The role of a foliar nitrogen allocation strategy in controlling the CO2 fertilization effect in rice

Yu Zhang , Xingyong Tang , Duwei Zhong , Zihua Shi , Yu Jiang , Yanfeng Ding , Songhan Wang

Crop and Environment ›› 2025, Vol. 4 ›› Issue (4) : 230 -240.

PDF (1644KB)
Crop and Environment ›› 2025, Vol. 4 ›› Issue (4) : 230 -240. DOI: 10.1016/j.crope.2025.07.003
Research article
research-article

The role of a foliar nitrogen allocation strategy in controlling the CO2 fertilization effect in rice

Author information +
History +
PDF (1644KB)

Abstract

Elevated atmospheric carbon dioxide (eCO2) concentration generally boosts the photosynthetic rate of rice and tends to reduce the concentration of foliar nitrogen (N). However, there is limited evidence concerning how this shift in N allocation affects the plant's overall response to eCO2. Therefore, this study integrated data from free-air CO2 enhancement (FACE) experiments, open-top chamber (OTC) experiments, meta-analysis, and pot experiments with N fertilizer gradients to comprehensively investigate the physiological mechanisms of the rice CO2 fertilization effect (CFE) and its intrinsic relationship with leaf N allocation strategy. Results showed that eCO2 significantly enhanced rice carbon sequestration but led to reduced N allocation in the carboxylation system (PNcb) and electron transport components (PNet). The established least-squares regression model indicated that PNcb and PNet jointly control CFE (R2 ​= ​0.73). Additionally, a global meta-analysis further confirmed the global applicability of the model (R2 ​= ​0.75). The N addition gradient experiment revealed that higher N levels significantly alleviated the negative impacts of PNcb and PNet constraints on the CFE. Structural equation modeling (SEM) analysis showed that N fertilizer application indirectly influenced CFE by regulating PNcb (path coefficient of 0.74) and PNet (path coefficient of 0.80), with the role of N allocation strategies being significantly stronger than the direct effect of N fertilizer (path coefficient of 0.49). These findings highlight the critical role of the foliar N allocation strategy in CFE. This study broadens our understanding of the synergistic regulation mechanisms between carbon and N in crops.

Keywords

Carboxylation system / CO2 fertilization effect / Electron transport system / Foliar nitrogen / Photosynthesis / Rice

Cite this article

Download citation ▾
Yu Zhang, Xingyong Tang, Duwei Zhong, Zihua Shi, Yu Jiang, Yanfeng Ding, Songhan Wang. The role of a foliar nitrogen allocation strategy in controlling the CO2 fertilization effect in rice. Crop and Environment, 2025, 4(4): 230-240 DOI:10.1016/j.crope.2025.07.003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abràmoff M.D., Magalh-aes P.J., Ram S.J., 2004. Image processing with ImageJ. Biophotonics Int. 11, 36-42. https://doi.org/10.3233/ISU-1991-115-601.

[2]

Ainsworth E.A., Long S.P., 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351-372. https://doi.org/10.1111/j.1469-8137.2004.01224.x.

[3]

Ainsworth E.A., Long S.P., 2021. 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 27, 27-49. https://doi.org/10.1111/gcb.15375.

[4]

Ali A.A., Xu C., Rogers A., Fisher R.A., Wullschleger S.D., Massoud E.C., Vrugt J.A., Muss J.D., McDowell N.G., Fisher J.B., Reich P.B., Wilson C.J., 2016. A global scale mechanistic model of photosynthetic capacity (LUNA V1.0). Geosci. Model Dev. 9, 587-606. https://doi.org/10.5194/gmd-9-587-2016.

[5]

Baker J.T., Allen Jr L.H., Boote K.J., 1992. Response of rice to carbon dioxide and temperature. Agric. For. Meteorol. 60, 153-166.

[6]

Bowes G., 1991. Growth at elevated CO2: photosynthetic responses mediated through Rubisco. Plant Cell Environ. 14, 795-806. https://doi.org/10.1111/j.1365-3040.1991.tb01443.x.

