Phenotyping genetic advances of wheat under Mediterranean conditions using stable isotopes and high-resolution aerial and satellite multispectral data

Joel Segarra , Nieves Aparicio , Shawn C. Kefauver , Ayesha Rukhsar , Jose M. Arjona , Jose L. Araus

Crop and Environment ›› 2025, Vol. 4 ›› Issue (4) : 271 -285.

PDF (4900KB)
Crop and Environment ›› 2025, Vol. 4 ›› Issue (4) : 271 -285. DOI: 10.1016/j.crope.2025.09.001
Research article
research-article

Phenotyping genetic advances of wheat under Mediterranean conditions using stable isotopes and high-resolution aerial and satellite multispectral data

Author information +
History +
PDF (4900KB)

Abstract

Wheat genetic advances have stagnated in recent years despite genetic gains made during the Green Revolution. Thus, this research evaluated wheat varieties released during pre-Green Revolution (landraces and old varieties) and post-Green Revolution periods. The study was conducted under rainfed conditions over four seasons (2020-2021 to 2023-2024). For one season (2021-2022), we employed unmanned aerial vehicles (UAVs) and satellite-based (Skysat) high-resolution imagery. These methods were complemented by analyses of the stable carbon isotope composition (δ13C) of the grains over three crop seasons, the oxygen isotope composition (δ18O) of stem-base water during the 2022-2023 season, and agronomic data collected throughout all seasons. This study aimed to examine changes in phenotypic characteristics across successive breeding periods. The increase in grain yield between pre- and post-Green Revolution varieties was stronger when assessed under conditions without water stress. However, landraces showed higher yield stability than post-Green Revolution varieties. There was no significant genetic gain in yield or grain protein content across the varieties released since the Green Revolution under low rainfall conditions, whereas under wetter conditions, the genetic gain in yield was evidenced at 0.88​% yearly. In terms of phenotypic characteristics, more productive varieties were associated with improved water status (indicated by lower grain δ13C values), reflecting deeper water extraction (indicated by lower stem δ18O values). Vegetation indices measured at the aerial level correlated slightly better with wheat grain yield than Skysat imagery. Among the vegetation indices evaluated, the chlorophyll vegetation index (CVI) was the most effective at distinguishing breeding period groups of varieties.

Keywords

Breeding period / Genetic gain / Isotope composition / Mediterranean climate / Remote sensing / Wheat

Cite this article

Download citation ▾
Joel Segarra, Nieves Aparicio, Shawn C. Kefauver, Ayesha Rukhsar, Jose M. Arjona, Jose L. Araus. Phenotyping genetic advances of wheat under Mediterranean conditions using stable isotopes and high-resolution aerial and satellite multispectral data. Crop and Environment, 2025, 4(4): 271-285 DOI:10.1016/j.crope.2025.09.001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adhikari S., Kumari J., Jacob S.R., Prasad P., Gangwar O.P., Lata C., Thakur R., Singh A.K., Bansal R., Kumar S., Bhardwaj S.C., Kumar S., 2022. Landraces- potential treasure for sustainable wheat improvement. Genet. Resour. Crop Evol. 69, 499-523. https://doi.org/10.1007/s10722-021-01310-5.

[2]

Aisawi K.A.B., Reynolds M.P., Singh R.P., Foulkes M.J., 2015. The physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Sci. 55, 1749-1764. https://doi.org/10.2135/cropsci2014.09.0601.

[3]

Araus J.L., Cabrera-Bosquet L., Serret M.D., Bort J., Nieto-Taladriz M.T., 2013. Comparative performance of δ13C, δ18O and δ15N for phenotyping durum wheat adaptation to a dryland environment. Funct. Plant Biol. 40, 595-608. https://doi.org/10.1071/FP12254.

[4]

Araus J.L., Kefauver S.C., Vergara-Díaz O., Gracia-Romero A., Rezzouk F.Z., Segarra J., Buchaillot M.L., Chang-Espino M., Vatter T., Sanchez-Bragado R., Fernandez-Gallego J.A., Serret M.D., Bort J., 2022. Crop phenotyping in a context of global change: what to measure and how to do it. J. Integr. Plant Biol. 64, 592-618. https://doi.org/10.1111/jipb.13191.

