. Selinexor in combination with weekly paclitaxel in patients with metastatic solid tumors: results of an open label, single-center, multi-arm phase 1b study with expansion phase in ovarian cancer. Gynecol Oncol. 2023;168:76-82.

[232]

HeongVYM, GohML, YongWP, et al. Phase Ib study of safety and tolerability of selinexor in Asian patients with advanced solid cancers. Dev Ther. 2018;29:VIII141.

[233]

AzmiAS, KhanHY, MuqbilI, et al. Preclinical assessment with clinical validation of selinexor with gemcitabine and nab-paclitaxel for the treatment of pancreatic ductal adenocarcinoma. Clin Cancer Res. 2020;26(6):1338-1348.

[234]

HeongVYM, KoeP, YongWP, et al. RAS/AKT pathway mutations as predictive biomarkers in patients with colorectal cancer treated with the exportin 1 (XPO1) inhibitor selinexor (SEL)—inhibition of nuclear-cytoplasmic translocation of p27 as a mechanism of anti-tumour activity. Ann Oncol. 2016;27:VI122.

[235]

NilssonS, SteinA, RolfoC, et al. Selinexor (KPT-330), an oral selective inhibitor of nuclear export (SINE) compound, in combination with FOLFOX in patients with metastatic colorectal cancer (mCRC)—final results of the phase I trial SENTINEL. Curr Cancer Drug Targets. 2020;20(10):811-817.

[236]

LawrenceYR, Shacham-Shmueli E, et al. Nuclear export inhibition for radiosensitization: a proof-of-concept phase 1 clinical trial of selinexor (KPT-330) combined with neoadjuvant chemoradiation in locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2022;114(2):250-255.

[237]

GolanT, KutielTS, GevaR, et al. Open-label phase 1 study evaluating the tolerability and anti-tumor activity of selinexor and pembrolizumab in colorectal cancer. J Clin Oncol. 2021;39(15):e15579.

[238]

WeiXX, SiegelAP, AggarwalR, et al. A phase II trial of selinexor, an oral selective inhibitor of nuclear export compound, in abiraterone- and/or enzalutamide-refractory metastatic castration-resistant prostate cancer. Oncologist. 2018;23(6):656. e64.

[239]

VergoteIB, LundB, PeenU, et al. Phase 2 study of the Exportin 1 inhibitor selinexor in patients with recurrent gynecological malignancies. Gynecol Oncol. 2020;156(2):308-314.

[240]

TheinKZ, Piha-Paul SA, TsimberidouA, et al. Selinexor in combination with topotecan in patients with advanced or metastatic solid tumors: results of an open-label, single-center, multi-arm phase Ib study. Invest New Drugs. 2021;39(5):1357-1365.

[241]

RubinsteinMM, Grisham RN, CadooK, et al. A phase I open-label study of selinexor with paclitaxel and carboplatin in patients with advanced ovarian or endometrial cancers. Gynecol Oncol. 2021;160(1):71-76.

[242]

VergoteI, Perez-Fidalgo JA, HamiltonEP, et al. Oral selinexor as maintenance therapy after first-line chemotherapy for advanced or recurrent endometrial cancer. J Clin Oncol. 2023;41(35):5400-5410.

[243]

GounderMM, ZerA, TapWD, et al. Phase IB Study of selinexor, a first-in-class inhibitor of nuclear export, in patients with advanced refractory bone or soft tissue sarcoma. J Clin Oncol. 2016;34(26):3166-3174.

[244]

GounderMM, RazakAA, SomaiahN, et al. Selinexor in advanced, metastatic dedifferentiated liposarcoma: a multinational, randomized, double-blind, placebo-controlled trial. J Clin Oncol. 2022;40(22):2479-2490.

[245]

LewinJ, MaloneE, Al-EzziE, et al. A phase 1b trial of selinexor, a first-in-class selective inhibitor of nuclear export (SINE), in combination with doxorubicin in patients with advanced soft tissue sarcomas (STS). Eur J Cancer. 2021;144:360-367.

[246]

KendraKL, WatsonR, LesinskiGB. Selinexor, a selective inhibitor of nuclear export (SINE), in patients with unresectable melanoma. J Clin Oncol. 2017;35:78883-78895.

