Clinical impact of epithelial–mesenchymal transition for cancer therapy
Nobendu Mukerjee, Sagnik Nag, Bikramjit Bhattacharya, Athanasios Alexiou, Divya Mirgh, Dattatreya Mukherjee, Manab Deb Adhikari, Krishnan Anand, Raman Muthusamy, Sukhamoy Gorai, Nanasaheb Thorat
Clinical impact of epithelial–mesenchymal transition for cancer therapy
The epithelial-mesenchymal transition (EMT) represents a pivotal frontier in oncology, playing a central role in the metastatic cascade of cancer—a leading global health challenge. This comprehensive review delves into the complexities of EMT, a process where cancer cells gain exceptional mobility, facilitating their invasion into distant organs and the establishment of secondary malignancies. We thoroughly examine the myriad of factors influencing EMT, encompassing transcription factors, signalling pathways, metabolic alterations, microRNAs, long non-coding RNAs, epigenetic changes, exosomal interactions and the intricate dynamics of the tumour microenvironment. Particularly, the review emphasises the advanced stages of EMT, crucial for the development of highly aggressive cancer phenotypes. During this phase, cancer cells penetrate the vascular barrier and exploit the bloodstream to propagate life-threatening metastases through the mesenchymal–epithelial transition. We also explore EMT's significant role in fostering tumour dormancy, senescence, the emergence of cancer stem cells and the formidable challenge of therapeutic resistance. Our review transcends a mere inventory of EMT-inducing elements; it critically assesses the current state of EMT-focused clinical trials, revealing both the hurdles and significant breakthroughs. Highlighting the potential of EMT research, we project its transformative impact on the future of cancer therapy. This exploration is aimed at paving the way towards an era of effectively managing this relentless disease, positioning EMT at the forefront of innovative cancer research strategies.
cancer / EMT / exosomes / metastasis / therapeutic
[1] |
GBD 2019 Cancer Risk Factors Collaborators. The global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022;400:563-591.
CrossRef
Google scholar
|
[2] |
Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31-46.
CrossRef
Google scholar
|
[3] |
Pedri D, Karras P, Landeloos E, et al. Epithelial-to-mesenchymal-like transition events in melanoma. FEBS J. 2022;289:1352-1368.
CrossRef
Google scholar
|
[4] |
Brabletz T, Kalluri R, Nieto MA, et al. EMT in cancer. Nat Rev Cancer. 2018;18:128-134.
CrossRef
Google scholar
|
[5] |
Wilson MM, Weinberg RA, Lees JA, Guen VJ. Emerging mechanisms by which EMT programs control stemness. Trends Cancer. 2020;6:775-780.
CrossRef
Google scholar
|
[6] |
Zaravinos A. The regulatory role of microRNAs in EMT and cancer. J Oncol. 2015;2015:865816.
CrossRef
Google scholar
|
[7] |
Ribatti D, Tamma R, Annese T. Epithelial–mesenchymal transition in cancer: a historical overview. Transl Oncol. 2020;13:100773.
CrossRef
Google scholar
|
[8] |
Kim H, Lee S, Shin E, et al. The emerging roles of exosomes as EMT regulators in cancer. Cells. 2020;9:861.
CrossRef
Google scholar
|
[9] |
Song KA, Faber AC. Epithelial-to-mesenchymal transition and drug resistance: transitioning away from death. J Thorac Dis. 2019;11:E82-E85.
CrossRef
Google scholar
|
[10] |
Cook DP, Vanderhyden BC. Context specificity of the EMT transcriptional response. Nat Commun. 2020;11:2142.
CrossRef
Google scholar
|
[11] |
Klaus A, Birchmeier W. Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 2008;8:387-398.
CrossRef
Google scholar
|
[12] |
Heuberger J, Birchmeier W. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb Perspect Biol. 2010;2:a002915.
CrossRef
Google scholar
|
[13] |
Wu L, Zhao JC, Kim J, et al. ERG is a critical regulator of Wnt/LEF1 signaling in prostate cancer. Cancer Res. 2013;73:6068-6079.
CrossRef
Google scholar
|
[14] |
Jayachandran J, Srinivasan H, Mani KP. Molecular mechanism involved in epithelial to mesenchymal transition. Arch Biochem Biophys. 2021;710:108984.
CrossRef
Google scholar
|
[15] |
Kang E, Seo J, Yoon H, et al. The post-translational regulation of epithelial–mesenchymal transition-inducing transcription factors in cancer metastasis. Int J Mol Sci. 2021;22:3591.
CrossRef
Google scholar
|
[16] |
Deshmukh AP, Vasaikar SV, Tomczak K, et al. Identification of EMT signaling cross-talk and gene regulatory networks by single-cell RNA sequencing. Proc Natl Acad Sci U S A. 2021;118:e2102050118.
CrossRef
Google scholar
|
[17] |
Stemmler MP, Eccles RL, Brabletz S, et al. Non-redundant functions of EMT transcription factors. Nat Cell Biol. 2019;21:102-112.
CrossRef
Google scholar
|
[18] |
Bolós V, Peinado H, Pérez-Moreno MA, et al. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 2003;116:499-511.
CrossRef
Google scholar
|
[19] |
Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, et al. EMT factors and metabolic pathways in cancer. Front Oncol. 2020;10:499.
CrossRef
Google scholar
|
[20] |
Mani SA, Guo W, Liao MJ, et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704-715.
CrossRef
Google scholar
|
[21] |
Nassour M, Idoux-Gillet Y, Selmi A, et al. Slug controls stem/progenitor cell growth dynamics during mammary gland morphogenesis. PLoS One. 2012;7:e53498.
CrossRef
Google scholar
|
[22] |
Ye X, Tam WL, Shibue T, et al. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature. 2015;525:256-260.
CrossRef
Google scholar
|
[23] |
Gheldof A, Hulpiau P, van Roy F, et al. Evolutionary functional analysis and molecular regulation of the ZEB transcription factors. Cell Mol Life Sci. 2012;69:2527-2541.
CrossRef
Google scholar
|
[24] |
Papanikolaou S, Vourda A, Syggelos S, et al. Cell plasticity and prostate cancer: the role of epithelial–mesenchymal transition in tumor progression, invasion, metastasis and cancer therapy resistance. Cancers (Basel). 2021;13:2795.
CrossRef
Google scholar
|
[25] |
Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 2010;29:4741-4751.
CrossRef
Google scholar
|
[26] |
Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7:415-428.
CrossRef
Google scholar
|
[27] |
Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117:927-939.
CrossRef
Google scholar
|
[28] |
Yang F, Sun L, Li Q, et al. SET8 promotes epithelial–mesenchymal transition and confers TWIST dual transcriptional activities. EMBO J. 2012;31:110-123.
CrossRef
Google scholar
|
[29] |
Jing C, Li X, Zhou M, et al. The PSMD14 inhibitor thiolutin as a novel therapeutic approach for esophageal squamous cell carcinoma through facilitating SNAIL degradation. Theranostics. 2021;11:5847-5862.
CrossRef
Google scholar
|
[30] |
Gurzu S, Kobori L, Fodor D, et al. Epithelial mesenchymal and endothelial mesenchymal transitions in hepatocellular carcinoma: a review. Biomed Res Int. 2019;2019:2962580.
CrossRef
Google scholar
|
[31] |
Salton F, Volpe MC, Confalonieri M. Epithelial–mesenchymal transition in the pathogenesis of idiopathic pulmonary fibrosis. Medicina. 2019;55:83.
CrossRef
Google scholar
|
[32] |
Shetty SS, Sharma M, Fonseca FP, et al. Signaling pathways promoting epithelial mesenchymal transition in oral submucous fibrosis and oral squamous cell carcinoma. Jpn Dent Sci Rev. 2020;56:97-108.
CrossRef
Google scholar
|
[33] |
Nieszporek A, Skrzypek K, Adamek G, et al. Molecular mechanisms of epithelial to mesenchymal transition in tumor metastasis. Acta Biochim Pol. 2019;66:509-520.
CrossRef
Google scholar
|
[34] |
Mylavarapu S, Kumar H, Kumari S, et al. Activation of epithelial–mesenchymal transition and altered β-catenin signaling in a novel Indian colorectal carcinoma cell line. Front Oncol. 2019;9:54.
CrossRef
Google scholar
|
[35] |
Razali RA, Lokanathan Y, Yazid MD, et al. Modulation of epithelial to mesenchymal transition signaling pathways by Olea Europaea and its active compounds. Int J Mol Sci. 2019;20:3492.
CrossRef
Google scholar
|
[36] |
Wang H, Zhong W, Zhao J, et al. Oleanolic acid inhibits epithelial–mesenchymal transition of hepatocellular carcinoma by promoting iNOS dimerization. Mol Cancer Ther. 2019;18:62-74.