[5]

Araus J.L., Rezzouk F.Z., Sanchez-Bragado R., Aparicio N., Serret M.D., 2023. Phenotyping genotypic performance under multistress conditions: mediterranean wheat as a case study. Field Crops Res. 303, 925-940. https://doi.org/10.1016/j.fcr.2023.109122.

[6]

Araus J.L., Sanchez-Bragado R., Vicente R., 2021. Improving crop yield and resilience through optimization of photosynthesis: panacea or pipe dream? J. Exp. Bot. 72, 3936-3955. https://doi.org/10.1093/jxb/erab097.

[7]

Araus J.L., Slafer G.A., Reynolds M.P., Royo C., 2002. Plant breeding and drought in C3 cereals: what should we breed for? Ann. Bot. 89, 925-940. https://doi.org/10.1093/aob/mcf049.

[8]

Araus J.L., Villegas D., Aparicio N., del Moral L.F.G., El Hani S., Rharrabti Y., Ferrio J.P., Royo C., 2003. Environmental factors determining carbon isotope discrimination and yield in durum wheat under mediterranean conditions. Crop Sci. 43, 170-180. https://doi.org/10.2135/cropsci2003.1700.

[9]

Badgley G., Field C.B., Berry J.A., 2017. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 3, e1602244. https://doi.org/10.1126/sciadv.1602244.

[10]

Ba€nziger M., Cooper M., 2001. Breeding for low input conditions and consequences for participatory plant breeding: examples from tropical maize and wheat. Euphytica 122, 503-519. https://doi.org/10.1023/A:1017510928038.

[11]

Bicego B., Savin R., Girousse C., Allard V., Slafer G.A., 2024. Tillering and floret development dynamics in wheat cultivars of contrasting spike fertility plasticity. Field Crops Res. 319, 109654. https://doi.org/10.1016/j.fcr.2024.109654.

[12]

Blum A., 2009. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res. 112, 119-123. https://doi.org/10.1016/j.fcr.2009.03.009.

[13]

Carmo-Silva E., Andralojc P.J., Scales J.C., Driever S.M., Mead A., Lawson T., Raines C.A., Parry M.A.J., 2017. Phenotyping of field-grown wheat in the UK highlights contribution of light response of photosynthesis and flag leaf longevity to grain yield. J. Exp. Bot. 68, 3473-3486. https://doi.org/10.1093/jxb/erx169.

[14]

Carranza-Gallego G., Guzmán G.I., Garcia-Ruíz R., González de Molina M., Aguilera E., 2019. Addressing the role of landraces in the sustainability of Mediterranean agroecosystems. Sustainability 11, 6029. https://doi.org/10.3390/su11216029.

[15]

Casals J., Rull A., Segarra J., Schober P., Simó J., 2019. Participatory plant breeding and the evolution of landraces: a case study in the organic farms of the Collserola Natural Park. Agronomy 9, 486. https://doi.org/10.3390/agronomy9090486.

[16]

Ceccarelli S., 2011. Landraces:importance and use in breeding and environmentally friendly agronomic systems. In: MaxtedN., et al. (Eds.),Agrobiodiversity Conservation: Securing the Diversity of Crop Wild Relatives and Landraces. CABI, Wallingford, UK. https://doi.org/10.1079/9781845938512.0103.

[17]

Chairi F., Vergara-Diaz O., Vatter T., Aparicio N., Nieto-Taladriz M.T., Kefauver S.C., Bort J., Serret M.D., Araus J.L., 2018. Post-green revolution genetic advance in durum wheat: the case of Spain. Field Crops Res. 228, 158-169. https://doi.org/10.1016/j.fcr.2018.09.003.

[18]

Chen J., Li Q., Jiang D., 2024. From images to loci: applying 3D deep learning to enable multivariate and multitemporal digital phenotyping and mapping the genetics underlying nitrogen use efficiency in wheat. Plant Phenomics 6, 270. https://doi.org/10.34133/plantphenomics.0270.