[7]

Byeon S., Song W., Park M., Kim S., Kim S., Lee H., Jeon J., Kim K., Lee M., Lim H., Han S., Oh C., Kim H.S., 2021. Down-regulation of photosynthesis and its relationship with changes in leaf N allocation and N availability after long-term exposure to elevated CO2 concentration. J. Plant Physiol. 265, 153489. https://doi.org/10.1016/j.jplph.2021.153489.

[8]

Chen C.P., Sakai H., Tokida T., Usui Y., Nakamura H., Hasegawa T., 2014. Do the rich always become richer? Characterizing the leaf physiological response of the high- yielding rice cultivar Takanari to free-air CO2 enrichment. Plant Cell Physiol. 55, 381-391. https://doi.org/10.1093/pcp/pcu009.

[9]

Cui E., Xia J., Luo Y., 2023. Nitrogen use strategy drives interspecific differences in plant photosynthetic CO2 acclimation. Glob. Change Biol. 29, 3667-3677. https://doi.org/10.1111/gcb.16706.

[10]

Duursma R.A., 2015. Plantecophys-An R package for analysing and modelling leaf gas exchange data. PLoS One 10, 0143346. https://doi.org/10.1371/journal.pone.0143346.

[11]

Eckardt N.A., Snyder G.W., Portis Jr. A.R., Ogren W.L., 1997. Growth and photosynthesis under high and low irradiance of Arabidopsis thaliana antisense mutants with reduced ribulose-1,5-bisphosphate carboxylase/oxygenase activase content. Plant Physiol. 113, 575-586. https://doi.org/10.1104/pp.113.2.575.

[12]

Evans J.R., 1989. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78, 9-19.

[13]

Farquhar G.D., von Caemmerer S., Berry J.A., 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78-90.

[14]

Fukayama H., Fukuda T., Masumoto C., Taniguchi Y., Sakai H., Cheng W., Hasegawa T., Miyao M., 2009. Rice plant response to long term CO2 enrichment: Gene expression profiling. Plant Sci. 177, 203-210.

[15]

Gutschick V.P., 1981. Evolved strategies in nitrogen acquisition by plants. Am. Nat. 118, 607-637.

[16]

Halpern M., Bar-Tal A., Lugassi N., Egbaria A., Granot D., Yermiyahu U., 2019. The role of nitrogen in photosynthetic acclimation to elevated [CO2] in tomatoes. Plant Soil 434, 397-411. https://doi.org/10.1007/s11104-018-3857-5.

[17]

Halpern M., Yermiyahu U., Bar-Tal A., 2022. Photosynthetic acclimation and elevated [CO2] induced nitrogen deficiency: Two related phenomena that limit positive plant responses to elevated [CO2]. Adv. Agron. 176, 1-34. https://doi.org/10.1016/bs.agron.2022.07.001.

[18]

Hikosaka K., 2004. Interspecific difference in the photosynthesis-nitrogen relationship: patterns, physiological causes, and ecological importance. J. Plant Res. 117, 481-494. https://doi.org/10.1007/s10265-004-0174-2.

[19]

Jordan D.B., Ogren W.L., 1984. The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase: Dependence on ribulosebisphosphate concentration, pH and temperature. Planta 161, 308-313.

[20]

Justes E., Mary B., Meynard J.M., Machet J.M., Thelier-Huche L., 1994. Determination of a critical nitrogen dilution curve for winter wheat crops. Ann. Bot. 74, 397-407. https://doi.org/10.1006/anbo.1994.1133.

[21]

Kant S., Seneweera S., Rodin J., Materne M., Burch D., Rothstein S.J., Spangenberg G., 2012. Improving yield potential in crops under elevated CO2: integrating the photosynthetic and nitrogen utilization efficiencies. Front. Plant Sci. 3, 162. https://doi.org/10.3389/fpls.2012.00162.