CrossRef
Google scholar
|
[37] |
Karimi Roshan M, Soltani A, Soleimani A, et al. Role of AKT and mTOR signaling pathways in the induction of epithelial–mesenchymal transition (EMT) process. Biochimie. 2019;165:229-234.
CrossRef
Google scholar
|
[38] |
Jin W. Role of JAK/STAT3 signaling in the regulation of metastasis, the transition of cancer stem cells, and chemoresistance of cancer by epithelial–mesenchymal transition. Cells. 2020;9:217.
CrossRef
Google scholar
|
[39] |
Kumar A, Golani A, Kumar LD. EMT in breast cancer metastasis: an interplay of microRNAs, signaling pathways and circulating tumor cells. Front Biosci (Landmark Ed). 2020;25:979-1010.
CrossRef
Google scholar
|
[40] |
Shan G, Zhou X, Gu J, et al. Downregulated exosomal microRNA-148b-3p in cancer associated fibroblasts enhance chemosensitivity of bladder cancer cells by downregulating the Wnt/β-catenin pathway and upregulating PTEN. Cell Oncol (Dordr). 2021;44:45-59.
CrossRef
Google scholar
|
[41] |
Lai X, Li Q, Wu F, et al. Epithelial–mesenchymal transition and metabolic switching in cancer: lessons from somatic cell reprogramming. Front Cell Dev Biol. 2020;8:760.
CrossRef
Google scholar
|
[42] |
Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23:27-47.
CrossRef
Google scholar
|
[43] |
Hirschhaeuser F, Sattler UG, Mueller-Klieser W. Lactate: a metabolic key player in cancer. Cancer Res. 2011;71:6921-6925.
CrossRef
Google scholar
|
[44] |
Hamabe A, Konno M, Tanuma N, et al. Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial–mesenchymal transition. Proc Natl Acad Sci U S A. 2014;111:15526-15531.
CrossRef
Google scholar
|
[45] |
Jiang F, Ma S, Xue Y, et al. LDH-A promotes malignant progression via activation of epithelial-to-mesenchymal transition and conferring stemness in muscle-invasive bladder cancer. Biochem Biophys Res Commun. 2016;469:985-992.
CrossRef
Google scholar
|
[46] |
Morandi A, Taddei ML, Chiarugi P, et al. Targeting the metabolic reprogramming that controls epithelial-to-mesenchymal transition in aggressive tumors. Front Oncol. 2017;7:40.
CrossRef
Google scholar
|
[47] |
Attanasio F, Caldieri G, Giacchetti G, et al. Novel invadopodia components revealed by differential proteomic analysis. Eur J Cell Biol. 2011;90:115-127.
CrossRef
Google scholar
|
[48] |
Frisch SM, Schaller M, Cieply B. Mechanisms that link the oncogenic epithelial–mesenchymal transition to suppression of anoikis. J Cell Sci. 2013;126:21-29.
CrossRef
Google scholar
|
[49] |
Kamarajugadda S, Stemboroski L, Cai Q, et al. Glucose oxidation modulates anoikis and tumor metastasis. Mol Cell Biol. 2012;32:1893-1907.
CrossRef
Google scholar
|
[50] |
Blum R, Kloog Y. Metabolism addiction in pancreatic cancer. Cell Death Dis. 2014;5:e1065.
CrossRef
Google scholar
|
[51] |
Zhou G, Chiu D, Qin D, et al. The efficacy evaluation of cryosurgery in pancreatic cancer patients with the expression of CD44v6, integrin-β1, CA199, and CEA. Mol Biotechnol. 2012;52:59-67.
CrossRef
Google scholar
|
[52] |
Coelho RG, Fortunato RS, Carvalho DP. Metabolic reprogramming in thyroid carcinoma. Front Oncol. 2018;8:82.
CrossRef
Google scholar
|
[53] |
An J, Zhang Y, He J, et al. Lactate dehydrogenase A promotes the invasion and proliferation of pituitary adenoma. Sci Rep. 2017;7:4734.
CrossRef
Google scholar
|
[54] |
Zhang Y, Lin S, Chen Y, et al. LDH-A promotes epithelial–mesenchymal transition by upregulating ZEB2 in intestinal-type gastric cancer. Oncol Targets Ther. 2018;11:2363-2373.
CrossRef
Google scholar
|
[55] |
Rong Y, Wu W, Ni X, et al. Lactate dehydrogenase A is overexpressed in pancreatic cancer and promotes the growth of pancreatic cancer cells. Tumour Biol. 2013;34:1523-1530.
CrossRef
Google scholar
|
[56] |
Gaude E, Frezza C. Tissue-specific and convergent metabolic transformation of cancer correlates with metastatic potential and patient survival. Nat Commun. 2016;7:13041.
CrossRef
Google scholar
|
[57] |
Hardie RA, van Dam E, Cowley M, et al. Mitochondrial mutations and metabolic adaptation in pancreatic cancer. Cancer Metab. 2017;5:2.
CrossRef
Google scholar
|
[58] |
Kulawiec M, Owens KM, Singh KK. Cancer cell mitochondria confer apoptosis resistance and promote metastasis. Cancer Biol Ther. 2009;8:1378-1385.
CrossRef
Google scholar
|
[59] |
Mannelli M, Rapizzi E, Fucci R, et al. 15 years of paraganglioma: metabolism and pheochromocytoma/paraganglioma. Endocr Relat Cancer. 2015;22:T83-T90.
CrossRef
Google scholar
|
[60] |
Xiao M, Yang H, Xu W, et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 2012;26:1326-1338.
CrossRef
Google scholar
|
[61] |
Letouzé E, Martinelli C, Loriot C, et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell. 2013;23:739-752.
CrossRef
Google scholar
|
[62] |
Castro-Vega LJ, Buffet A, De Cubas AA, et al. Germline mutations in FH confer predisposition to malignant pheochromocytomas and paragangliomas. Hum Mol Genet. 2014;23:2440-2446.
CrossRef
Google scholar
|
[63] |
Clark GR, Sciacovelli M, Gaude E, et al. Germline FH mutations presenting with pheochromocytoma. J Clin Endocrinol Metab. 2014;99:E2046-E2050.
CrossRef
Google scholar
|
[64] |
Sciacovelli M, Gonçalves E, Johnson TI, et al. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature. 2016;537:544-547.
CrossRef
Google scholar
|
[65] |
Dalmau N, Jaumot J, Tauler R, Bedia C. Epithelial-to-mesenchymal transition involves triacylglycerol accumulation in DU145 prostate cancer cells. Mol Biosyst. 2015;11:3397-3406.
CrossRef
Google scholar
|
[66] |
Sánchez-Martínez R, Cruz-Gil S, Gómez de Cedrón M, et al. A link between lipid metabolism and epithelial–mesenchymal transition provides a target for colon cancer therapy. Oncotarget. 2015;6:38719-38736.
CrossRef
Google scholar
|
[67] |
Chajès V, Thiébaut AC, Rotival M, et al. Association between serum trans-monounsaturated fatty acids and breast cancer risk in the E3N-EPIC Study. Am J Epidemiol. 2008;167:1312-1320.
CrossRef
Google scholar
|
[68] |
Peck B, Schug ZT, Zhang Q, et al. Inhibition of fatty acid desaturation is detrimental to cancer cell survival in metabolically compromised environments. Cancer Metab. 2016;4:6.
CrossRef
Google scholar
|
[69] |
Kato S, Liberona MF, Cerda-Infante J, et al. Simvastatin interferes with cancer ‘stem-cell' plasticity reducing metastasis in ovarian cancer. Endocr Relat Cancer. 2018;25:821-836.
CrossRef
Google scholar
|
[70] |
Ramesh V, Brabletz T, Ceppi P. Targeting EMT in cancer with repurposed metabolic inhibitors. Trends Cancer. 2020;6:942-950.
CrossRef
Google scholar
|
[71] |
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281-297.
CrossRef
Google scholar
|
[72] |
Cai Y, Yu X, Hu S, et al. A brief review on the mechanisms of miRNA regulation. Genom Proteom Bioinform. 2009;7:147-154.
CrossRef
Google scholar
|
[73] |
van Roy F, Berx G. The cell–cell adhesion molecule E-cadherin. Cell Mol Life Sci. 2008;65:3756-3788.
CrossRef
Google scholar
|
[74] |
Ma L, Young J, Prabhala H, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010;12:247-256.
CrossRef
Google scholar
|
[75] |
Wang H, Wu Q, Zhang Y, et al. TGF-β1-induced epithelial–mesenchymal transition in lung cancer cells involves upregulation of miR-9 and downregulation of its target, E-cadherin. Cell Mol Biol Lett. 2017;22:22.
CrossRef
Google scholar
|
[76] |
Sun L, Yao Y, Liu B, et al. MiR-200b and miR-15b regulate chemotherapy-induced epithelial–mesenchymal transition in human tongue cancer cells by targeting BMI1. Oncogene. 2012;31:432-445.