[19]

Cheng S., Feng C., Wingen L.U., Cheng H., Riche A.B., Jiang M., Leverington- Waite M., Huang Z., Collier S., Orford S., Wang X., Awal R., Barker G., O’Hara T., Lister C., Siluveru A., Quiroz-Chávez J., Ramírez-González R.H., Bryant R., Berry S., Bansal U., Bariana H.S., Bennett M.J., Bicego B., Bilham L., Brown J.K.M., Burridge A., Burt C., Buurman M., Castle M., Chartrain L., Chen B., Denbel W., Elkot A.F., Fenwick P., Feuerhelm D., Foulkes J., Gaju O., Gauley A., Gaurav K., Hafeez A.N., Han R., Horler R., Hou J., Iqbal M.S., Kerton M., Kondic-Spica A., Kowalski A., Lage J., Li X., Liu H., Liu S., Lovegrove A., Ma L., Mumford C., Parmar S., Philp C., Playford D., Przewieslik- Allen A.M., Sarfraz Z., Schafer D., Shewry P.R., Shi Y., Slafer G.A., Song B., Song B., Steele D., Steuernagel B., Tailby P., Tyrrell S., Waheed A., Wamalwa M. N., Wang X., Wei Y., Winfield M., Wu S., Wu Y., Wulff B.B.H., Xian W., Xu Y., Xu Y., Yuan Q., Zhang X., Edwards K.J., Dixon L., Nicholson P., Chayut N., Hawkesford M.J., Uauy C., Sanders D., Huang S., Griffiths S., 2024. Harnessing landrace diversity empowers wheat breeding. Nature 632, 823-831. https://doi.org/10.1038/s41586-024-07682-9.

[20]

Corneo P.E., Kertesz M.A., Bakhshandeh S., Tahaei H., Barbour M.M., Dijkstra F.A., 2018. Studying root water uptake of wheat genotypes in different soils using water δ18O stable isotopes. Agric. Ecosyst. Environ. 264, 119-129. https://doi.org/10.1016/j.agee.2018.05.007.

[21]

Cos J., Doblas-Reyes F., Jury M., Marcos R., Bretonnière P.-A., Samsó M., 2022. The Mediterranean climate change hotspot in the CMIP5 and CMIP 6 projections. Earth Syst. Dyn. 13, 321-340. https://doi.org/10.5194/esd-13-321-2022.

[22]

Crespo-Herrera L.A., Crossa J., Huerta-Espino J., Vargas M., Mondal S., Velu G., Payne T.S., Braun H., Singh R.P., 2018. Genetic gains for grain yield in CIMMYT’s semi-arid wheat yield trials grown in suboptimal environments. Crop Sci. 58, 1890-1898. https://doi.org/10.2135/cropsci2018.01.0017.

[23]

Curin F., Otegui M.E., González F.G., 2021. Wheat yield progress and stability during the last five decades in Argentina. Field Crops Res. 269, 108183. https://doi.org/10.1016/j.fcr.2021.108183.

[24]

d’Andrimont, R., Verhegghen, A., Lemoine, G., Kempeneers, P., Meroni, M., van der Velde, M., 2021. From parcel to continental scale - a first European crop type map based on Sentinel-1 and LUCAS Copernicus in-situ observations. Remote Sens. Environ. 266, 112708. https://doi.org/10.1016/j.rse.2021.112708.

[25]

Dawson T.E., Ehleringer J.R., 1993. Isotopic enrichment of water in the “woody” tissues of plants: implications for plant water source, water uptake, and other studies which use the stable isotopic composition of cellulose. Geochem. Cosmochim. Acta 57, 3487-3492. https://doi.org/10.1016/0016-7037(93)90554-A.

[26]

del Pozo A., Matus I., Ruf K., Castillo D., Méndez-Espinoza A.M., Serret M.D., 2019. Genetic advance of durum wheat under high yielding conditions: the case of Chile. Agronomy 9, 454. https://doi.org/10.3390/agronomy9080454.

[27]

Farquhar G.D., Ehleringer J.R., Hubick K.T., 1989. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503-537. https://doi.org/10.1146/annurev.pp.40.060189.002443.

[28]

Fernandez-Gallego J.A., Kefauver S.C., Vatter T., Aparicio Gutiérrez N., Nieto-Taladriz M. T., Araus J.L., 2019. Low-cost assessment of grain yield in durum wheat using RGB images. Eur. J. Agron. 105, 146-156. https://doi.org/10.1016/j.eja.2019.02.007.