[247]

KalaJ, Mamlouk O, JhaveriKD. Selinexor-associated hyponatremia: single-center, real-world data. Kidney Int. 2020;98(3):789-791.

[248]

BobilloS, Abrisqueta P, CarpioC, et al. Promising activity of selinexor in the treatment of a patient with refractory diffuse large B-cell lymphoma and central nervous system involvement. Haematologica. 2018;103(2):e92-e93.

[249]

LeeS, MohanS, KnuppJ, et al. Oral eltanexor treatment of patients with higher-risk myelodysplastic syndrome refractory to hypomethylating agents. J Hematol Oncol. 2022;15(1):103.

[250]

CornellRF, BazR, RichterJR, et al. A phase 1 clinical trial of oral eltanexor in patients with relapsed or refractory multiple myeloma. Am J Hematol. 2022;97(2):E54-E58.

[251]

MachlusKR, WuSK, VijeyP, et al. Selinexor-induced thrombocytopenia results from inhibition of thrombopoietin signaling in early megakaryopoiesis. Blood. 2017;130(9):1132-1143.

[252]

LinDC, HaoJJ, NagataY, et al. Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat Genet. 2014;46(5):467-473.

[253]

KwantenB, Deconick T, WalkerC, WangF, Landesman Y, DaelemansD. E3 ubiquitin ligase ASB8 promotes selinexor-induced proteasomal degradation of XPO1. Biomed Pharmacother. 2023;160:114305.

[254]

WangX, XuJ, LiQ, et al. RNA-binding protein hnRNPU regulates multiple myeloma resistance to selinexor. Cancer Lett. 2024;580:216486.

[255]

LinKH, RutterJC, XieA, et al. P2RY2-AKT activation is a therapeutically actionable consequence of XPO1 inhibition in acute myeloid leukemia. Nat Cancer. 2022;3(7):837-851.

[256]

EmdalKB, Palacio-Escat N, WigerupC, et al. Phosphoproteomics of primary AML patient samples reveals rationale for AKT combination therapy and p53 context to overcome selinexor resistance. Cell Rep. 2022;40(6):111177.

[257]

RestrepoP, BhallaS, Ghodke-PuranikY, et al. A three-gene signature predicts response to selinexor in multiple myeloma. JCO Precis Oncol. 2022;6:e2200147.

[258]

TotigerTM, Chaudhry S, MusiE, et al. Protein biomarkers for response to XPO1 inhibition in haematologic malignancies. J Cell Mol Med. 2023;27(4):587-590.

[259]

NeggersJE, Vercruysse T, JacquemynM, et al. Identifying drug-target selectivity of small-molecule CRM1/XPO1 inhibitors by CRISPR/Cas9 genome editing. Chem Biol. 2015;22(1):107-116.

[260]

NeggersJE, Vanstreels E, BalogluE, ShachamS, Landesman Y, DaelemansD. Heterozygous mutation of cysteine in XPO1 is sufficient for resistance to selective inhibitors of nuclear export. Oncotarget. 2016;7(42):68842-68850.

[261]

Rosin-ArbesfeldR, Townsley F, BienzM. The APC tumour suppressor has a nuclear export function. Nature. 2000;406(6799):1009-1012.

[262]

AladhraeiM, Al-Salami E, PoungvarinN, SuwannalertP. The roles of p53 and XPO1 on colorectal cancer progression in Yemeni patients. J Gastrointest Oncol. 2019;10(3):437-444.

[263]

ZhaoC, YangZY, ZhangJ, et al. Inhibition of XPO1 with KPT-330 induces autophagy-dependent apoptosis in gallbladder cancer by activating the p53/mTOR pathway. J Transl Med. 2022;20(1):434.

[264]

PanLJ, ChengC, DuanPW, Chen K, WuYM, WuZX. XPO1/CRM1 is a promising prognostic indicator for neuroblastoma and represented a therapeutic target by selective inhibitor verdinexor. J Exp Clin Canc Res. 2021;40(1):255.

[265]

GuptaA, Saltarski JM, WhiteMA, ScaglioniPP, GerberDE. Therapeutic targeting of nuclear export inhibition in lung cancer. J Thorac Oncol. 2017;12(9):1446-1450.