CrossRef
Google scholar
|
[77] |
Wang J, Yao S, Diao Y, et al. miR-15b enhances the proliferation and migration of lung adenocarcinoma by targeting BCL2. Thorac Cancer. 2020;11:1396-1405.
CrossRef
Google scholar
|
[78] |
Wang J, Liu H, Tian L, et al. miR-15b inhibits the progression of glioblastoma cells through targeting insulin-like growth factor receptor 1. Horm Cancer. 2017;8:49-57.
CrossRef
Google scholar
|
[79] |
Cao M, Seike M, Soeno C, et al. MiR-23a regulates TGF-β-induced epithelial–mesenchymal transition by targeting E-cadherin in lung cancer cells. Int J Oncol. 2012;41:869-875.
CrossRef
Google scholar
|
[80] |
Xu H, Sun F, Li X, et al. Down-regulation of miR-23a inhibits high glucose-induced EMT and renal fibrogenesis by up-regulation of SnoN. Hum Cell. 2018;31:22-32.
CrossRef
Google scholar
|
[81] |
Zhang Z, Liu S, Shi R, et al. miR-27 promotes human gastric cancer cell metastasis by inducing epithelial-to-mesenchymal transition. Cancer Genet. 2011;204:486-491.
CrossRef
Google scholar
|
[82] |
Tan Y, Sangfelt O, Spruck C. The Fbxw7/hCdc4 tumor suppressor in human cancer. Cancer Lett. 2008;271:1-12.
CrossRef
Google scholar
|
[83] |
Gebeshuber CA, Zatloukal K, Martinez J. miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep. 2009;10:400-405.
CrossRef
Google scholar
|
[84] |
Luna C, Li G, Qiu J, et al. Role of miR-29b on the regulation of the extracellular matrix in human trabecular meshwork cells under chronic oxidative stress. Mol Vis. 2009;15:2488-2497
|
[85] |
Zhang J, Zhang H, Liu J, et al. miR-30 inhibits TGF-β1-induced epithelial-to-mesenchymal transition in hepatocyte by targeting Snail1. Biochem Biophys Res Commun. 2012;417:1100-1105.
CrossRef
Google scholar
|
[86] |
Martello G, Rosato A, Ferrari F, et al. A microRNA targeting dicer for metastasis control. Cell. 2010;141:1195-1207.
CrossRef
Google scholar
|
[87] |
Ben Q, Sun Y, Liu J, et al. Nicotine promotes tumor progression and epithelial–mesenchymal transition by regulating the miR-155-5p/NDFIP1 axis in pancreatic ductal adenocarcinoma. Pancreatology. 2020;20:698-708.
CrossRef
Google scholar
|
[88] |
Cui L, Lyu Y, Jin X, et al. miR-194 suppresses epithelial–mesenchymal transition of retinal pigment epithelial cells by directly targeting ZEB1. Ann Transl Med. 2019;7:751.
CrossRef
Google scholar
|
[89] |
Zhang X, Wei C, Li J, et al. MicroRNA-194 represses glioma cell epithelial-to-mesenchymal transition by targeting Bmi1. Oncol Rep. 2017;37:1593-1600.
CrossRef
Google scholar
|
[90] |
Das R, Gregory PA, Fernandes RC, et al. MicroRNA-194 promotes prostate cancer metastasis by inhibiting SOCS2. Cancer Res. 2017;77:1021-1034.
CrossRef
Google scholar
|
[91] |
Korpal M, Lee ES, Hu G, et al. The miR-200 family inhibits epithelial–mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;28:14910-14914.
CrossRef
Google scholar
|
[92] |
Saydam O, Shen Y, Würdinger T, et al. Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/beta-catenin signaling pathway. Mol Cell Biol. 2009;29:5923-5940.
CrossRef
Google scholar
|
[93] |
Park SM, Gaur AB, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894-907.
CrossRef
Google scholar
|
[94] |
Fan Y, Wang K. miR205 suppresses cell migration, invasion and EMT of colon cancer by targeting mouse double minute 4. Mol Med Rep. 2020;22:633-642.
CrossRef
Google scholar
|
[95] |
Liang YK, Lin HY, Dou XW, et al. MiR-221/222 promote epithelial–mesenchymal transition by targeting Notch3 in breast cancer cell lines. NPJ Breast Cancer. 2018;4:20.
CrossRef
Google scholar
|
[96] |
Stinson S, Lackner MR, Adai AT, et al. TRPS1 targeting by miR-221/222 promotes the epithelial-to-mesenchymal transition in breast cancer. Sci Signal. 2011;4:ra41.
CrossRef
Google scholar
|
[97] |
Hwang MS, Yu N, Stinson SY, et al. miR-221/222 targets adiponectin receptor 1 to promote the epithelial-to-mesenchymal transition in breast cancer. PLoS One. 2013;8:e66502.
CrossRef
Google scholar
|
[98] |
Zhang X, Xu X, Ge G, et al. miR498 inhibits the growth and metastasis of liver cancer by targeting ZEB2. Oncol Rep. 2019;41:1638-1648.
CrossRef
Google scholar
|
[99] |
Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155-159.
CrossRef
Google scholar
|
[100] |
Ørom UA, Derrien T, Beringer M, et al. Long noncoding RNAs with enhancer-like function in human cells. Cell. 2010;143:46-58.
CrossRef
Google scholar
|
[101] |
Richards EJ, Zhang G, Li ZP, et al. Long non-coding RNAs (LncRNA) regulated by transforming growth factor (TGF) β: lncRNA-hit-mediated TGFβ-induced epithelial to mesenchymal transition in mammary epithelia. J Biol Chem. 2015;290:6857-6867.
CrossRef
Google scholar
|
[102] |
Li J, Liu H, Yu J, et al. Chemoresistance to doxorubicin induces epithelial–mesenchymal transition via upregulation of transforming growth factor β signaling in HCT116 colon cancer cells. Mol Med Rep. 2015;12:192-198.
CrossRef
Google scholar
|
[103] |
Yuan JH, Yang F, Wang F, et a. A long noncoding RNA activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell. 2014;25:666-681.
CrossRef
Google scholar
|
[104] |
Zhou M, Hou Y, Yang G, et al. LncRNA-Hh strengthen cancer stem cells generation in twist-positive breast cancer via activation of hedgehog signaling pathway. Stem Cells. 2016;34:55-66.
CrossRef
Google scholar
|
[105] |
Shi X, Sun M, Liu H, et al. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett. 2013;339:159-166.
CrossRef
Google scholar
|
[106] |
Hirata H, Hinoda Y, Shahryari V, et al. Long noncoding RNA MALAT1 promotes aggressive renal cell carcinoma through Ezh2 and interacts with miR-205. Cancer Res. 2015;75:1322-1331.
CrossRef
Google scholar
|
[107] |
Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071-1076.
CrossRef
Google scholar
|
[108] |
Kogo R, Shimamura T, Mimori K, et al. Long noncoding RNA Hotair regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res. 2011;71:6320-6326.
CrossRef
Google scholar
|
[109] |
Zhang H, Cai K, Wang J, et al. MiR-7, inhibited indirectly by lincRNA Hotair, directly inhibits SETDB1 and reverses the EMT of breast cancer stem cells by downregulating the STAT3 pathway. Stem Cells. 2014;32:2858-2868.
CrossRef
Google scholar
|
[110] |
Ono H, Motoi N, Nagano H, et al. Long noncoding RNA HOTAIR is relevant to cellular proliferation, invasiveness, and clinical relapse in small-cell lung cancer. Cancer Med. 2014;3:632-642.
CrossRef
Google scholar
|
[111] |
Wu Y, Zhang L, Wang Y, et al. Long noncoding RNA HOTAIR involvement in cancer. Tumour Biol. 2014;35:9531-9538.
CrossRef
Google scholar
|
[112] |
Liu YW, Sun M, Xia R, et al. LincHOTAIR epigenetically silences miR34a by binding to PRC2 to promote the epithelial-to-mesenchymal transition in human gastric cancer. Cell Death Dis. 2015;6:e1802.
CrossRef
Google scholar
|
[113] |
Chiyomaru T, Fukuhara S, Saini S, et al. Long non-coding RNA HOTAIR is targeted and regulated by miR-141 in human cancer cells. J Biol Chem. 2014;289:12550-12565.
CrossRef
Google scholar
|
[114] |
Guo R, Wu Z, Wang J, et al. Development of a non-coding-RNA-based EMT/CSC inhibitory nanomedicine for in vivo treatment and monitoring of HCC. Adv Sci (Weinh). 2019;6:1801885.
CrossRef
Google scholar
|
[115] |
Liu QL, Luo M, Huang C, et al. Epigenetic regulation of epithelial to mesenchymal transition in the cancer metastatic cascade: implications for cancer therapy. Front Oncol. 2021;11:657546.