[29]

Ganeva D., Roumenina E., Dimitrov P., Gikov A., Bozhanova V., Dragov R., Jelev G., Taneva K., 2024. Preharvest durum wheat yield, protein content, and protein yield estimation using unmanned aerial vehicle imagery and pléiades satellite data in field breeding experiments. Remote Sens. 16, 559. https://doi.org/10.3390/rs16030559.

[30]

Gitelson A.A., Kaufman Y.J., Merzlyak M.N., 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 58, 289-298. https://doi.org/10.1016/S0034-4257(96)00072-7.

[31]

Gitelson A.A., Vinã A., Ciganda V., Rundquist D.C., Arkebauer T.J., 2005. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 32, 1-4. https://doi.org/10.1029/2005GL022688.

[32]

Gracia-Romero A., Kefauver S.C., Vergara-Díaz O., Zaman-Allah M.A., Prasanna B.M., Cairns J.E., Araus J.L., 2017. Comparative performance of ground vs. aerially assessed RGB and multispectral indices for early-growth evaluation of maize performance under phosphorus fertilization. Front. Plant Sci. 8, 02004. https://doi.org/10.3389/fpls.2017.02004.

[33]

Gracia-Romero A., Lopes M.S., 2024. Heading and maturity date prediction using vegetation indices: a case study using bread wheat, barley and oat crops. Eur. J. Agron. 160, 127330. https://doi.org/10.1016/j.eja.2024.127330.

[34]

Gracia-Romero A., Rufo R., Gómez-Candón D., Soriano J.M., Bellvert J., Yannam V.R. R., Gulino D., Lopes M.S., 2023. Improving in-season wheat yield prediction using remote sensing and additional agronomic traits as predictors. Front. Plant Sci. 14, 1063983. https://doi.org/10.3389/fpls.2023.1063983.

[35]

Gulino D., Sayeras R., Serra J., Betbese J., Doltra J., Gracia-Romero A., Lopes M.S., 2023. Impact of rising temperatures on historical wheat yield, phenology, and grain size in Catalonia. Front. Plant Sci. 14, 1245362. https://doi.org/10.3389/fpls.2023.1245362.

[36]

Hall A.J., Richards R.A., 2013. Prognosis for genetic improvement of yield potential and water-limited yield of major grain crops. Field Crops Res. 143, 18-33. https://doi.org/10.1016/j.fcr.2012.05.014.

[37]

Kang M.S., 1993. Simultaneous selection for yield and stability in crop performance trials: consequences for growers. Agron. J. 85, 754-757. https://doi.org/10.2134/agronj1993.00021962008500030042x.

[38]

Khoury C.K., Brush S., Costich D.E., Curry H.A., de Haan S., Engels J.M.M., Guarino L., Hoban S., Mercer K.L., Miller A.J., Nabhan G.P., Perales H.R., Richards C., Riggins C., Thormann I., 2022. Crop genetic erosion: understanding and responding to loss of crop diversity. New Phytol. 233, 84-118. https://doi.org/10.1111/nph.17733.

[39]

Lopes M.S., Reynolds M.P., Manes Y., Singh R.P., Crossa J., Braun H.J., 2012. Genetic yield gains and changes in associated traits of CIMMYT spring bread wheat in a “historic” set representing 30 years of breeding. Crop Sci. 52, 1123-1131. https://doi.org/10.2135/cropsci2011.09.0467.

[40]

Loss S.P., Siddique K.H.M., 1994. Morphological and physiological traits associated with wheat yield increases in Mediterranean environments. Advances Agron. 52, 229-276. https://doi.org/10.1016/S0065-2113(08)60625-2.

[41]

Ma W.T., Tcherkez G., Wang X.M., Sch€aufele R., Schnyder H., Yang Y., Gong X.Y., 2021. Accounting for mesophyll conductance substantially improves 13C based estimates of intrinsic water-use efficiency. New Phytol. 229, 1326-1338. https://doi.org/10.1111/nph.16958.

