A versatile messenger for chirality communication: asymmetric silica framework

Xinling Liu , Ren-Hua Jin

Chemical Synthesis ›› 2021, Vol. 1 ›› Issue (2) : 14

PDF
Chemical Synthesis ›› 2021, Vol. 1 ›› Issue (2) :14 DOI: 10.20517/cs.2021.16
review-article

A versatile messenger for chirality communication: asymmetric silica framework

Author information +
History +
PDF

Abstract

Asymmetric tetrahedral carbon is the basic structural unit of many organic compounds in life and its molecular chirality plays a key role in regulating biological functions. Silica (SiO2) is highly earth abundant and its basic unit is also the tetrahedral form of SiO4. However, much less attention has been paid to the molecular-scale chirality of SiO2 frameworks with repeating SiO4 units because it is challenging to enantioselectively control the molecular structures of SiO2. Research into the chiral molecular structures of SiO2 deserves to be a significant topic for understanding widespread chiral phenomena and for exploring the chiral properties hidden in inorganic matter. This review highlights the asymmetric synthesis strategies that endow SiO2 with chirality transferred from asymmetric carbon at the molecular scale. The chirality transfer ability of SiO2 is also demonstrated for the construction of various inorganic and/or organic chiral materials with a wide range of applications in asymmetric synthesis, circularly polarized luminescence and Raman scattering-based chiral recognition.

Keywords

Chiral silica / asymmetric SiO4 tetrahedra / chirality transfer / circularly polarized luminescence / enantioselective Raman scattering

Cite this article

Download citation ▾
Xinling Liu, Ren-Hua Jin. A versatile messenger for chirality communication: asymmetric silica framework. Chemical Synthesis, 2021, 1(2): 14 DOI:10.20517/cs.2021.16

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gal J.Pasteur and the art of chirality.Nat Chem2017;9:604-5

[2]

Dyakin VV,Dyakina-fagnano NV.The Nathan SKline Institute for Psychiatric Research. The chain of chirality transfer as determinant of brain functional laterality. Breaking the chirality silence: search for new generation of biomarkers; relevance to neurodegenerative diseases, cognitive psychology, and nutrition science.Neurology and Neuroscience Research2017;1:2

[3]

Zhao X,Chen X.Stereospecific interactions between chiral inorganic nanomaterials and biological systems.Chem Soc Rev2020;49:2481-503

[4]

Shao Y,Lin J.Shining light on chiral inorganic nanomaterials for biological issues.Theranostics2021;11:9262-95 PMCID:PMC8490512

[5]

Liu J,Qin P,Yung KKL.Recent advances in inorganic chiral nanomaterials.Adv Mater2021;33:e2005506

[6]

Ni B.Chirality communications between inorganic and organic compounds.SmartMat2021;2:17-32

[7]

Lowry TM.Optical rotatory dispersion: a tribute to the memory of biot (1774-1862).Nature1926;117:271-5

[8]

Jung JH,Hanabusa K.Creation of both right-handed and left-handed silica structures by sol-gel transcription of organogel fibers comprised of chiral diaminocyclohexane derivatives.J Am Chem Soc2000;122:5008-9

[9]

Che S,Ohsuna T,Terasaki O.Synthesis and characterization of chiral mesoporous silica.Nature2004;429:281-4

[10]

Qiu H,Zhang W.Steric and temperature control of enantiopurity of chiral mesoporous silica.J Phys Chem C2008;112:1871-7

[11]

Yang Y,Owa S,Hanabusa K.Control of mesoporous silica nanostructures and pore-architectures using a thickener and a gelator.J Am Chem Soc2007;129:581-7

[12]

Shopsowitz KE,Hamad WY.Free-standing mesoporous silica films with tunable chiral nematic structures.Nature2010;468:422-5

[13]

Okazaki Y,Dedovets D.Chiral colloids: homogeneous suspension of individualized SiO2 helical and twisted nanoribbons.ACS Nano2014;8:6863-72

[14]

Shopsowitz KE,MacLachlan MJ.Chiral nematic mesoporous carbon derived from nanocrystalline cellulose.Angew Chem Int Ed Engl2011;50:10991-5

[15]

Fireman-shoresh S,Avnir D.Enantioselective sol-gel materials obtained by either doping or imprinting with a chiral surfactant.Adv Mater2007;19:2145-50