CrossRef
Google scholar
|
[116] |
Lee JY, Kong G. Roles and epigenetic regulation of epithelial–mesenchymal transition and its transcription factors in cancer initiation and progression. Cell Mol Life Sci. 2016;73:4643-4660.
CrossRef
Google scholar
|
[117] |
Cardenas H, Vieth E, Lee J, et al. TGF-β induces global changes in DNA methylation during the epithelial-to-mesenchymal transition in ovarian cancer cells. Epigenetics. 2014;9:1461-1472.
CrossRef
Google scholar
|
[118] |
Lin YT, Wu KJ. Epigenetic regulation of epithelial–mesenchymal transition: focusing on hypoxia and TGF-β signaling. J Biomed Sci. 2020;27:39.
CrossRef
Google scholar
|
[119] |
Si W, Huang W, Zheng Y, et al. Dysfunction of the reciprocal feedback loop between GATA3-and ZEB2-nucleated repression programs contributes to breast cancer metastasis. Cancer Cell. 2015;27:822-836.
CrossRef
Google scholar
|
[120] |
Pistore C, Giannoni E, Colangelo T, et al. DNA methylation variations are required for epithelial-to-mesenchymal transition induced by cancer-associated fibroblasts in prostate cancer cells. Oncogene. 2017;36:5551-5566.
CrossRef
Google scholar
|
[121] |
Serrano-Gomez SJ, Maziveyi M, Alahari SK. Regulation of epithelial–mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer. 2016;15:18.
CrossRef
Google scholar
|
[122] |
Chung VY, Tan TZ, Ye J, et al. The role of GRHL2 and epigenetic remodeling in epithelial–mesenchymal plasticity in ovarian cancer cells. Commun Biol. 2019;2:272.
CrossRef
Google scholar
|
[123] |
Skrypek N, Goossens S, De Smedt E, et al. Epithelial-to-mesenchymal transition: epigenetic reprogramming driving cellular plasticity. Trends Genet. 2017;33:943-959.
CrossRef
Google scholar
|
[124] |
Dong B, Qiu Z, Wu Y. Tackle epithelial–mesenchymal transition with epigenetic drugs in cancer. Front Pharmacol. 2020;11:596239.
CrossRef
Google scholar
|
[125] |
Eckschlager T, Plch J, Stiborova M, et al. Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci. 2017;18:1414.
CrossRef
Google scholar
|
[126] |
Shivji GG, Dhar R, Devi A. Role of exosomes and its emerging therapeutic applications in the pathophysiology of non-infectious diseases. Biomarkers. 2022;27:534-548.
CrossRef
Google scholar
|
[127] |
Kumar S, Dhar R, Kumar LBSS, et al. Theranostic signature of tumor-derived exosomes in cancer. Med Oncol. 2023;40:321.
CrossRef
Google scholar
|
[128] |
You J, Li M, Cao LM, et al. Snail1-dependent cancer-associated fibroblasts induce epithelial–mesenchymal transition in lung cancer cells via exosomes. QJM. 2019;112:581-590.
CrossRef
Google scholar
|
[129] |
Hardin H, Helein H, Meyer K, et al. Thyroid cancer stem-like cell exosomes: regulation of EMT via transfer of lncRNAs. Lab Invest. 2018;98:1133-1142.
CrossRef
Google scholar
|
[130] |
Dhar R, Devi A, Gorai S, et al. Exosome and epithelial–mesenchymal transition: a complex secret of cancer progression. J Cell Mol Med. 2023;27:1603-1607.
CrossRef
Google scholar
|
[131] |
Tian T, Han J, Huang J, et al. Hypoxia-induced intracellular and extracellular heat shock protein gp96 increases paclitaxel-resistance and facilitates immune evasion in breast cancer. Front Oncol. 2021;11:784777.
CrossRef
Google scholar
|
[132] |
Goulet CR, Champagne A, Bernard G, et al. Cancer-associated fibroblasts induce epithelial–mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling. BMC Cancer. 2019;19:137.
CrossRef
Google scholar
|
[133] |
García-Heredia JM, Otero-Albiol D, Pérez M, et al. Breast tumor cells promotes the horizontal propagation of EMT, stemness, and metastasis by transferring the MAP17 protein between subsets of neoplastic cells. Oncogenesis. 2020;9:96.
CrossRef
Google scholar
|
[134] |
Li K, Liu T, Chen J, et al. Survivin in breast cancer-derived exosomes activates fibroblasts by up-regulating SOD1, whose feedback promotes cancer proliferation and metastasis. J Biol Chem. 2020;295:13737-13752.
CrossRef
Google scholar
|
[135] |
Hoshino A, Costa-Silva B, Shen TL, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329-335.
CrossRef
Google scholar
|
[136] |
Tian W, Liu S, Li B. Potential role of exosomes in cancer metastasis. Biomed Res Int. 2019;2019:4649705.
CrossRef
Google scholar
|
[137] |
Ghosh S, Dhar R, Gurudas Shivji G, et al. Clinical impact of exosomes in colorectal cancer metastasis. ACS Appl Bio Mater. 2023;6:2576-2590.
CrossRef
Google scholar
|
[138] |
Hoque S, Dhar R, Kar R, et al. Cancer stem cells (CSCs): key player of radiotherapy resistance and its clinical significance. Biomarkers. 2023;28:139-151.
CrossRef
Google scholar
|
[139] |
Ge Q, Zhou Y, Lu J, et al. miRNA in plasma exosome is stable under different storage conditions. Molecules. 2014;19(2):1568-1575.
CrossRef
Google scholar
|
[140] |
Yang B, Feng X, Liu H, et al. High-metastatic cancer cells derived exosomal miR92a-3p promotes epithelial–mesenchymal transition and metastasis of low-metastatic cancer cells by regulating PTEN/Akt pathway in hepatocellular carcinoma. Oncogene. 2020;39:6529-6543.
CrossRef
Google scholar
|
[141] |
Wang H, Wei H, Wang J, et al. MicroRNA-181d-5p-containing exosomes derived from CAFs promote EMT by regulating CDX2/HOXA5 in breast cancer. Mol Ther Nucleic Acids. 2020;19:654-667.
CrossRef
Google scholar
|
[142] |
Zhao S, Mi Y, Guan B, et al. Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J Hematol Oncol. 2020;13:156.
CrossRef
Google scholar
|
[143] |
Wang D, Wang X, Si M, et al. Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Lett. 2020;474:36-52.
CrossRef
Google scholar
|
[144] |
Wu P, Cai J, Chen Q, et al. Lnc-TALC promotes O6-methylguanine-DNA methyltransferase expression via regulating the c-Met pathway by competitively binding with miR-20b-3p. Nat Commun. 2019;10:2045.
CrossRef
Google scholar
|
[145] |
Zhou L, Li J, Tang Y, et al. Exosomal LncRNA LINC00659 transferred from cancer-associated fibroblasts promotes colorectal cancer cell progression via miR-342-3p/ANXA2 axis. J Transl Med. 2021;19:8.
CrossRef
Google scholar
|
[146] |
Liang ZX, Liu HS, Wang FW, et al. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization. Cell Death Dis. 2019;10:829.
CrossRef
Google scholar
|
[147] |
Huang CS, Ho JY, Chiang JH, et al. Exosome-derived LINC00960 and LINC02470 promote the epithelial–mesenchymal transition and aggressiveness of bladder cancer cells. Cells. 2020;9:1419.
CrossRef
Google scholar
|
[148] |
Zhang X, Wang S, Wang H, et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol Cancer. 2019;18:20.
CrossRef
Google scholar
|
[149] |
Chen T, Liu Y, Li C, et al. Tumor-derived exosomal circFARSA mediates M2 macrophage polarization via the PTEN/PI3K/AKT pathway to promote non-small cell lung cancer metastasis. Cancer Treat Res Commun. 2021;28:100412.
CrossRef
Google scholar
|
[150] |
Wei S, Zheng Y, Jiang Y, et al. The circRNA circPTPRA suppresses epithelial–mesenchymal transitioning and metastasis of NSCLC cells by sponging miR-96-5p. EBioMedicine. 2019;44:182-193.
CrossRef
Google scholar
|
[151] |
Hong W, Xue M, Jiang J, et al. Circular RNA circ-CPA4/let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC). J Exp Clin Cancer Res. 2020;39:149.
CrossRef
Google scholar
|
[152] |
Chen J, Rong N, Liu M, et al. The exosome-circ_0001359 derived from cigarette smoke exposed-prostate stromal cells promotes epithelial cells collagen deposition and primary ciliogenesis. Toxicol Appl Pharmacol. 2022;435:115850.
CrossRef
Google scholar
|
[153] |
Bhattacharya B, Dhar R, Mukherjee S, et al. Exosome DNA: an untold story of cancer. Clin Transl Disc. 2023;3:e218.