[266]

CurrierAW, KolbEA, GorlickRG, Roth ME, GopalakrishnanV, SampsonVB. p27/Kip1 functions as a tumor suppressor and oncoprotein in osteosarcoma. Sci Rep. 2019;9:6161.

[267]

LuoJ, ChenY, LiQ, WangB, ZhouY, Lan H. CRM-1 knockdown inhibits extrahepatic cholangiocarcinoma tumor growth by blocking the nuclear export of p27Kip1. Int J Mol Med. 2016;38(2):381-390.

[268]

MiyakeT, Pradeep S, WuSY, et al. XPO1/CRM1 inhibition causes antitumor effects by mitochondrial accumulation of eIF5A. Clin Cancer Res. 2015;21(14):3286-3297.

[269]

PautyJ, Couturier AM, RodrigueA, et al. Cancer-causing mutations in the tumor suppressor PALB2 reveal a novel cancer mechanism using a hidden nuclear export signal in the WD40 repeat motif. Nucleic Acids Res. 2017;45(5):2644-2657.

[270]

JonesS, HrubanRH, KamiyamaM, et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science. 2009;324(5924):217-217.

[271]

BarazeghiE, Prabhawa S, NorlenO, HellmanP, Stalberg P, WestinG. Decrease of 5-hydroxymethylcytosine and TET1 with nuclear exclusion of TET2 in small intestinal neuroendocrine tumors. BMC Cancer. 2018;18(1):764.

[272]

AzmiAS, Aboukameel A, BaoB, et al. Selective inhibitors of nuclear export block pancreatic cancer cell proliferation and reduce tumor growth in mice. Gastroenterology. 2013;144(2):447-456.

[273]

ShinD, JeonJH, JeongM, et al. VDUP1 mediates nuclear export of HIF1alpha via CRM1-dependent pathway. Biochim Biophys Acta. 2008;1783(5):838-848.

[274]

Chen-ShtoyermanR, Theodor L, HarmatiE, et al. Genetic analysis of familial colorectal cancer in Israeli Arabs. Hum Mutat. 2003;21(4):446-447.

[275]

ChoYG, KimCJ, ParkCH, et al. Genetic alterations of the KLF6 gene in gastric cancer. Oncogene. 2005;24(28):4588-4590.

[276]

NarlaG, HeathKE, ReevesHL, et al. KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science. 2001;294(5551):2563-2566.

[277]

KumariG, Mahalingam S. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2. Exp Cell Res. 2009;315(16):2775-2790.

[278]

O'MalleyS, SuH, ZhangT, Ng C, GeH, TangCK. TOB suppresses breast cancer tumorigenesis. Int J Cancer. 2009;125(8):1805-1813.

[279]

GravinaGL, Mancini A, SanitaP, et al. KPT-330, a potent and selective exportin-1 (XPO-1) inhibitor, shows antitumor effects modulating the expression of cyclin D1 and survivin [corrected] in prostate cancer models. BMC Cancer. 2015;15:941.

[280]

ChesiM, Bergsagel PL, BrentsLA, SmithCM, Gerhard DS, KuehlWM. Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines. Blood. 1996;88(2):674-681.

[281]

DengZH, GomezTS, OsborneDG, Phillips-Krawczak CA, ZhangJS, BilladeauDD. Nuclear FAM21 participates in NF-kappaB-dependent gene regulation in pancreatic cancer cells. J Cell Sci. 2015;128(2):373-384.

[282]

SajiM, VaskoV, KadaF, Allbritton EH, BurmanKD, RingelMD. Akt1 contains a functional leucine-rich nuclear export sequence. Biochem Biophys Res Commun. 2005;332(1):167-173.

[283]

HahnSA, Schutte M, HoqueATMS, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996;271(5247):350-353.

[284]

SjoblomT, JonesS, WoodLD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314(5797):268-274.

[285]

FaliniB, Brunetti L, SportolettiP, MartelliMP. NPM1-mutated acute myeloid leukemia: from bench to bedside. Blood. 2020;136(15):1707-1721.

[286]

ZhangJ, XuX, ChenY, Guan X, ZhuH, QiY. The abnormal expression of chromosomal region maintenance 1 (CRM1)-survivin axis in ovarian cancer and its related mechanisms regulating proliferation and apoptosis of ovarian cancer cells. Bioengineered. 2022;13(1):624-633.