[16]

Levi G,Mastai Y.Imprinting chirality in silica nanotubes by N-stearoyl-serine template.ACS Appl Mater Interfaces2016;8:23356-61

[17]

Qiu H.Chiral mesoporous silica: chiral construction and imprinting via cooperative self-assembly of amphiphiles and silica precursors.Chem Soc Rev2011;40:1259-68

[18]

Marx S.The induction of chirality in sol-gel materials.Acc Chem Res2007;40:768-76

[19]

Kawasaki T,Hatase K.Helical mesoporous silica as an inorganic heterogeneous chiral trigger for asymmetric autocatalysis with amplification of enantiomeric excess.Chem Commun (Camb)2015;51:8742-4

[20]

Faridi A,Okazaki Y.Mitigating human IAPP amyloidogenesis in vivo with chiral silica nanoribbons.Small2018;14:e1802825 PMCID:PMC6263833

[21]

Huang Y,Garcia-Bennett AE.Chiral resolution using supramolecular-templated mesostructured materials.Angew Chem Int Ed Engl2019;58:10859-62

[22]

Gou K,Xie L.Synthesis, structural properties, biosafety and applications of chiral mesoporous silica nanostructures.Chem Eng J2021;421:127862

[23]

Salh R.Defect related luminescence in silicon dioxide network: a review. In: Basu S, editor. Crystalline silicon. London: IntechOpen Limited; 2011. p. 135-72.

[24]

Tanaka Y,Lovesey SW.Right handed or left handed?.Phys Rev Lett2008;100:145502

[25]

Will G,Parrish W.Crystal structures of quartz and magnesium germanate by profile analysis of synchrotron-radiation high-resolution powder data.J Appl Crystallogr1988;21:182-91

[26]

Yogev-einot D.Quantitative symmetry and chirality of the molecular building blocks of quartz.Chem Mater2003;15:464-72

[27]

Dryzun C,Shvalb A.Chiral silicate zeolites.J Mater Chem2009;19:2062

[28]

Belton DJ,Perry CC.An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances.FEBS J2012;279:1710-20 PMCID:PMC3334419

[29]

Shimizu K,Stucky GD.Silicatein alpha: cathepsin L-like protein in sponge biosilica.Proc Natl Acad Sci U S A1998;95:6234-8 PMCID:PMC27641

[30]

Abdelhamid MAA.Biomimetic and bioinspired silicifications: recent advances for biomaterial design and applications.Acta Biomater2021;120:38-56

[31]

Jin RH.Synthesis of poly(ethyleneimine)s-silica hybrid particles with complex shapes and hierarchical structures.Chem Commun (Camb)2005;:1399-401

[32]

Yuan J.Multiply shaped silica mediated by aggregates of linear poly(ethyleneimine).Adv Mater2005;17:885-8

[33]

Yuan J,Fukazawa N.Synthesis of nanofiber-based silica networks mediated by organized poly(ethylene imine): structure, properties, and mechanism.Adv Funct Mater2006;16:2205-12

[34]

Matsukizono H.High-temperature-resistant chiral silica generated on chiral crystalline templates at neutral pH and ambient conditions.Angew Chem Int Ed Engl2012;51:5862-5

[35]

Matsukizono H,Jin RH.Nanosheet-stacked chiral silica transcribed from metal ion- and pH-tuned supramolecular crystalline complexes of polyamine-D-glucarate.Chemistry2014;20:1134-45

[36]

Liu XL,Jin RH.Self-directing chiral information in solid-solid transformation: unusual chiral-transfer without racemization from amorphous silica to crystalline silicon.Nanoscale Horiz2017;2:147-55

[37]

Wallace AF,Dove PM.Kinetics of silica nucleation on carboxyl- and amine-terminated surfaces: insights for biomineralization.J Am Chem Soc2009;131:5244-50

[38]

Jin RH.Understanding silica from the viewpoint of asymmetry.Chemistry2019;25:6270-83

[39]

Xie J,Che S.Chirality of metal nanoparticles in chiral mesoporous silica.Adv Funct Mater2012;22:3784-92

[40]