CrossRef
Google scholar
|
[154] |
Dhar R, Gorai S, Devi A, et al. Exosome: a megastar of future cancer personalized and precision medicine. Clin Transl Disc. 2023;3:e208.
CrossRef
Google scholar
|
[155] |
Krishnan A, Bhattacharya B, Mandal D, et al. Salivary exosomes: a theranostics secret of oral cancer—correspondence. Int J Surg. 2022;108: 106990.
CrossRef
Google scholar
|
[156] |
Dhar R, Mukerjee N, Mukherjee D, et al. Plant-derived exosomes: a new dimension in cancer therapy. Phytother Res. 2023.
CrossRef
Google scholar
|
[157] |
Dhar R, Bhattacharya B, Mandal D, et al. Exosome-based cancer vaccine: a cutting-edge approach—correspondence. Int J Surg. 2022;108:106993.
CrossRef
Google scholar
|
[158] |
Dhar R, Gorai S, Devi A, et al. Decoding of exosome heterogeneity for cancer theranostics. Clin Transl Med. 2023;13:e1288.
CrossRef
Google scholar
|
[159] |
Dhar R, Devi A. Exosomes barcoding: a smart approach for cancer liquid biopsy. J Liquid Biopsy. 2023;2:100129.
CrossRef
Google scholar
|
[160] |
Gundamaraju R, Lu W, Paul MK, et al. Autophagy and EMT in cancer and metastasis: who controls whom? Biochim Biophys Acta Mol Basis Dis. 2022;1868:166431.
CrossRef
Google scholar
|
[161] |
Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51:27-41.
CrossRef
Google scholar
|
[162] |
Bocci F, Gearhart-Serna L, Boareto M, et al. Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc Natl Acad Sci U S A. 2019;116:148-157.
CrossRef
Google scholar
|
[163] |
Aiello NM, Kang Y. Context-dependent EMT programs in cancer metastasis. J Exp Med. 2019;216:1016-1026.
CrossRef
Google scholar
|
[164] |
Aggarwal V, Montoya CA, Donnenberg VS, et al. Interplay between tumor microenvironment and partial EMT as the driver of tumor progression. iScience. 2021;24:102113.
CrossRef
Google scholar
|
[165] |
Taki M, Abiko K, Ukita M, et al. Tumor immune microenvironment during epithelial–mesenchymal transition. Clin Cancer Res. 2021;27:4669-4679.
CrossRef
Google scholar
|
[166] |
Gómez-Valenzuela F, Escobar E, Pérez-Tomás R, et al. The inflammatory profile of the tumor microenvironment, orchestrated by cyclooxygenase-2, promotes epithelial–mesenchymal transition. Front Oncol. 2021;11:686792.
CrossRef
Google scholar
|
[167] |
Saxena K, Jolly MK, Balamurugan K. Hypoxia, partial EMT and collective migration: emerging culprits in metastasis. Transl Oncol. 2020;13:100845.
CrossRef
Google scholar
|
[168] |
Lee SY, Ju MK, Jeon HM, et al. Reactive oxygen species induce epithelial–mesenchymal transition, glycolytic switch, and mitochondrial repression through the Dlx2/Snail signaling pathways in MCF7 cells. Mol Med Rep. 2019;20:2339-2346.
CrossRef
Google scholar
|
[169] |
Steinbichler TB, Savic D, Dudás J, et al. Cancer stem cells and their unique role in metastatic spread. Semin Cancer Biol. 2020;60:148-156.
CrossRef
Google scholar
|
[170] |
Arnold CR, Mangesius J, Skvortsova II, et al. The role of cancer stem cells in radiation resistance. Front Oncol. 2020;10:164.
CrossRef
Google scholar
|
[171] |
Shakib H, Rajabi S, Dehghan MH, et al. Epithelial-to-mesenchymal transition in thyroid cancer: a comprehensive review. Endocrine. 2019;66:435-455.
CrossRef
Google scholar
|
[172] |
Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14:611-629.
CrossRef
Google scholar
|
[173] |
Kalluri R, Weinberg RA. The basics of epithelial–mesenchymal transition. J Clin Invest. 2009;119:1420-1428.
CrossRef
Google scholar
|
[174] |
Zeisberg M, Shah AA, Kalluri R. Bone morphogenic protein-7 induces mesenchymal to epithelial transition in adult renal fibroblasts and facilitates regeneration of injured kidney. J Biol Chem. 2005;280:8094-8100.
CrossRef
Google scholar
|
[175] |
Terry S, Savagner P, Ortiz-Cuaran S, et al. New insights into the role of EMT in tumor immune escape. Mol Oncol. 2017;11:824-846.
CrossRef
Google scholar
|
[176] |
Smit MA, Peeper DS. Deregulating EMT and senescence: double impact by a single twist. Cancer Cell. 2008;14:5-7.
CrossRef
Google scholar
|
[177] |
Weinberg RA. Twisted epithelial–mesenchymal transition blocks senescence. Nat Cell Biol. 2008;10:1021-1023.
CrossRef
Google scholar
|
[178] |
Arima Y, Inoue Y, Shibata T, et al. Rb depletion results in deregulation of E-cadherin and induction of cellular phenotypic changes that are characteristic of the epithelial-to-mesenchymal transition. Cancer Res. 2008;68:5104-5112.
CrossRef
Google scholar
|
[179] |
Morel AP, Lièvre M, Thomas C, et al. Generation of breast cancer stem cells through epithelial–mesenchymal transition. PLoS One. 2008;3(8):e2888.
CrossRef
Google scholar
|
[180] |
Guo W, Keckesova Z, Donaher JL, et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell. 2012;148:1015-1028.
CrossRef
Google scholar
|
[181] |
Wang X, Zheng M, Liu G, et al. Krüppel-like factor 8 induces epithelial to mesenchymal transition and epithelial cell invasion. Cancer Res. 2007;67:7184-7193.
CrossRef
Google scholar
|
[182] |
Lu Z, Ghosh S, Wang Z, et al. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell. 2003;4:499-515.
CrossRef
Google scholar
|
[183] |
Pastushenko I, Blanpain C. EMT transition states during tumor progression and metastasis. Trends Cell Biol. 2019;29:212-226.
CrossRef
Google scholar
|
[184] |
Thiery JP, Acloque H, Huang RY, et al. Epithelial–mesenchymal transitions in development and disease. Cell. 2009;139:871-890.
CrossRef
Google scholar
|
[185] |
Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147:275-292.
CrossRef
Google scholar
|
[186] |
Kim DH, Xing T, Yang Z, et al. Epithelial mesenchymal transition in embryonic development, tissue repair and cancer: a comprehensive overview. J Clin Med. 2017;7:1.
CrossRef
Google scholar
|
[187] |
Thiery JP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442-454.
CrossRef
Google scholar
|
[188] |
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178-196.
CrossRef
Google scholar
|
[189] |
Yang J, Antin P, Berx G, et al. EMT International Association (TEMTIA). Guidelines and definitions for research on epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2020;21:341-352.
CrossRef
Google scholar
|
[190] |
Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science. 2020;368:eaaw5473.
CrossRef
Google scholar
|
[191] |
Shi ZD, Pang K, Wu ZX, et al. Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new strategies. Signal Transduct Target Ther. 2023;8:113.
CrossRef
Google scholar
|
[192] |
Ribatti D, Tamma R, Annese T. Epithelial–mesenchymal transition in cancer: a historical overview. Transl Oncol. 2020;13:100773.
CrossRef
Google scholar
|
[193] |
Abba ML, Patil N, Leupold JH, et al. MicroRNA regulation of epithelial to mesenchymal transition. J Clin Med. 2016;5:8.
CrossRef
Google scholar
|
[194] |
Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486-541.
CrossRef
Google scholar
|
[195] |
Chen J, Han Q, Pei D. EMT and MET as paradigms for cell fate switching. J Mol Cell Biol. 2012;4:66-69.
CrossRef
Google scholar
|
[196] |
Radisky DC. Epithelial–mesenchymal transition. J Cell Sci. 2005;118:4325-4326.
CrossRef
Google scholar
|
[197] |
Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172:973-981.
CrossRef
Google scholar
|
[198] |
De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13:97-110.
CrossRef
Google scholar
|
[199] |
Kaufhold S, Bonavida B. Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention. J Exp Clin Cancer Res. 2014;33:62.
CrossRef
Google scholar
|
[200] |
Vu T, Datta PK. Regulation of EMT in colorectal cancer: a culprit in metastasis. Cancers (Basel). 2017;9:171.
CrossRef
Google scholar
|
[201] |
Lin YT, Wu KJ. Epigenetic regulation of epithelial–mesenchymal transition: focusing on hypoxia and TGF-β signaling. J Biomed Sci. 2020;2:39.
CrossRef
Google scholar
|
[202] |
Qin S, Jiang J, Lu Y, et al. Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduct Target Ther. 2020;5:228.
