WNT5B drives osteosarcoma stemness, chemoresistance and metastasis

Rachel S. Perkins , Glenn Murray , Sarocha Suthon , Lindsey Davis , Nicholson B. Perkins , Lily Fletcher , Amanda Bozzi , Saylor L. Schreiber , Jianjian Lin , Steven Laxton , Rahul R. Pillai , Alec J. Wright , Gustavo A. Miranda-Carboni , Susan A. Krum

Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (5) : e1670

PDF
Clinical and Translational Medicine ›› 2024, Vol. 14 ›› Issue (5) : e1670 DOI: 10.1002/ctm2.1670
RESEARCH ARTICLE

WNT5B drives osteosarcoma stemness, chemoresistance and metastasis

Author information +
History +
PDF

Abstract

WNT5B expression is high in osteosarcoma stem cells leading to increased stem cell proliferation and migration through SOX2.

WNT5B expression in stem cells increases rates of osteosarcoma metastasis to the lungs and liver in vivo.

The hyaluronic acid degradation enzyme HYAL1 is regulated by WNT5B in osteosarcoma contributing to metastasis.

Inhibition of WNT5B with a ROR1 antibody decreases osteosarcoma stemness.

Keywords

cancer stem cells / metastasis / osteosarcoma / WNT5B

Cite this article

Download citation ▾
Rachel S. Perkins,Glenn Murray,Sarocha Suthon,Lindsey Davis,Nicholson B. Perkins,Lily Fletcher,Amanda Bozzi,Saylor L. Schreiber,Jianjian Lin,Steven Laxton,Rahul R. Pillai,Alec J. Wright,Gustavo A. Miranda-Carboni,Susan A. Krum. WNT5B drives osteosarcoma stemness, chemoresistance and metastasis. Clinical and Translational Medicine, 2024, 14(5): e1670 DOI:10.1002/ctm2.1670

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BielackSS, Hecker-Nolting S, BlattmannC, KagerL. Advances in the management of osteosarcoma. F1000Res. 2016;5:2767.

[2]

RojasGA, Hubbard AK, DiessnerBJ, RibeiroKB, Spector LG. International trends in incidence of osteosarcoma (1988-2012). Int J Cancer. 2021;149:1044-1053.

[3]

KansaraM, TengMW, SmythMJ, Thomas DM. Translational biology of osteosarcoma. Nat Rev Cancer. 2014;14:722-735.

[4]

Longo-SorbelloGS, Bertino JR. Current understanding of methotrexate pharmacology and efficacy in acute leukemias. Use of newer antifolates in clinical trials. Haematologica. 2001;86:121-127.

[5]

HattingerCM, Patrizio MP, FantoniL, CasottiC, Riganti C, SerraM. Drug resistance in osteosarcoma: emerging biomarkers, therapeutic targets and treatment strategies. Cancers. 2021;13:2878.

[6]

BrownHK, Tellez-Gabriel M, HeymannD. Cancer stem cells in osteosarcoma. Cancer Lett. 2017;386:189-195.

[7]

LilienthalI, HeroldN. Targeting molecular mechanisms underlying treatment efficacy and resistance in osteosarcoma: a review of current and future strategies. Int J Mol Sci. 2020;21:6885.

[8]

Martins-NavesSR, Paiva-Oliveira DI, Wijers-KosterPM, et al. Chemotherapy induces stemness in osteosarcoma cells through activation of Wnt/beta-catenin signaling. Cancer Lett. 2016;370:286-295.

[9]

HuybrechtsY, Mortier G, BoudinE, Van HulW. WNT signaling and bone: lessons from skeletal dysplasias and disorders. Front Endocrinol. 2020;11:165.

[10]

SuthonS, Perkins RS, BryjaV, Miranda-CarboniGA, Krum SA. WNT5B in physiology and disease. Frontiers Cell Dev Biol. 2021;9:667581.

[11]

SuthonS, LinJ, PerkinsRS, Crockarell JR, Miranda-CarboniGA, KrumSA. Estrogen receptor alpha and NFATc1 bind to a bone mineral density-associated SNP to repress WNT5B in osteoblasts. Am J Hum Genet. 2022;109:97-115.

[12]

CongLe, RanFA, CoxD, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819-823.

[13]

Lillo OsunaMA, Garcia-Lopez J, El AyachiI, et al. Activation of estrogen receptor alpha by decitabine inhibits osteosarcoma growth and metastasis. Cancer Res. 2019;79:1054-1068.

[14]

IvanovDP, ParkerTL, WalkerDA, et al. Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high-throughput screening of tumour spheroids and stem cell neurospheres. PLoS One. 2014;9:e103817.

[15]

TalbotLJ, ChabotA, FunkA, et al. A novel orthotopic implantation technique for osteosarcoma produces spontaneous metastases and illustrates dose-dependent efficacy of B7-H3-CAR T cells. Front Immunol. 2021;12:691741.

[16]

FedchenkoN, Reifenrath J. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue—a review. Diagn Pathol. 2014;9:221.

[17]

NamløsHM, KresseSH, MüllerCR, et al. Global gene expression profiling of human osteosarcomas reveals metastasis-associated chemokine pattern. Sarcoma. 2012;2012:639038.

[18]

KuijjerML, Rydbeck H, KresseSH, et al. Identification of osteosarcoma driver genes by integrative analysis of copy number and gene expression data. Genes chromosomes Cancer. 2012;51:696-706.