[287]

GravinaGL, Marampon F, SherrisD, et al. Torc1/Torc2 inhibitor, Palomid 529, enhances radiation response modulating CRM1-mediated survivin function and delaying DNA repair in prostate cancer models. Prostate. 2014;74(8):852-868.

[288]

PockwinseSM, Rajgopal A, YoungDW, et al. Microtubule-dependent nuclear-cytoplasmic shuttling of Runx2. J Cell Physiol. 2006;206(2):354-362.

[289]

ChuangLSH, MatsuoJ, DouchiD, Bte Mawan NA, ItoY. RUNX3 in stem cell and cancer biology. Cells. 2023;12(3):408.

[290]

LiuX, ChongY, LiuH, HanY, NiuM. Novel reversible selective inhibitor of CRM1 for targeted therapy in ovarian cancer. J Ovarian Res. 2015;8:35.

[291]

NieD, XiaoX, ChenJ, et al. Prognostic and therapeutic significance of XPO1 in T-cell lymphoma. Exp Cell Res. 2022;416(2):113180.

[292]

XuZ, PanB, MiaoY, et al. Prognostic value and therapeutic targeting of XPO1 in chronic lymphocytic leukemia. Clin Exp Med. 2023;23(6):2651-2662.

[293]

TurnerJG, Kashyap T, DawsonJL, et al. XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IkBa and overcomes acquired proteasome inhibitor resistance in human multiple myeloma. Oncotarget. 2016;7(48):78896-78909.

[294]

WangXZ, FengY, HanYF, et al. Budlein A methylacrylate demonstrates potent activity against triple-negative breast cancer by targeting IkappaBalpha kinase and exportin-1. Toxicol Appl Pharmacol. 2020;408:115263.

[295]

KudoN, Matsumori N, TaokaH, et al. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc Natl Acad Sci USA. 1999;96(16):9112-9117.

[296]

MeissnerT, KrauseE, VinkemeierU. Ratjadone and leptomycin B block CRM1-dependent nuclear export by identical mechanisms. FEBS Lett. 2004;576(1-2):27-30.

[297]

BonazziS, EidamO, GuttingerS, et al. Anguinomycins and derivatives: total syntheses, modeling, and biological evaluation of the inhibition of nucleocytoplasmic transport. J Am Chem Soc. 2010;132(4):1432-1442.

[298]

NiuMS, XuXY, ShenYL, et al. Piperlongumine is a novel nuclear export inhibitor with potent anticancer activity. Chem-Biol Interact. 2015;237:66-72.

[299]

NiuMS, WuSJ, MaoL, YangYL. CRM1 is a cellular target of curcumin: new insights for the myriad of biological effects of an ancient spice. Traffic. 2013;14(10):1042-1052.

[300]

LiuXJ, NiuMS, XuXY, et al. CRM1 is a direct cellular target of the natural anti-cancer agent plumbagin. J Pharmacol Sci. 2014;124(4):486-493.

[301]

NewlandsES, RustinGJ, BramptonMH. Phase I trial of elactocin. Br J Cancer. 1996;74(4):648-649.

[302]

KalesseM, Christmann M, BhattU, et al. The chemistry and biology of ratjadone. Chembiochem. 2001;2(9):709-714.

[303]

PeiS, Minhajuddin M, CallahanKP, et al. Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells. J Biol Chem. 2013;288(47):33542-33558.

[304]

HeidariH, Bagherniya M, MajeedM, SathyapalanT, Jamialahmadi T, SahebkarA. Curcumin-piperine co-supplementation and human health: a comprehensive review of preclinical and clinical studies. Phytother Res. 2023;37(4):1462-1487.

[305]

NelsonKM, DahlinJL, BissonJ, et al. The essential medicinal chemistry of curcumin. J Med Chem. 2017;60(5):1620-1637.

[306]

ThakorN, Janathia B. Plumbagin: a potential candidate for future research and development. Curr Pharm Biotechnol. 2022;23(15):1800-1812.

[307]

LiFF, YiS, WenL, et al. Oridonin induces NPM mutant protein translocation and apoptosis in NPM1c+ acute myeloid leukemia cells in vitro. Acta Pharmacol Sin. 2014;35(6):806-813.