CrossRef
Google scholar
|
[203] |
Carnino JM, Ni K, Jin Y. Post-translational modification regulates formation and cargo-loading of extracellular vesicles. Front Immunol. 2020;11:948.
CrossRef
Google scholar
|
[204] |
Jiang J, Wang K, Chen Y, et al. Redox regulation in tumor cell epithelial–mesenchymal transition: molecular basis and therapeutic strategy. Signal Transduct Target Ther. 2017;2:17036.
CrossRef
Google scholar
|
[205] |
Nisticò P, Bissell MJ, Radisky DC. Epithelial–mesenchymal transition: general principles and pathological relevance with special emphasis on the role of matrix metalloproteinases. Cold Spring Harb Perspect Biol. 2012;4:a011908.
CrossRef
Google scholar
|
[206] |
Gaponova AV, Rodin S, Mazina AA, et al. Epithelial–mesenchymal transition: role in cancer progression and the perspectives of antitumor treatment. Acta Nat. 2020;12:4-23.
CrossRef
Google scholar
|
[207] |
Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol. 2022;15:129.
CrossRef
Google scholar
|
[208] |
Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9:265-273.
CrossRef
Google scholar
|
[209] |
Reymond N, d'Água BB, Ridley AJ. Crossing the endothelial barrier during metastasis. Nat Rev Cancer. 2013;13:858-870.
CrossRef
Google scholar
|
[210] |
Lok C. Imaging: cancer caught in the act. Nature. 2014;509:148-149.
CrossRef
Google scholar
|
[211] |
Pignatelli J, Bravo-Cordero JJ, Roh-Johnson M, et al. Macrophage-dependent tumor cell transendothelial migration is mediated by Notch1/MenaINV-initiated invadopodium formation. Sci Rep. 2016;6:37874.
CrossRef
Google scholar
|
[212] |
Harney AS, Arwert EN, Entenberg D, et al. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov. 2015;5:932-943.
CrossRef
Google scholar
|
[213] |
Hoeres T, Wilhelm M, Smetak M, et al. Immune cells regulate VEGF signalling via release of VEGF and antagonistic soluble VEGF receptor-1. Clin Exp Immunol. 2018;192:54-67.
CrossRef
Google scholar
|
[214] |
Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology. 2005;69:4-10.
CrossRef
Google scholar
|
[215] |
Viski C, König C, Kijewska M, et al. Endosialin-expressing pericytes promote metastatic dissemination. Cancer Res. 2016;76:5313-5325.
CrossRef
Google scholar
|
[216] |
Eckert MA, Lwin TM, Chang AT, et al. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell. 2011;19:372-386.
CrossRef
Google scholar
|
[217] |
Eckert MA, Yang J. Targeting invadopodia to block breast cancer metastasis. Oncotarget. 2011;2:562-568.
CrossRef
Google scholar
|
[218] |
Cheung KJ, Gabrielson E, Werb Z, et al. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell. 2013;155:1639-1651.
CrossRef
Google scholar
|
[219] |
Aceto N, Bardia A, Miyamoto DT, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014;158:1110-1122.
CrossRef
Google scholar
|
[220] |
Pantel K, Speicher MR. The biology of circulating tumor cells. Oncogene. 2016;35:1216-1224.
CrossRef
Google scholar
|
[221] |
Pantel K, Alix-Panabières C, Riethdorf S. Cancer micrometastases. Nat Rev Clin Oncol. 2009;6:339-351.
CrossRef
Google scholar
|
[222] |
Cristofanilli M, Budd GT, Ellis MJ, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351:781-791.
CrossRef
Google scholar
|
[223] |
idard FC, Peeters DJ, Fehm T, et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol. 2014;15:406-414.
CrossRef
Google scholar
|
[224] |
Alix-Panabières C, Mader S, Pantel K. Epithelial–mesenchymal plasticity in circulating tumor cells. J Mol Med (Berl). 2017;95:133-142.
CrossRef
Google scholar
|
[225] |
Alix-Panabières C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clin Chem. 2013;59:110-118.
CrossRef
Google scholar
|
[226] |
Barriere G, Fici P, Gallerani G, et al. Circulating tumor cells and epithelial, mesenchymal and stemness markers: characterization of cell subpopulations. Ann Transl Med. 2014;2:109.
CrossRef
Google scholar
|
[227] |
Khoo BL, Lee SC, Kumar P, et al. Short-term expansion of breast circulating cancer cells predicts response to anti-cancer therapy. Oncotarget. 2015;6:15578-15593.
CrossRef
Google scholar
|
[228] |
Mego M, Mani SA, Lee BN, et al. Expression of epithelial–mesenchymal transition-inducing transcription factors in primary breast cancer: the effect of neoadjuvant therapy. Int J Cancer. 2012;130:808-816.
CrossRef
Google scholar
|
[229] |
Fischer KR, Durrans A, Lee S, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 2015;527:472-476.
CrossRef
Google scholar
|
[230] |
Zheng X, Carstens JL, Kim J, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature. 2015;527:525-530.
CrossRef
Google scholar
|
[231] |
Tsai JH, Donaher JL, Murphy DA, et al. Spatiotemporal regulation of epithelial–mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell. 2012;22:725-736.
CrossRef
Google scholar
|
[232] |
Mittal V. Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol. 2018;13:395-412.
CrossRef
Google scholar
|
[233] |
Nieto MA, Huang RY, Jackson RA, et al. EMT: 2016. Cell. 2016;166:21-45.
CrossRef
Google scholar
|
[234] |
Chao Y, Wu Q, Acquafondata M, et al. Partial mesenchymal to epithelial reverting transition in breast and prostate cancer metastases. Cancer Microenviron. 2012;5:19-28.
CrossRef
Google scholar
|
[235] |
Rodriguez FJ, Lewis-Tuffin LJ, Anastasiadis PZ. E-cadherin's dark side: possible role in tumor progression. Biochim Biophys Acta. 2012;1826:23-31.
CrossRef
Google scholar
|
[236] |
Kowalski PJ, Rubin MA, Kleer CG. E-cadherin expression in primary carcinomas of the breast and its distant metastases. Breast Cancer Res. 2003;5:R217-R222.
CrossRef
Google scholar
|
[237] |
Kleer CG, van Golen KL, Braun T, et al. Persistent E-cadherin expression in inflammatory breast cancer. Mod Pathol. 2001;14:458-464.
CrossRef
Google scholar
|
[238] |
Colpaert CG, Vermeulen PB, Benoy I, et al. Inflammatory breast cancer shows angiogenesis with high endothelial proliferation rate and strong E-cadherin expression. Br J Cancer. 2003;88:718-725.
CrossRef
Google scholar
|
[239] |
Gong Y. Pathologic aspects of inflammatory breast cancer: Part 2. Biologic insights into its aggressive phenotype. Semin Oncol. 2008;35:33-40.
CrossRef
Google scholar
|
[240] |
Gao D, Joshi N, Choi H, et al. Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Res. 2012;72:1384-1394.
CrossRef
Google scholar
|
[241] |
Esposito M, Mondal N, Greco TM, et al. Bone vascular niche E-selectin induces mesenchymal–epithelial transition and Wnt activation in cancer cells to promote bone metastasis. Nat Cell Biol. 2019;21:627-639.
CrossRef
Google scholar
|
[242] |
Sundfeldt K, Piontkewitz Y, Ivarsson K, et al. E-cadherin expression in human epithelial ovarian cancer and normal ovary. Int J Cancer. 1997;74:275-280.
CrossRef
Google scholar
|
[243] |
Davidson B, Berner A, Nesland JM, et al. E-cadherin and alpha-, beta-, and gamma-catenin protein expression is up-regulated in ovarian carcinoma cells in serous effusions. J Pathol. 2000;192(4):460-469.
CrossRef
Google scholar
|
[244] |
Rhim AD, Mirek ET, Aiello NM, et al. EMT and dissemination precede pancreatic tumor formation. Cell. 2012;148:349-361.
CrossRef
Google scholar
|
[245] |
Pei D, Shu X, Gassama-Diagne A, et al. Mesenchymal–epithelial transition in development and reprogramming. Nat Cell Biol. 2019;21:44-53.
CrossRef
Google scholar
|
[246] |
Yao D, Dai C, Peng S. Mechanism of the mesenchymal–epithelial transition and its relationship with metastatic tumor formation. Mol Cancer Res. 2011;9:1608-1620.
CrossRef
Google scholar
|
[247] |
Frisch SM, Farris JC, Pifer PM. Roles of Grainyhead-like transcription factors in cancer. Oncogene. 2017;36:6067-6073.
CrossRef
Google scholar
|
[248] |
Roca H, Hernandez J, Weidner S, et al. Transcription factors OVOL1 and OVOL2 induce the mesenchymal to epithelial transition in human cancer. PLoS One. 2013;8:e76773.
CrossRef
Google scholar
|
[249] |
May CD, Sphyris N, Evans KW, et al. Epithelial–mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. Breast Cancer Res. 2011;13:202.