[19]

TARGET Initiative: dbGaP Sub-study ID phs000468.

[20]

ST. Jude Cloud PeCan.

[21]

RoperSJ, LinkeF, ScottingPJ, Coyle B. 3D spheroid models of paediatric SHH medulloblastoma mimic tumour biology, drug response and metastatic dissemination. Sci Rep. 2021;11:4259.

[22]

Munoz-GarciaJ, Jubelin C, LoussouarnA, et al. In vitro three-dimensional cell cultures for bone sarcomas. J Bone Oncol. 2021;30:100379.

[23]

RainussoN, ManTK, LauCC, et al. Identification and gene expression profiling of tumor-initiating cells isolated from human osteosarcoma cell lines in an orthotopic mouse model. Cancer Biol Therapy. 2011;12:278-287.

[24]

LaiY, WangB, ZhengX. Limiting dilution assay to quantify the self-renewal potential of cancer stem cells in hepatocellular carcinoma. Methods Cell Biol. 2022;171:197-213.

[25]

PerkinsRS, SuthonS, Miranda-CarboniGA, KrumSA. WNT5B in cellular signaling pathways. Semin Cell Dev Biol. 2021;125:11-16.

[26]

SinghSK, ChenN-M, HessmannE, et al. Antithetical NFATc1-Sox2 and p53-miR200 signaling networks govern pancreatic cancer cell plasticity. EMBO J. 2015;34:517-530.

[27]

ChiangAC, Massagué J. Molecular basis of metastasis. N Engl J Med. 2008;359:2814-2823.

[28]

ElgundiZ, Papanicolaou M, MajorG, et al. Cancer metastasis: the role of the extracellular matrix and the heparan sulfate proteoglycan perlecan. Front Oncol. 2019;9:1482.

[29]

TriantafyllouA, Thompson LDR, DevaneyKO, et al. Functional histology of salivary gland pleomorphic adenoma: an appraisal. Head Neck Pathol. 2015;9:387-404.

[30]

McAteeCO, Barycki JJ, SimpsonMA. Emerging roles for hyaluronidase in cancer metastasis and therapy. Adv Cancer Res. 2014;123:1-34.

[31]

R2: Genomics Analysis and Visualization Platform.

[32]

CuiB, ZhangS, ChenL, et al. Targeting ROR1 inhibits epithelial-mesenchymal transition and metastasis. Cancer Res. 2013;73:3649-3660.

[33]

O'flahertyJD, BarrM, FennellD, et al. The cancer stem-cell hypothesis: its emerging role in lung cancer biology and its relevance for future therapy. J Thorac Oncol. 2012;7:1880-1890.

[34]

SugiharaE, SayaH. Complexity of cancer stem cells. Int J Cancer. 2013;132:1249-1259.

[35]

SkodaJ, Nunukova A, LojaT, et al. Cancer stem cell markers in pediatric sarcomas: Sox2 is associated with tumorigenicity in immunodeficient mice. Tumor Biol. 2016;37:9535-9548.

[36]

JubelinC, Muñoz-Garcia J, CochonneauD, MorantonE, Heymann M-F, HeymannD. Biological evidence of cancer stem-like cells and recurrent disease in osteosarcoma. Cancer Drug Resist. 2022;5:184-198.

[37]

WangS-H, ChangJS, HsiaoJ-R, et al. Tumour cell-derived WNT5B modulates in vitro lymphangiogenesis via induction of partial endothelial-mesenchymal transition of lymphatic endothelial cells. Oncogene. 2017;36:1503-1515.

[38]

RaghavanS, MehtaP, XieY, LeiYuL, MehtaG. Ovarian cancer stem cells and macrophages reciprocally interact through the WNT pathway to promote pro-tumoral and malignant phenotypes in 3D engineered microenvironments. J Immunother Cancer. 2019;7:190.

[39]

HeldinP, BasuK, OlofssonB, Porsch H, KozlovaI, KahataK. Deregulation of hyaluronan synthesis, degradation and binding promotes breast cancer. J Biochem. 2013;154:395-408.

[40]

MenckK, Heinrichs S, BadenC, BleckmannA. The WNT/ROR pathway in cancer: from signaling to therapeutic intervention. Cells. 2021:10:142.

[41]

BroomeHE, Rassenti LZ, WangH-Y, MeyerLM, KippsTJ. ROR1 is expressed on hematogones (non-neoplastic human B-lymphocyte precursors) and a minority of precursor-B acute lymphoblastic leukemia. Leak Res. 2011;35:1390-1394.

[42]

ZhangS, CuiB, LaiH, et al. Ovarian cancer stem cells express ROR1, which can be targeted for anti-cancer-stem-cell therapy. Proc Nat'l Acad Sci U S A. 2014;111:17266-17271.

[43]

KippsTJ. ROR1: an orphan becomes apparent. Blood. 2022;140:1583-1591.

[44]

WidhopfGF, CuiB, GhiaEM, et al. ROR1 can interact with TCL1 and enhance leukemogenesis in Emu-TCL1 transgenic mice. Proc Natl Acad Sci USA. 2014;111:793-798.

RIGHTS & PERMISSIONS

2024 The Authors. Clinical and Translational Medicine published by John Wiley & Sons Australia, Ltd on behalf of Shanghai Institute of Clinical Bioinformatics.

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/