Okazaki Y,Buffeteau T.Induced circular dichroism of monoatomic anions: silica-assisted the transfer of chiral environment from molecular assembled nanohelices to halide ions.Chem Commun (Camb)2018;54:10244-7

[41]

Tsunega S,Jin R.Unusual chirality transfer from silica to metallic nanoparticles with formation of distorted atomic array in crystal lattice structure.Nanoscale Adv2019;1:581-91

[42]

Wei X,Xia GJ.Enantioselective photoinduced cyclodimerization of a prochiral anthracene derivative adsorbed on helical metal nanostructures.Nat Chem2020;12:551-9

[43]

Price AJ.Theoretical investigation of amino-acid adsorption on hydroxylated quartz surfaces: dispersion can determine enantioselectivity.Phys Chem Chem Phys2020;22:16571-8

[44]

Kotopoulou E,Calvino Gamez JJ.Nanoscale anatomy of iron-silica self-organized membranes: implications for prebiotic chemistry.Angew Chem Int Ed Engl2021;60:1396-402 PMCID:PMC7839773

[45]

Liu XL,Gao YF.Polycondensation and carbonization of phenolic resin on structured nano/chiral silicas: reactions, morphologies and properties.J Mater Chem B2016;4:626-34

[46]

Liu X,Ito T.Double chiral hybrid materials: formation of chiral phenolic resins on polyamine-associated chiral silica.Chem Lett2017;46:1518-21

[47]

Tsunega S,Jin R.Chiroptical phenolic resins grown on chiral silica-bonded amine residues.Polym Chem2019;10:3535-46

[48]

Tsunega S.Chiroptical cross-linked polymers grown via radical polymerization around chiral nanosilica.Macromol Chem Phys2021;222:2000436

[49]

Ikehara T,Inutsuka M.Chiral nucleating agents affecting the handedness of lamellar twist in the banded spherulites in poly(ε-caprolactone)/poly(vinyl butyral) blends.ACS Macro Lett2019;8:871-4

[50]

Sang Y,Zhao T,Liu M.Circularly polarized luminescence in nanoassemblies: generation, amplification, and application.Adv Mater2020;32:e1900110

[51]

Sugimoto M,Tsunega S.Circularly polarized luminescence from inorganic materials: encapsulating guest lanthanide oxides in chiral silica hosts.Chemistry2018;24:6519-24

[52]

Tsunega S,Nakashima T.Transfer of chiral information from silica hosts to achiral luminescent guests: a simple approach to accessing circularly polarized luminescent systems.Chempluschem2020;85:619-26

[53]

Liu P,Okazaki Y.Optically active perovskite CsPbBr3 nanocrystals helically arranged on inorganic silica nanohelices.Nano Lett2020;20:8453-60

[54]

Harada T,Ryu N.Lanthanide ion-doped silica nanohelix: a helical inorganic network acts as a chiral source for metal ions.Chem Commun (Camb)2021;57:4392-5

[55]

Wang Y,Yu Z,Zhao B.A chiral-label-free SERS strategy for the synchronous chiral discrimination and identification of small aromatic molecules.Angew Chem Int Ed Engl2020;59:19079-86

[56]

Liu Z,Kumar P.Enantiomeric discrimination by surface-enhanced raman scattering-chiral anisotropy of chiral nanostructured gold films.Angew Chem Int Ed Engl2020;59:15226-31

[57]

Kong H,Yang L,Yang H.Chirality detection by raman spectroscopy: the case of enantioselective interactions between amino acids and polymer-modified chiral silica.Anal Chem2020;92:14292-6

[58]

Kong H,Yang L,Yang H.Polydopamine/silver substrates stemmed from chiral silica for SERS differentiation of amino acid enantiomers.ACS Appl Mater Interfaces2020;12:29868-75

[59]

Sun X,Zhou Q.Chiral plasmonic nanoparticle assisted raman enantioselective recognition.Anal Chem2020;92:8015-20

[60]

Pérez-Jiménez AI,Lu Z,Ren B.Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments.Chem Sci2020;11:4563-77 PMCID:PMC8159237

[61]

Kumar A,Kesharwani MK.Chirality-induced spin polarization places symmetry constraints on biomolecular interactions.Proc Natl Acad Sci U S A2017;114:2474-8 PMCID:PMC5347616

AI Summary AI Mindmap
PDF

22

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/