[42]

Merchuk-Ovnat L., Barak V., Fahima T., Ordon F., Lidzbarsky G.A., Krugman T., Saranga Y., 2016. Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars. Front. Plant Sci. 7, 00452. https://doi.org/10.3389/fpls.2016.00452.

[43]

Migliorini P., Spagnolo S., Torri L., Arnoulet M., Lazzerini G., Ceccarelli S., 2016. Agronomic and quality characteristics of old, modern and mixture wheat varieties and landraces for organic bread chain in diverse environments of northern Italy. Eur. J. Agron. 79, 131-141. https://doi.org/10.1016/j.eja.2016.05.011.

[44]

Newton A.C., Akar T., Baresel J.P., Bebeli P.J., Bettencourt E., Bladenopoulos K.V., Czembor J.H., Fasoula D.A., Katsiotis A., Koutis K., Koutsika-Sotiriou M., Kovacs G., Larsson H., de Carvalho M.A.A.P., Rubiales D., Russell J., Dos Santos T.M.M., Patto M.C.V., 2011. Cereal landraces for sustainable agriculture. In: LichtfouseE., et al. (Eds.),Sustainable Agriculture. Springer, Netherlands, Dordrecht, pp. 147-186. https://doi.org/10.1007/978-94-007-0394-0_10.

[45]

Padró J.-C., Mun-oz F.-J., Planas J., Pons X., 2019. Comparison of four UAV georeferencing methods for environmental monitoring purposes focusing on the combined use with airborne and satellite remote sensing platforms. Int. J. Appl. Earth Obs. Geoinf. 75, 130-140. https://doi.org/10.1016/j.jag.2018.10.018.

[46]

Penna D., Hopp L., Scandellari F., Allen S.T., Benettin P., Beyer M., Geris J., Klaus J., Marshall J.D., Schwendenmann L., Volkmann T.H.M., von Freyberg J., Amin A., Ceperley N., Engel M., Frentress J., Giambastiani Y., McDonnell J.J., Zuecco G., Llorens P., Siegwolf R.T.W., Dawson T.E., Kirchner J.W., 2018. Ideas and perspectives: tracing terrestrial ecosystem water fluxes using hydrogen and oxygen stable isotopes - challenges and opportunities from an interdisciplinary perspective. Biogeosciences 15, 6399-6415. https://doi.org/10.5194/bg-15-6399-2018.

[47]

Pinstrup-Andersen P., Hazell P.B.R., 1985. The impact of the green revolution and prospects for the future. Food Rev. Int. 1, 1-25. https://doi.org/10.1080/87559128509540765.

[48]

Pinto F., Zaman-Allah M., Reynolds M., Schulthess U., 2023. Satellite imagery for high-throughput phenotyping in breeding plots. Front. Plant Sci. 14, 1114670. https://doi.org/10.3389/fpls.2023.1114670.

[49]

Reynolds M.P., Rajaram S., Sayre K.D., 1999. Physiological and genetic changes of irrigated wheat in the post-green revolution period and approaches for meeting projected global demand. Crop Sci. 39, 1611-1621. https://doi.org/10.2135/cropsci1999.3961611x.

[50]

Reynolds M.P., Slafer G.A., Foulkes J.M., Griffiths S., Murchie E.H., Carmo-Silva E., Asseng S., Chapman S.C., Sawkins M., Gwyn J., Flavell R.B., 2022. A wiring diagram to integrate physiological traits of wheat yield potential. Nat. Food 3, 318-324. https://doi.org/10.1038/s43016-022-00512-z.

[51]

Rezzouk F.Z., Gracia-Romero A., Segarra J., Kefauver S.C., Aparicio N., Serret M.D., Araus J.L., 2023. Root traits and resource acquisition determining durum wheat performance under Mediterranean conditions: an integrative approach. Agric. Water Manag. 288, 108487. https://doi.org/10.1016/j.agwat.2023.108487.

[52]

Roche D., 2015. Stomatal conductance is essential for higher yield potential of C3 crops. Crit. Rev. Plant Sci. 34, 429-453. https://doi.org/10.1080/07352689.2015.1023677.

[53]

Rondeaux G., Steven M., Baret F., 1996. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 55, 95-107. https://doi.org/10.1016/0034-4257(95)00186-7.