[308]

LiX, ZhangCT, MaW, XieX, HuangQ. Oridonin: a review of its pharmacology, pharmacokinetics and toxicity. Front Pharmacol. 2021;12:645824.

[309]

GravinaGL, Mancini A, et al. Erratum to: KPT-330, a potent and selective exportin-1 (XPO-1) inhibitor, shows antitumor effects modulating the expression of cyclin D1 and survivin in prostate cancer models. BMC Cancer. 2016;16:8.

[310]

WeiN, SongY, ZhangF, Sun Z, ZhangX. Transcriptome profiling of acquired gefitinib resistant lung cancer cells reveals dramatically changed transcription programs and new treatment targets. Front Oncol. 2020;10:1424.

[311]

WangS, HanX, WangJ, Yao J, ShiY. Antitumor effects of a novel chromosome region maintenance 1 (CRM1) inhibitor on non-small cell lung cancer cells in vitro and in mouse tumor xenografts. PLoS One. 2014;9(3):e89848.

[312]

SoungYH, Kashyap T, NguyenT, et al. Selective inhibitors of nuclear export (SINE) compounds block proliferation and migration of triple negative breast cancer cells by restoring expression of ARRDC3. Oncotarget. 2017;8(32):52935-52947.

[313]

SubhashVV, YeoMS, WangL, et al. Anti-tumor efficacy of selinexor (KPT-330) in gastric cancer is dependent on nuclear accumulation of p53 tumor suppressor. Sci Rep. 2018;8(1):12248.

[314]

GaoJ, AzmiAS, AboukameelA, et al. Nuclear retention of Fbw7 by specific inhibitors of nuclear export leads to Notch1 degradation in pancreatic cancer. Oncotarget. 2014;5(11):3444-3454.

[315]

ChenY, Camacho SC, SilversTR, et al. Inhibition of the nuclear export receptor XPO1 as a therapeutic target for platinum-resistant ovarian cancer. Clin Cancer Res. 2017;23(6):1552-1563.

[316]

InoueH, Kauffman M, ShachamS, et al. CRM1 blockade by selective inhibitors of nuclear export attenuates kidney cancer growth. J Urol. 2013;189(6):2317-2326.

[317]

Salas FragomeniRA, Chung HW, LandesmanY, et al. CRM1 and BRAF inhibition synergize and induce tumor regression in BRAF-mutant melanoma. Mol Cancer Ther. 2013;12(7):1171-1179.

[318]

GravinaGL, Mancini A, ColapietroA, et al. Pharmacological treatment with inhibitors of nuclear export enhances the antitumor activity of docetaxel in human prostate cancer. Oncotarget. 2017;8(67):111225-111245.

[319]

De CesareM, Cominetti D, DoldiV, et al. Anti-tumor activity of selective inhibitors of XPO1/CRM1-mediated nuclear export in diffuse malignant peritoneal mesothelioma: the role of survivin. Oncotarget. 2015;6(15):13119-13132.

[320]

ShangE, ZhangY, ShuC, et al. Dual inhibition of Bcl-2/Bcl-xL and XPO1 is synthetically lethal in glioblastoma model systems. Sci Rep. 2018;8(1):15383.

[321]

WangLH, WeiS, YuanY, et al. KPT330 promotes the sensitivity of glioblastoma to olaparib by retaining SQSTM1 in the nucleus and disrupting lysosomal function. Autophagy. 2024;20(2):295-310.

[322]

Quintanal-VillalongaA, Durani V, SabetA, et al. Exportin 1 inhibition prevents neuroendocrine transformation through SOX2 down-regulation in lung and prostate cancers. Sci Transl Med. 2023;15(707):eadf7006.

[323]

XuS, ShiY, LiS. Enhanced anticancer synergy of LOM612 in combination with selinexor: FOXO1 nuclear translocation-mediated inhibition of Wnt/beta-catenin signaling pathway in breast cancer. Cancer Chemother Pharmacol. 2024;93(3):191-202.

[324]

WenT, GengM, BaiE, et al. KPT-330 and Y219 exert a synergistic antitumor effect in triple-negative breast cancer through inhibiting NF-kappaB signaling. FEBS Open Bio. 2023;13(4):751-762.

