Root plasticity and nutrient uptake in rainfed lowland rice under nitrogen and phosphorus fertilizer management

Ryosuke Tajima , Yoichiro Kato , Naoki Moritsuka , Koki Homma , Junko Yamagishi , Tatsuhiko Shiraiwa , Boonrat Jongdee

Crop and Environment ›› 2025, Vol. 4 ›› Issue (4) : 263 -270.

PDF (681KB)
Crop and Environment ›› 2025, Vol. 4 ›› Issue (4) : 263 -270. DOI: 10.1016/j.crope.2025.08.001
Research article
research-article

Root plasticity and nutrient uptake in rainfed lowland rice under nitrogen and phosphorus fertilizer management

Author information +
History +
PDF (681KB)

Abstract

Rainfed lowlands account for one-third of the total rice land in tropical Asia. Rice production is often constrained by low nitrogen (N) and phosphorus (P) availability under rainfed lowland conditions. Genotypes with root phenotypic plasticity to fertilizer management may be advantageous for nutrient uptake and crop growth in rainfed lowlands. To test our hypothesis, we conducted a two-year field experiment in northeastern Thailand. Three genotypes (two advanced backcross lines and the recipient) with contrasting root morphologies were grown under sufficient and limited N and P fertilizers (four treatments). Without any drought symptoms throughout the experimental period, the average grain yield across years, treatments, and genotypes was 3.58 ​t ​ha−1. Sufficient N application significantly increased grain yield, shoot biomass, and N uptake in both years; however, it reduced root length density. In contrast, the effect of sufficient P application was unclear, with a significant increase in P uptake observed only in the second year. At the panicle initiation stage, one advanced backcross line demonstrated a higher root length density in subsoil (10-30 ​cm) and higher P uptake. The positive correlation between root length density (0-30 ​cm) and P uptake suggested that greater root proliferation enhanced P acquisition in rainfed lowlands. Furthermore, genotypic differences in rhizosphere effects might have contributed to improved P solubilization in the topsoil, and N management might have altered root plasticity. These findings emphasize the importance of root traits in improving N and P use efficiencies in rainfed lowlands and offer insights for rice breeding in drought-prone environments.

Keywords

Fertilizer management / Nutrient uptake / Rainfed lowland / Root plasticity / Soil nutrient content

Cite this article

Download citation ▾
Ryosuke Tajima, Yoichiro Kato, Naoki Moritsuka, Koki Homma, Junko Yamagishi, Tatsuhiko Shiraiwa, Boonrat Jongdee. Root plasticity and nutrient uptake in rainfed lowland rice under nitrogen and phosphorus fertilizer management. Crop and Environment, 2025, 4(4): 263-270 DOI:10.1016/j.crope.2025.08.001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akamatsu Y., Tajima R., Uno T., Ito T., Nishida M., Saito M., 2022. Characterization of root traits for phosphorus deficiency tolerance using chromosome segment substitution lines. Plant Root 16, 21-30. https://doi.org/10.3117/plantroot.16.21.

[2]

Banayo N.P.M., Rahon R.E., Sta Cruz P., Kato Y., 2020. Fertilizer responsiveness of high-yielding drought-tolerant rice in rainfed lowlands. Plant Prod. Sci. 24, 279-286. https://doi.org/10.1080/1343943X.2020.1847668.

[3]

Banayo N.P.M.C., Kanno N., Rahon R.E., Sta Cruz P.C., Bueno C.S., Suralta R.S., Kato Y., 2022. Nitrogen fertilizer response of dry direct-seeded rice in rainfed lowlands of the Philippines. Eur. J. Agron. 139, 126553. https://doi.org/10.1016/j.eja.2022.126553.

[4]

Barber S.A., 1984. Soil Nutrient Bioavailability: A Mechanistic Approach. John Wiley & Sons Inc., New York, USA, pp. 1-54.

[5]

Bray R.H., Kurtz L.T., 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59 (1), 39-45. https://doi.org/10.1097/00010694-194501000-00006.

[6]

Chen C.R., Condron L.M., Davis M.R., Sherlock R.R., 2002. Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L.) and radiata pine (Pinus radiata D. Don). Soil Biol. Biochem. 34 (4), 487-499. https://doi.org/10.1016/S0038-0717(01)00207-3.

[7]

de Dorlodot S., Forster B., Pagès L., Price A., Tuberosa R., Draye X., 2007. Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci. 12 (10), 474-481. https://doi.org/10.1016/j.tplants.2007.08.012.

[8]

Dempsey R.J., Slaton N.A., Roberts T.L., Norman R.J., 2017. Rice grain yield and nitrogen uptake as affected by urea amendment and rainfall timing. Agron. J. 109 (6), 2966-2973. https://doi.org/10.2134/agronj2017.04.0216.