CrossRef
Google scholar
|
[250] |
Scheel C, Weinberg RA. Phenotypic plasticity and epithelial–mesenchymal transitions in cancer and normal stem cells? Int J Cancer. 2011;129:2310-2314.
CrossRef
Google scholar
|
[251] |
Korpal M, Ell BJ, Buffa FM, et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med. 2011;17:1101-1108.
CrossRef
Google scholar
|
[252] |
Wang Z, Li Y, Kong D, et al. Acquisition of epithelial–mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res. 2009;69:2400-2407.
CrossRef
Google scholar
|
[253] |
Fan F, Samuel S, Evans KW, et al. Overexpression of snail induces epithelial–mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells. Cancer Med. 2012;1:5-16.
CrossRef
Google scholar
|
[254] |
Rasheed ZA, Yang J, Wang Q, et al. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst. 2010;102(5):340-351.
CrossRef
Google scholar
|
[255] |
Chen Y, Shao Z, Jiang E, et al. CCL21/CCR7 interaction promotes EMT and enhances the stemness of OSCC via a JAK2/STAT3 signaling pathway. J Cell Physiol. 2020;235:5995-6009.
CrossRef
Google scholar
|
[256] |
Akbar MW, Isbilen M, Belder N, et al. A stemness and EMT based gene expression signature identifies phenotypic plasticity and is a predictive but not prognostic biomarker for breast cancer. J Cancer. 2020;11:949-961.
CrossRef
Google scholar
|
[257] |
Ding Q, Miyazaki Y, Tsukasa K, et al. CD133 facilitates epithelial–mesenchymal transition through interaction with the ERK pathway in pancreatic cancer metastasis. Mol Cancer. 2014;13:15.
CrossRef
Google scholar
|
[258] |
Oskarsson T, Batlle E, Massagué J. Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell. 2014;14:306-321.
CrossRef
Google scholar
|
[259] |
Vega S, Morales AV, Ocaña OH, et al. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 2004;18:1131-1143.
CrossRef
Google scholar
|
[260] |
Emanuele MJ, Ciccia A, Elia AE, et al. Proliferating cell nuclear antigen (PCNA)-associated KIAA0101/PAF15 protein is a cell cycle-regulated anaphase-promoting complex/cyclosome substrate. Proc Natl Acad Sci U S A. 2011;108:9845-9850.
CrossRef
Google scholar
|
[261] |
Blick T, Widodo E, Hugo H, et al. Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin Exp Metastasis. 2008;25:629-642.
CrossRef
Google scholar
|
[262] |
Weidenfeld K, Schif-Zuck S, Abu-Tayeh H, et al. Dormant tumor cells expressing LOXL2 acquire a stem-like phenotype mediating their transition to proliferative growth. Oncotarget. 2016;7:71362-71377.
CrossRef
Google scholar
|
[263] |
Ansieau S, Bastid J, Doreau A, et al. Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell. 2008;14:79-89.
CrossRef
Google scholar
|
[264] |
Ohashi S, Natsuizaka M, Wong GS, et al. Epidermal growth factor receptor and mutant p53 expand an esophageal cellular subpopulation capable of epithelial-to-mesenchymal transition through ZEB transcription factors. Cancer Res. 2010;70:4174-4184.
CrossRef
Google scholar
|
[265] |
Coppé JP, Patil CK, Rodier F, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6:2853-2868.
CrossRef
Google scholar
|
[266] |
Yuan A, Chen JJ, Yao PL, et al. The role of interleukin-8 in cancer cells and microenvironment interaction. Front Biosci. 2005;10:853-865.
CrossRef
Google scholar
|
[267] |
Laberge RM, Awad P, Campisi J, et al. Epithelial–mesenchymal transition induced by senescent fibroblasts. Cancer Microenviron. 2012;5:39-44.
CrossRef
Google scholar
|
[268] |
De Las Rivas J, Brozovic A, Izraely S, et al. Cancer drug resistance induced by EMT: novel therapeutic strategies. Arch Toxicol. 2021;95:2279-2297.
CrossRef
Google scholar
|
[269] |
Huang J, Li H, Ren G. Epithelial–mesenchymal transition and drug resistance in breast cancer (Review). Int J Oncol. 2015;47:840-848.
CrossRef
Google scholar
|
[270] |
McConkey DJ, Choi W, Marquis L, et al. Role of epithelial-to-mesenchymal transition (EMT) in drug sensitivity and metastasis in bladder cancer. Cancer Metastasis Rev. 2009;28:335-344.
CrossRef
Google scholar
|
[271] |
Arumugam T, Ramachandran V, Fournier KF, et al. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res. 2009;69:5820-5828.
CrossRef
Google scholar
|
[272] |
Lindner D. Animal models and the tumor microenvironment: studies of tumor-host symbiosis. Semin Oncol. 2014;41:146-155.
CrossRef
Google scholar
|
[273] |
Wu Y, Ginther C, Kim J, et al. Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells. Mol Cancer Res. 2012;10:1597-1606.
CrossRef
Google scholar
|
[274] |
Della Corte CM, Bellevicine C, Vicidomini G, et al. SMO gene amplification and activation of the hedgehog pathway as novel mechanisms of resistance to anti-epidermal growth factor receptor drugs in human lung cancer. Clin Cancer Res. 2015;21:4686-4697.
CrossRef
Google scholar
|
[275] |
Haslehurst AM, Koti M, Dharsee M, et al. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer. 2012;12:91.
CrossRef
Google scholar
|
[276] |
Debnath P, Huirem RS, Dutta P, et al. Epithelial–mesenchymal transition and its transcription factors. Biosci Rep. 2022;42:BSR20211754.
CrossRef
Google scholar
|
[277] |
Knott SRV, Wagenblast E, Khan S, et al. Asparagine bioavailability governs metastasis in a model of breast cancer. Nature. 2018;554:378-381.
CrossRef
Google scholar
|
[278] |
Gupta PB, Pastushenko I, Skibinski A, et al. Phenotypic plasticity: driver of cancer initiation, progression, and therapy resistance. Cell Stem Cell. 2019;24:65-78.
CrossRef
Google scholar
|
[279] |
Phi LTH, Sari IN, Yang YG, et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int. 2018;2018:5416923.
CrossRef
Google scholar
|
[280] |
Farahzadi R, Valipour B, Fathi E, et al. Oxidative stress regulation and related metabolic pathways in epithelial–mesenchymal transition of breast cancer stem cells. Stem Cell Res Ther. 2023;14:342.
CrossRef
Google scholar
|
[281] |
Chou MY, Yang MH. Interplay of immunometabolism and epithelial–mesenchymal transition in the tumor microenvironment. Int J Mol Sci. 2021;22:9878.
CrossRef
Google scholar
|
[282] |
Du B, Shim JS. Targeting epithelial–mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules. 2016;21:965.
CrossRef
Google scholar
|
[283] |
Seo J, Ha J, Kang E, et al. The role of epithelial–mesenchymal transition-regulating transcription factors in anti-cancer drug resistance. Arch Pharm Res. 2021;44:281-292.
CrossRef
Google scholar
|
[284] |
Imodoye SO, Adedokun KA, Muhammed AO, et al. Understanding the complex milieu of epithelial–mesenchymal transition in cancer metastasis: new insight into the roles of transcription factors. Front Oncol. 2021;11:762817.
CrossRef
Google scholar
|
[285] |
Pastushenko I, Brisebarre A, Sifrim A, et al. Identification of the tumour transition states occurring during EMT. Nature. 2018;556:463-468.
CrossRef
Google scholar
|
[286] |
Zeisberg M, Neilson EG. Biomarkers for epithelial–mesenchymal transitions. J Clin Invest. 2009;119:1429-1437.
CrossRef
Google scholar
|
[287] |
Williams ED, Gao D, Redfern A, et al. Controversies around epithelial–mesenchymal plasticity in cancer metastasis. Nat Rev Cancer. 2019;19:716-732.
CrossRef
Google scholar
|
[288] |
Stark TW, Hensley PJ, Spear A, et al. Predictive value of epithelial–mesenchymal-transition (EMT) signature and PARP-1 in prostate cancer radioresistance. Prostate. 2017;77:1583-1591.
CrossRef
Google scholar
|
[289] |
Gilles C, Polette M, Piette J, et al. Vimentin expression in cervical carcinomas: association with invasive and migratory potential. J Pathol. 1996;180:175-180. lt;175::AID-PATH630>3.0.CO;2-G
CrossRef
Google scholar
|
[290] |
Puram SV, Tirosh I, Parikh AS, et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell. 2017;171:1611-1624.e24.
CrossRef
Google scholar
|
[291] |
Tan TZ, Miow QH, Miki Y, et al. Epithelial–mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med. 2014;6:1279-1293.