[22]

Khan A., Wang Z., Xu K., Li L., He L., Hu H., Wang G., 2020. Validation of an enzyme- driven model explaining photosynthetic rate responses to limited nitrogen in crop plants. Front. Plant Sci. 11, 533341. https://doi.org/10.3389/fpls.2020.533341.

[23]

Kirschbaum M.U.F., 2011. Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiol. 155, 117-124. https://doi.org/10.1104/pp.110.166819.

[24]

Krishnan P., Swain D.K., Bhaskar B.C., Nayak S.K., Dash R.N., 2007. Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agric. Ecosyst. Environ. 122, 233-242. https://doi.org/10.1016/j.agee.2007.01.019.

[25]

Lichtenthaler H.K., Gitelson A., Lang M., 1996. Non-destructive determination of chlorophyll content of leaves of a green and an aurea mutant of tobacco by reflectance measurements. J. Plant Physiol. 148, 483-493. https://doi.org/10.1016/S0176-1617(96)80283-5.

[26]

Liu Y., Zhang S., Qian H., Shen C., Hu S., Zhang W., Wang Y., Huang S., Wang S., Liu Z., Li G., Fu X., Ding Y., Li S., van Groenigen K.J., Jiang Y., 2025. Variation in a single allele drives divergent yield responses to elevated CO2 between rice subspecies. Nat. Commun. 16, 376. https://doi.org/10.1038/s41467-024-55809-3.

[27]

Long S.P., Ainsworth E.A., Rogers A., Ort D.R., 2004. Rising atmospheric carbon dioxide: plants face the future. Annu. Rev. Plant Biol. 55, 591-628. https://doi.org/10.1146/annurev.arplant.55.031903.141610.

[28]

Luo Y., Field C.B., Mooney H.A., 1994. Predicting responses of photosynthesis and root fraction to elevated [CO2]a: interactions among carbon, nitrogen, and growth. Plant Cell Environ. 17, 1195-1204. https://doi.org/10.1111/j.1365-3040.1994.tb02017.x.

[29]

Luo Y., Su B., Currie W.S., Dukes J.S., Finzi A., Hartwig U., Hungate B., McMurtrie R.E., Oren R., Parton W.J., Pataki D.E., Shaw R.M., Zak D.R., Field C. B., 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54, 731-739. https://doi.org/10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2.

[30]

McGrath J.M., Lobell D.B., 2013. Regional disparities in the CO2 fertilization effect and implications for crop yields. Environ. Res. Lett. 8, 014054. https://doi.org/10.1088/1748-9326/8/1/014054.

[31]

Moll R.H., Kamprath E.J., Jackson W.A., 1982. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron. J. 74, 562-564. https://doi.org/10.2134/agronj1982.00021962007400030037x.

[32]

Mollier M., Roychowdhury R., Tzudir L., Sharma R., Barua U., Rahman N., Pal S., Gogoi B., Kalita P., Jain D., Das R., 2023. Evaluation of morpho-physiological and yield-associated traits of rice (Oryza sativa L.) landraces combined with marker- assisted selection under high-temperature stress and elevated atmospheric CO2 levels. Plants 12, 3655.

[33]

Moore B.D., Cheng S., Sims D., Seemann J.R., 1999. The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ. 22, 567-582. https://doi.org/10.1046/j.1365-3040.1999.00432.x.

[34]

Mu X., Chen Y., 2021. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol. Biochem. 158, 76-82. https://doi.org/10.1016/j.plaphy.2020.11.019.

[35]

Niinemets Ü., Tenhunen J.D., 1997. A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ. 20, 845-866. https://doi.org/10.1046/j.1365-3040.1997.d01-133.x.

[36]

Norby R.J., Warren J.M., Iversen C.M., Medlyn B.E., McMurtrie R.E., 2010. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl. Acad. Sci. U. S. A. 107, 19368-19373. https://doi.org/10.1073/pnas.1006463107.

[37]

Poorter H., Evans J.R., 1998. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia 116, 26-37. https://doi.org/10.1007/s004420050560.