[9]

Fischer K.S., Fukai S., Kumar A., Leung H., Jongdee B., 2012. Field phenotyping strategies and breeding for adaptation of rice to drought. Front. Physiol. 3, 282. https://doi.org/10.3389/fphys.2012.00282.

[10]

Fukai S., Ouk M., 2012. Increased productivity of rainfed lowland rice cropping systems of the Mekong region. Crop Pasture Sci. 63 (10), 944-973. https://doi.org/10.1071/CP12294.

[11]

Haefele S.M., Kato Y., Singh S., 2016. Climate ready rice: augmenting drought tolerance with best management practices. Field Crops Res. 190, 60-69. https://doi.org/10.1016/j.fcr.2016.02.001.

[12]

Haefele S.M., Naklang K., Harnpichitvitaya D., Jearakongman S., Skulkhu E., Romyen P., Whitbread A.M., 2006. Factors affecting rice yield and fertilizer response in rainfed lowlands of northeast Thailand. Field Crops Res. 98 (1), 39-51. https://doi.org/10.1016/j.fcr.2005.12.003.

[13]

Haichar F.Z., Santaella C., Heulin T., Achouak W., 2014. Root exudates mediated interactions belowground. Soil Biol. Biochem. 77, 69-80. https://doi.org/10.1016/j.soilbio.2014.06.017.

[14]

Homma K., Horie T., Shiraiwa T., Supapoj N., 2007. Evaluation of transplanting date and nitrogen fertilizer rate adapted by farmers to toposequential variation of environmental resources in a mini-watershed (Nong) in northeast Thailand. Plant Prod. Sci. 10 (4), 488-496. https://doi.org/10.1626/pps.10.488.

[15]

Huguenin-Elie O., Kirk G.J.D., Frossard E., 2003. Phosphorus uptake by rice from soil that is flooded, drained or flooded then drained. Eur. J. Soil Sci. 54 (1), 77-90. https://doi.org/10.1046/j.1365-2389.2002.00489.x.

[16]

Inthavong T., Fukai S., Tsubo M., 2011. Spatial variations in water availability, soil fertility and grain yield in rainfed lowland rice: a case study from Savannakhet province, Lao PDR. Plant Prod. Sci. 14 (2), 184-195. https://doi.org/10.1626/pps.14.184.

[17]

Kato Y., Katsura K., 2014. Rice adaptation to aerobic soils: physiological consideration and implications for agronomy. Plant Prod. Sci. 17 (1), 1-12. https://doi.org/10.1626/pps.17.1.

[18]

Kato Y., Tajima R., Homma K., Toriumi A., Yamagishi J., Shiraiwa T., Mekwatanakarn P., Jongdee B., 2013. Root growth response of rainfed lowland rice to aerobic conditions in northeastern Thailand. Plant Soil 368 (1-2), 557-567. https://doi.org/10.1007/s11104-012-1538-3.

[19]

Kato Y., Tajima R., Toriumi A., Homma K., Jongdee B., 2016. Grain yield and phosphorus uptake of rainfed lowland rice under unsubmerged soil stress. Field Crops Res. 190, 54-59. https://doi.org/10.1016/j.fcr.2016.01.004.

[20]

Kirk G.J.D., George T., Courtois B., Senadhira D., 1998. Opportunities to improve phosphorus efficiency and soil fertility in rainfed lowland and upland rice ecosystems: a review. Field Crops Res. 56, 73-92. https://doi.org/10.1016/S0378-4290(97)00141-X.

[21]

Mohidem N.A., Hashim N., Shamsudin R., Che Man H., 2022. Rice for food security: revisiting its production, diversity, rice milling process and nutrient content. Agriculture 12 (6), 741. https://doi.org/10.3390/agriculture12060741.

[22]

Mori A., Fukuda T., Vejchasarn P., Nestler J., Pariasca-Tanaka J., Wissuwa M., 2016. The role of root size versus root efficiency in phosphorus acquisition in rice. J. Exp. Bot. 67 (4), 1179-1189. https://doi.org/10.1093/jxb/erv557.

[23]

R Core Team, 2024. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

[24]

Rakotoson T., Rabeharisoa L., Smolders E., 2016. Effects of soil flooding and organic matter addition on plant accessible phosphorus in a tropical paddy soil: an isotope dilution study. J. Plant Nutr. Soil Sci. 179 (6), 765-774. https://doi.org/10.1002/jpln.201500383.