[325]

StiffPJ, Mehrotra S, PotkulRK, BanerjeeS, WalkerC, DrakesML. Selinexor in combination with decitabine attenuates ovarian cancer in mice. Cancers. 2023;15(18):4541.

[326]

CornoC, Stucchi S, De CesareM, et al. FoxO-1 contributes to the efficacy of the combination of the XPO1 inhibitor selinexor and cisplatin in ovarian carcinoma preclinical models. Biochem Pharmacol. 2018;147:93-103.

[327]

HandleyKF, Rodriguez-Aguayo C, et al. Rational Combination of CRM1 inhibitor selinexor and olaparib shows synergy in ovarian cancer cell lines and mouse models. Mol Cancer Ther. 2021;20(12):2352-2361.

[328]

KashyapT, Argueta C, AboukameelA, et al. Selinexor, a selective inhibitor of nuclear export (SINE) compound, acts through NF-κB deactivation and combines with proteasome inhibitors to synergistically induce tumor cell death. Oncotarget. 2016;7(48):78883-78895.

[329]

JeitanyM, PrabhuA, DakleP, et al. Novel carfilzomib-based combinations as potential therapeutic strategies for liposarcomas. Cell Mol Life Sci. 2021;78(4):1837-1851.

[330]

von FalloisM, KosynaFK, MandlM, Landesman Y, DunstJ, DeppingR. Selinexor decreases HIF-1α via inhibition of CRM1 in human osteosarcoma and hepatoma cells associated with an increased radiosensitivity. J Cancer Res Clin. 2021;147(7):2025-2033.

[331]

MittalS, Kadamberi IP, ChangH, et al. Preclinical activity of selinexor in combination with eribulin in uterine leiomyosarcoma. Exp Hematol Oncol. 2023;12(1):78.

[332]

HongAL, TsengYY, CowleyGS, et al. Integrated genetic and pharmacologic interrogation of rare cancers. Nat Commun. 2016;7:11987.

[333]

FarrenMR, Hennessey RC, ShakyaR, et al. The exportin-1 inhibitor selinexor exerts superior antitumor activity when combined with T-cell checkpoint inhibitors. Mol Cancer Ther. 2017;16(3):417-427.

[334]

OuL, WangX, ChengS, et al. Verdinexor, a selective inhibitor of nuclear exportin 1, inhibits the proliferation and migration of esophageal cancer via XPO1/c-Myc/FOSL1 axis. Int J Biol Sci. 2022;18(1):276-291.

[335]

WangZ, PanB, YaoY, QiuJ, ZhangX, Wu X, TangN. XPO1 intensifies sorafenib resistance by stabilizing acetylation of NPM1 and enhancing epithelial-mesenchymal transition in hepatocellular carcinoma. Biomed Pharmacother. 2023;160:114402.

[336]

UddinMH, LiY, KhanHY, Muqbil I, AboukameelA, SextonRE, ReddyS, LandesmanY, Kashyap T, AzmiAS, HeathEI. Nuclear export inhibitor KPT-8602 synergizes with PARP inhibitors in escalating apoptosis in castration resistant cancer cells. Int J Mol Sci. 2021;22(13):6676.

[337]

GounderMM, ZerA, TapWD, et al. Phase IB study of selinexor, a first-in-class inhibitor of nuclear export, in patients with advanced refractory bone or soft tissue sarcoma. J Clin Oncol. 2016;34(26):3166-3174.

[338]

WeiXX, SiegelAP, AggarwalR, et al. A phase II trial of selinexor, an oral selective inhibitor of nuclear export compound, in abiraterone- and/or enzalutamide-refractory metastatic castration-resistant prostate cancer. Oncologist. 2018;23(6):656. e64.

[339]

TheinKZ, KarpDD, TsimberidouA, et al. Selinexor in combination with carboplatin and paclitaxel in patients with advanced solid tumors: results of a single-center, multi-arm phase Ib study. Invest New Drugs. 2022;40(2):290-299.

[340]

LewinJ, MaloneE, Al-EzziE, et al. A phase 1b trial of selinexor, a first-in-class selective inhibitor of nuclear export (SINE), in combination with doxorubicin in patients with advanced soft tissue sarcomas (STS). Eur J Cancer. 2021;144:360-367.