CrossRef
Google scholar
|
[292] |
Ting DT, Wittner BS, Ligorio M, et al. Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep. 2014;8:1905-1918.
CrossRef
Google scholar
|
[293] |
Mak MP, Tong P, Diao L, et al. A patient-derived, pan-cancer EMT signature identifies global molecular alterations and immune target enrichment following epithelial-to-mesenchymal transition. Clin Cancer Res. 2016;22:609-620.
CrossRef
Google scholar
|
[294] |
Rokavec M, Kaller M, Horst D, et al. Pan-cancer EMT-signature identifies RBM47 down-regulation during colorectal cancer progression. Sci Rep. 2017;7:4687.
CrossRef
Google scholar
|
[295] |
Payne RE, Wang F, Su N, et al. Viable circulating tumour cell detection using multiplex RNA in situ hybridisation predicts progression-free survival in metastatic breast cancer patients. Br J Cancer. 2012;106:1790-1797.
CrossRef
Google scholar
|
[296] |
Decalf J, Albert ML, Ziai J. New tools for pathology: a user's review of a highly multiplexed method for in situ analysis of protein and RNA expression in tissue. J Pathol. 2019;247:650-661.
CrossRef
Google scholar
|
[297] |
Stylianou N, Lehman ML, Wang C, et al. A molecular portrait of epithelial–mesenchymal plasticity in prostate cancer associated with clinical outcome. Oncogene. 2019;38:913-934.
CrossRef
Google scholar
|
[298] |
Davis FM, Stewart TA, Thompson EW, et al. Targeting EMT in cancer: opportunities for pharmacological intervention. Trends Pharmacol Sci. 2014;35:479-488.
CrossRef
Google scholar
|
[299] |
Jonckheere S, Adams J, De Groote D, et al. Epithelial–mesenchymal transition (EMT) as a therapeutic target. Cells Tissues Organs. 2022;211:157-182.
CrossRef
Google scholar
|
[300] |
Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling. Sci Signal. 2019;12:eaav5183.
CrossRef
Google scholar
|
[301] |
Fabregat I, Fernando J, Mainez J, et al. TGF-beta signaling in cancer treatment. Curr Pharm Des. 2014;20:2934-2947.
CrossRef
Google scholar
|
[302] |
Chua KN, Sim WJ, Racine V, et al. A cell-based small molecule screening method for identifying inhibitors of epithelial–mesenchymal transition in carcinoma. PLoS One. 2012;7:e33183.
CrossRef
Google scholar
|
[303] |
Sim WJ, Iyengar PV, Lama D, et al. c-Met activation leads to the establishment of a TGFβ-receptor regulatory network in bladder cancer progression. Nat Commun. 2019;10:4349.
CrossRef
Google scholar
|
[304] |
Meidhof S, Brabletz S, Lehmann W, et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med. 2015;7:831-847.
CrossRef
Google scholar
|
[305] |
Cook N, Basu B, Smith DM, et al. A phase I trial of the γ-secretase inhibitor MK-0752 in combination with gemcitabine in patients with pancreatic ductal adenocarcinoma. Br J Cancer. 2018;118:793-801.
CrossRef
Google scholar
|
[306] |
Connolly RM, Rudek MA, Piekarz R. Entinostat: a promising treatment option for patients with advanced breast cancer. Future Oncol. 2017;13:1137-1148.
CrossRef
Google scholar
|
[307] |
Joseph C, Alsaleem M, Orah N, et al. Elevated MMP9 expression in breast cancer is a predictor of shorter patient survival. Breast Cancer Res Treat. 2020;182:267-282.
CrossRef
Google scholar
|
[308] |
Hu H, Li B, Zhou C, et al. Diagnostic value of WIF1 methylation for colorectal cancer: a meta-analysis. Oncotarget. 2018;9:5378-5386.
CrossRef
Google scholar
|
[309] |
Shang S, Hua F, Hu ZW. The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget. 2017;8:33972-33989.
CrossRef
Google scholar
|
[310] |
Avilés-Gaxiola S, Gutiérrez-Grijalva EP, León-Felix J, et al. Peptides in colorectal cancer: current state of knowledge. Plant Foods Hum Nutr. 2020;75:467-476.
CrossRef
Google scholar
|
[311] |
Gingras D, Batist G, Béliveau R. AE-941 (Neovastat): a novel multifunctional antiangiogenic compound. Expert Rev Anticancer Ther. 2001;1:341-347.
CrossRef
Google scholar
|
[312] |
Gao W, Chan JY, Wei WI, et al. Anti-cancer effects of curcumin on head and neck cancers. Anticancer Agents Med Chem. 2012;12:1110-1116.
CrossRef
Google scholar
|
[313] |
Charkhchi P, Cybulski C, Gronwald J, et al. CA125 and ovarian cancer: a comprehensive review. Cancers (Basel). 2020;12:3730.
CrossRef
Google scholar
|
[314] |
Bell-McGuinn KM, Matthews CM, Ho SN, et al. A phase II, single-arm study of the anti-α5β1 integrin antibody volociximab as monotherapy in patients with platinum-resistant advanced epithelial ovarian or primary peritoneal cancer. Gynecol Oncol. 2011;121:273-279.
CrossRef
Google scholar
|
[315] |
Kawai A, Naka N, Shimomura A, et al. Efficacy and safety of TAS-115, a novel oral multi-kinase inhibitor, in osteosarcoma: an expansion cohort of a phase I study. Invest New Drugs. 2021;39:1559-1567.
CrossRef
Google scholar
|
[316] |
McDonald OG, Maitra A, Hruban RH. Human correlates of provocative questions in pancreatic pathology. Adv Anat Pathol. 2012;19:351-362.
CrossRef
Google scholar
|
[317] |
Hartwell KA, Muir B, Reinhardt F, et al. The Spemann organizer gene, Goosecoid, promotes tumor metastasis. Proc Natl Acad Sci U S A. 2006;103:18969-18974.
CrossRef
Google scholar
|
[318] |
Heerboth S, Housman G, Leary M, et al. EMT and tumor metastasis. Clin Transl Med. 2015;4:6.
CrossRef
Google scholar
|
[319] |
Iwatsuki M, Mimori K, Yokobori T, et al. Epithelial–mesenchymal transition in cancer development and its clinical significance. Cancer Sci. 2010;101:293-299.
CrossRef
Google scholar
|
[320] |
Radisky DC, Levy DD, Littlepage LE, et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature. 2005;436:123-127.
CrossRef
Google scholar
|
[321] |
Gonzalez DM, Medici D. Signaling mechanisms of the epithelial–mesenchymal transition. Sci Signal. 2014;7:re8.
CrossRef
Google scholar
|
[322] |
Thiery JP. Epithelial–mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003;15:740-746.
CrossRef
Google scholar
|
[323] |
Noor J, Chaudhry A, Noor R, et al. Advancements and applications of liquid biopsies in oncology: a narrative review. Cureus. 2023;15:e42731.
CrossRef
Google scholar
|
[324] |
Desai N, Katare P, Makwana V, et al. Tumor-derived systems as novel biomedical tools—turning the enemy into an ally. Biomater Res. 2023;27:113.
CrossRef
Google scholar
|
[325] |
Kiesslich T, Pichler M, Neureiter D. Epigenetic control of epithelial–mesenchymal-transition in human cancer. Mol Clin Oncol. 2013;1:3-11.
CrossRef
Google scholar
|
[326] |
Kang H, Kim H, Lee S, et al. Role of metabolic reprogramming in epithelial–mesenchymal transition (EMT). Int J Mol Sci. 2019;20:2042.
CrossRef
Google scholar
|
[327] |
Pal AK, Sharma P, Zia A, et al. Metabolomics and EMT markers of breast cancer: a crosstalk and future perspective. Pathophysiology. 2022;29:200-222.
CrossRef
Google scholar
|
[328] |
Cheng YQ, Wang SB, Liu JH, et al. Modifying the tumour microenvironment and reverting tumour cells: new strategies for treating malignant tumours. Cell Prolif. 2020;53:e12865.
CrossRef
Google scholar
|
[329] |
Zhong W, Sun T. Editorial: epithelial–mesenchymal transition (EMT) as a therapeutic target in cancer. Front Oncol. 2023;13:1121416.
CrossRef
Google scholar
|
[330] |
Tiwari N, Gheldof A, Tatari M, et al. EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol. 2012;22:194-207.
CrossRef
Google scholar
|
[331] |
Huang Z, Zhang Z, Zhou C, et al. Epithelial–mesenchymal transition: the history, regulatory mechanism, and cancer therapeutic opportunities. MedComm. 2022;3:e144.
CrossRef
Google scholar
|
[332] |
Wei Q, Qian Y, Yu J, Wong CC. Metabolic rewiring in the promotion of cancer metastasis: mechanisms and therapeutic implications. Oncogene. 2020;39:6139-6156.
CrossRef
Google scholar
|
/
〈 | 〉 |