[38]

Qiang B., Zhou W., Zhong X., Fu C., Cao L., Zhang Y., Jin X., 2023. Effect of nitrogen application levels on photosynthetic nitrogen distribution and use efficiency in soybean seedling leaves. J. Plant Physiol. 287, 154051. https://doi.org/10.1016/j.jplph.2023.154051.

[39]

Raines C.A., 2022. Improving plant productivity by re-tuning the regeneration of RuBP in the Calvin-Benson-Bassham cycle. New Phytol. 236, 350-356. https://doi.org/10.1111/nph.18394.

[40]

Salesse-Smith C.E., Adar N., Kannan B., Nguyen T., Wei W., Guo M., Ge Z., Altpeter F., Clemente T.E., Long S.P., 2025. Adapting C4 photosynthesis to atmospheric change and increasing productivity by elevating Rubisco content in sorghum and sugarcane. Proc. Natl. Acad. Sci. U. S. A. 122, e2419943122. https://doi.org/10.1073/pnas.2419943122.

[41]

Sharkey T.D., Bernacchi C.J., Farquhar G.D., Singsaas E.L., 2007. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 30, 1035-1040. https://doi.org/10.1111/j.1365-3040.2007.01710.x.

[42]

Takashima T., Hikosaka K., Hirose T., 2004. Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ. 27, 1047-1054. https://doi.org/10.1111/j.1365-3040.2004.01209.x.

[43]

Tausz M., Tausz-Posch S., Norton R.M., Fitzgerald G.J., Nicolas M.E., Seneweera S., 2013. Understanding crop physiology to select breeding targets and improve crop management under increasing atmospheric CO2 concentrations. Environ. Exp. Bot. 88, 71-80. https://doi.org/10.1016/j.envexpbot.2011.12.005.

[44]

Terrer C., Vicca S., Stocker B.D., Hungate B.A., Phillips R.P., Reich P.B., Finzi A.C., Prentice I.C., 2018. Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition. New Phytol. 217, 507-522. https://doi.org/10.1111/nph.14872.

[45]

Tsutsumi K., Konno M., Miyazawa S.I., Miyao M., 2014. Sites of action of elevated CO2 on leaf development in rice: discrimination between the effects of elevated CO2 and nitrogen deficiency. Plant Cell Physiol. 55, 258-268.

[46]

Wang B., Gong J., Zhang Z., Yang B., Liu M., Zhu C., Shi J., Zhang W., Yue K., 2019. Nitrogen addition alters photosynthetic carbon fixation, allocation of photoassimilates, and carbon partitioning of Leymus chinensis in a temperate grassland of Inner Mongolia. Agric. For. Meteorol. 279, 107743. https://doi.org/10.1016/j.agrformet.2019.107743.

[47]

Wang F., Gao J., Yong J.W.H., Wang Q., Ma J., He X., 2020. Higher atmospheric CO2 levels favor C3 plants over C4 plants in utilizing ammonium as a nitrogen source. Front. Plant Sci. 11, 537443. https://doi.org/10.3389/fpls.2020.537443.

[48]

Waring E.F., Perkowski E.A., Smith N.G., 2023. Soil nitrogen fertilization reduces relative leaf nitrogen allocation to photosynthesis. J. Exp. Bot. 74, 5166-5180. https://doi.org/10.1093/jxb/erad195.

[49]

Xu G., Fan X., Miller A.J., 2012. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 63, 153-182. https://doi.org/10.1146/annurev-arplant-042811-105532.

[50]

Zhang R.Y., Massey B., Mathesius U., Clarke V.C., 2023. Photosynthetic gains in super-nodulating mutants of Medicago truncatula under elevated atmospheric CO2 conditions. Plants 12, 441. https://doi.org/10.3390/plants12030441.

[51]

Zhu X., de Sturler E., Long S.P., 2007. Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol. 145, 513-526. https://doi.org/10.1104/pp.107.103713.

[52]

Zhu X., Long S.P., Ort D.R., 2010. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 61, 235-261. https://doi.org/10.1146/annurev-arplant-042809-112206.

AI Summary AI Mindmap
PDF (1644KB)

17

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/