[25]

Ribas G.G., Heinemann A.B., Stone L.F., de Castro A.P., Streck N.A., dos Santos A.B., da Silva M.R., Steinmetz S., Soares C.F., Zanon A.J., 2025. Rice-based cropping systems in Brazil: irrigated and rainfed. Crop Environ. https://doi.org/10.1016/j.crope.2025.07.002.

[26]

Richardson A.E., Hocking P.J., Simpson R.J., George T.S., 2009. Plant mechanisms to optimise access to soil phosphorus. Crop Pasture Sci. 60 (2), 124-143. https://doi.org/10.1071/CP07125.

[27]

Saito K., Senthilkumar K., Dossou-Yovo E.R., Ali I., Johnson J.M., Mujawamariya G., Rodenburg J., 2023. Status quo and challenges of rice production in Sub-Saharan Africa. Plant Prod. Sci. 26 (3), 320-333. https://doi.org/10.1080/1343943X.2023.2241712.

[28]

Santosa Y.T., Kurniasih B., Alam T., Handayani S., Supriyanta, Ansari A., Taryono, 2024. Investigating the dynamics of upland rice (Oryza sativa L.) in rainfed agroecosystems: an in-depth analysis of yield gap and strategic exploration for enhanced production. Front. Sustain. Food Syst. 8, 1384530. https://doi.org/10.3389/fsufs.2024.1384530.

[29]

Schneider M.H., 2022. Characterization, costs, cues and future perspectives of phenotypic plasticity. Ann. Bot. 130, 131-148. https://doi.org/10.1093/aob/mcac087.

[30]

Seto R., Moritsuka N., Fujisawa K., Toriumi A., Homma K., Tajima R., Kato Y., 2018. Mild drying of sandy soil can physically limit the uptake of phosphorus by rainfed lowland rice in northeast Thailand. Soil Sci. Plant Nutr. 64 (6), 677-685. https://doi.org/10.1080/00380768.2018.1506251.

[31]

Suriya-Arunroj D., Chaiyawat P., Fukai S., Blamey P., 2000. Identification of nutrients limiting rice growth in soils of northeast Thailand under water-limiting and non-limiting conditions. Plant Prod. Sci. 3 (4), 417-421. https://doi.org/10.1626/pps.3.417.

[32]

Tajima R., Kato Y., 2011. Comparison of threshold algorithms for automatic image processing of rice roots using freeware ImageJ. Field Crops Res. 121 (3), 460-463. https://doi.org/10.1016/j.fcr.2011.01.015.

[33]

Tinker P.B., Nye P.H., 2000. Solute Movement in the Rhizosphere. Oxford University Press, New York.

[34]

Wade L.J., George T., Ladha J.K., Singh U., Bhuiyan S.I., Pandey S., 1998. Opportunities to manipulate nutrient-by-water interactions in rainfed lowland rice systems. Field Crops Res. 56 (1-2), 93-112. https://doi.org/10.1016/S0378-4290(97)00142-1.

[35]

Yang H., Xu H.S., Zhang W.P., Li Z.X., Fan H.X., Lambers H., Li L., 2022. Overyielding is accounted for partly by plasticity and dissimilarity of crop root traits in maize/legume intercropping systems. Funct. Ecol. 36 (10), 2163-2175. https://doi.org/10.1111/1365-2435.14115.

[36]

Yu P., White P.J., Hochholdinger F., Li C., 2014. Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability. Planta 240 (4), 667-678. https://doi.org/10.1007/s00425-014-2150-y.

[37]

Yuan S., Linquist B.A., Wilson L.T., Cassman K.G., Stuart A.M., Pede V., Miro B., Saito K., Agustiani N., Aristya V.E., Krisnadi L.Y., Zanon A.J., Heinemann A.B., Carracelas G., Subash N., Brahmanand P.S., Li T., Peng S., Grassini P., 2021. Sustainable intensification for a larger global rice bowl. Nat. Commun. 12, 7163. https://doi.org/10.1038/s41467-021-27424-z.

[38]

Yuan S., Saito K., van Oort P.A.J., van Ittersum M.K., Peng S., Grassini P., 2024. Intensifying rice production to reduce imports and land conversion in Africa. Nat. Commun. 15, 835. https://doi.org/10.1038/s41467-024-44950-8.

[39]

Zhang F., Hou Y., Zed R., Mauchline T.H., Shen J., Zhang F., Jin K., 2023. Root exudation of organic acid anions and recruitment of beneficial actinobacteria facilitate phosphorus uptake by maize in compacted silt loam soil. Soil Biol. Biochem. 184, 109074. https://doi.org/10.1016/j.soilbio.2023.109074.

AI Summary AI Mindmap
PDF (681KB)

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/