[341]

AzmiAS, KhanHY, MuqbilI, et al. Preclinical assessment with clinical validation of selinexor with gemcitabine and nab-paclitaxel for the treatment of pancreatic ductal adenocarcinoma. Clin Cancer Res. 2020;26(6):1338-1348.

[342]

Abdul RazakAR, Mau-Soerensen M, GabrailNY, et al. First-in-class, first-in-human phase I study of selinexor, a selective inhibitor of nuclear export, in patients with advanced solid tumors. J Clin Oncol. 2016;34(34):4142-4150.

[343]

RubinsteinMM, Grisham RN, CadooK, et al. A phase I open-label study of selinexor with paclitaxel and carboplatin in patients with advanced ovarian or endometrial cancers. Gynecol Oncol. 2021;160(1):71-76.

[344]

TheinKZ, Piha-Paul SA, TsimberidouA, et al. Selinexor in combination with topotecan in patients with advanced or metastatic solid tumors: results of an open-label, single-center, multi-arm phase Ib study. Invest New Drug. 2021;39:1357-1365.

[345]

VergoteIB, LundB, PeenU, et al. Phase 2 study of the Exportin 1 inhibitor selinexor in patients with recurrent gynecological malignancies. Gynecol Oncol. 2020;156(2):308-314.

[346]

WestinSN, FuS, TsimberidouA, et al. Selinexor in combination with weekly paclitaxel in patients with metastatic solid tumors: results of an open label, single-center, multi-arm phase 1b study with expansion phase in ovarian cancer. Gynecol Oncol. 2023;168:76-82.

[347]

GounderMM, RazakAA, SomaiahN, et al. Selinexor in advanced, metastatic dedifferentiated liposarcoma: a multinational, randomized, double-blind, placebo-controlled trial. J Clin Oncol. 2022;40(22):2479-2490.

[348]

VergoteI, Perez-Fidalgo JA, HamiltonEP, et al. Oral selinexor as maintenance therapy after first-line chemotherapy for advanced or recurrent endometrial cancer. J Clin Oncol. 2023;41(35):5400.

[349]

NelsonBE, SaleemS, DamodaranS, et al. Phase 1b study of combined selinexor and eribulin for the treatment of advanced solid tumors and triple-negative breast cancer. Cancer. 2023;129(14):2201-2213.

[350]

NilssonS, SteinA, RolfoC, et al. Selinexor (KPT-330), an oral selective inhibitor of nuclear export (SINE) compound, in combination with FOLFOX in patients with metastatic colorectal cancer (mCRC)—final results of the phase I trial SENTINEL. Curr Cancer Drug Targets. 2020;20(10):811-817.

[351]

LawrenceYR, Shacham-Shmueli E, YaromN, et al. Nuclear export inhibition for radiosensitization: a proof-of-concept phase 1 clinical trial of selinexor (KPT-330) combined with neoadjuvant chemoradiation in locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2022;114(2):250-255.

[352]

ShafiqueM, Ismail-Khan R, ExtermannM, et al. A phase II trial of selinexor (KPT-330) for metastatic triple-negative breast cancer. Oncologist. 2019;24(7):887. e416.

[353]

LassmanAB, WenPY, van den BentMJ, et al. A phase II study of the efficacy and safety of oral selinexor in recurrent glioblastoma. Clin Cancer Res. 2022;28(3):452-460.

[354]

HeongVYM, KoeP, YongWP, et al. RAS/AKT pathway mutations as predictive biomarkers in patients with colorectal cancer treated with the exportin 1 (XPO1) inhibitor selinexor (SEL)—inhibition of nuclear-cytoplasmic translocation of p27 as a mechanism of anti-tumour activity. Ann Oncol. 2016;27:VI122.

[355]

KendraKL, WatsonR, LesinskiGB. Selinexor, a selective inhibitor of nuclear export (SINE), in patients with unresectable melanoma. J Clin Oncol. 2017;35:78883-78895.

[356]

GolanT, KutielTS, GevaR, et al. Open-label phase 1 study evaluating the tolerability and anti-tumor activity of selinexor and pembrolizumab in colorectal cancer. J Clin Oncol. 2021;39(15):e15579-e15579.

RIGHTS & PERMISSIONS

2024 The Author(s). Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/