[54]

Royo C., Martos V., Ramdani A., Villegas D., Rharrabti Y., García del Moral L.F., 2008. Changes in yield and carbon isotope discrimination of Italian and Spanish durum wheat during the 20th century. Agron. J. 100, 352-360. https://doi.org/10.2134/agronj2007.0060.

[55]

Sadras V.O., Slafer G.A., 2012. Environmental modulation of yield components in cereals: heritabilities reveal a hierarchy of phenotypic plasticities. Field Crops Res. 127, 215-224. https://doi.org/10.1016/j.fcr.2011.11.014.

[56]

Sanchez-Garcia M., Royo C., Aparicio N., Martin-Sanchez J.A., Álvaro F., 2013. Genetic improvement of bread wheat yield and associated traits in Spain during the 20th century. J. Agric. Sci. 151, 105-118. https://doi.org/10.1017/S0021859612000330.

[57]

Slafer G.A., Andrade F.H., 1993. Physiological attributes related to the generation of grain yield in bread wheat cultivars released at different eras. Field Crops Res. 31, 351-367. https://doi.org/10.1016/0378-4290(93)90073-V.

[58]

Tattaris M., Reynolds M.P., Chapman S.C., 2016. A direct comparison of remote sensing approaches for high-throughput phenotyping in plant breeding. Front. Plant Sci. 7, 1-9. https://doi.org/10.3389/fpls.2016.01131.

[59]

Thomas H., Ougham H., 2014. The stay-green trait. J. Exp. Bot. 65, 3889-3900. https://doi.org/10.1093/jxb/eru037.

[60]

Tremblay N., Wang Z., Bélec C., 2009. Performance of dualex in spring wheat for crop nitrogen status assessment, yield prediction and estimation of soil nitrate content. J. Plant Nutr. 33, 57-70. https://doi.org/10.1080/01904160903391081.

[61]

Tucker C.J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127-150. https://doi.org/10.1016/0034-4257(79)90013-0.

[62]

Tuel A., Eltahir E.A.B., 2020. Why is the Mediterranean a climate change hot spot? J. Clim. 33, 5829-5843. https://doi.org/10.1175/JCLI-D-19-0910.1.

[63]

Ulfa F., Orton T.G., Dang Y.P., Menzies N.W., 2022. Developing and testing remote- sensing indices to represent within-field variation of wheat yields: assessment of the variation explained by simple models. Agronomy 12, 384. https://doi.org/10.3390/agronomy12020384.

[64]

Vicente-Serrano S.M., Lopez-Moreno J.I., Beguería S., Lorenzo-Lacruz J., Sanchez- Lorenzo A., García-Ruiz J.M., Azorin-Molina C., Morán-Tejeda E., Revuelto J., Trigo R., Coelho F., Espejo F., 2014. Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ. Res. Lett. 9, 044001. https://doi.org/10.1088/1748-9326/9/4/044001.

[65]

Vincini M., Frazzi E., D’Alessio P., 2008. A broad-band leaf chlorophyll vegetation index at the canopy scale. Precis. Agric. 9, 303-319. https://doi.org/10.1007/s11119-008-9075-z.

[66]

Weiss M., Jacob F., Duveiller G., 2020. Remote sensing for agricultural applications: a meta-review. Remote Sens. Environ. 236, 111402. https://doi.org/10.1016/j.rse.2019.111402.

[67]

Xiang H., Tian L., 2011. Method for automatic georeferencing aerial remote sensing (RS) images from an unmanned aerial vehicle (UAV) platform. Biosyst. Eng. 108, 104-113. https://doi.org/10.1016/j.biosystemseng.2010.11.003.

[68]

Xu Y., 2016. Envirotyping for deciphering environmental impacts on crop plants. Theor. Appl. Genet. 129, 653-673. https://doi.org/10.1007/s00122-016-2691-5.

[69]

Yang G., Li C., Wang Y., Yuan H., Feng H., Xu B., Yang X., 2017. The DOM generation and precise radiometric calibration of a UAV mounted miniature snapshot hyperspectral imager. Remote Sens. 9, 642. https://doi.org/10.3390/rs9070642.

AI Summary AI Mindmap
PDF (4900KB)

17

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/