UAV-based phenotyping identifies net assimilation rate as a diagnostic trait for synergistic enhancement of rice yield and grain quality
Weiyuan Hong , Xiangqian Feng , Ziqiu Li , Jinhua Qin , Huaxing Wu , Yunbo Zhang , Guang Chu , Chunmei Xu , Kai Yu , Yuanhui Liu , Danying Wang , Song Chen
Crop and Environment ›› 2025, Vol. 4 ›› Issue (3) : 154 -167.
UAV-based phenotyping identifies net assimilation rate as a diagnostic trait for synergistic enhancement of rice yield and grain quality
Achieving rice yield-quality synergy, which is critical for breeding and agronomic practice, is hindered by dynamic regulatory gaps due to methodological constraints, while high-throughput unmanned aerial vehicle (UAV) phenotyping can enable breakthroughs by decoding dynamic traits at scale. This study conducted five experiments (EXP, 2022-2024; including nitrogen fertilization, multi-cultivar, and breeding material experiments) with UAV-based phenotyping to establish trait estimation models (EXP1-EXP3), enabling dissection of trait-specific contributions to yield-quality synergies via regression, multi-objective optimization, and path analysis (EXP4-EXP5), and identifying diagnostic traits in practice. Using UAV data, effective regression models were developed to monitor five rice traits: plant height (R2 = 0.89), aboveground biomass (R2 = 0.84), leaf area index (R2 = 0.61), canopy nitrogen content (R2 = 0.68), and leaf nitrogen content (R2 = 0.83), thereby systematically establishing 37 critical plant traits across the growth stages. Furthermore, feature importance analysis using extreme gradient boosting (R2 = 0.99) assessed the importance of these traits for yield and grain quality, and four common traits that were crucial for both yield and grain quality were identified. Notably, the synergistic yield-quality group exhibited 26.38-51.76% higher net assimilation rate (NAR) than the low-performance group (validated by multi-objective optimization), positioning NAR as a diagnostic marker for yield-quality synergistic enhancement. Path analysis revealed that NAR exerted positive effects on yield and grain quality, while yield indirectly influenced grain quality through eating quality. Overall, this study integrated UAV-based phenotyping and trait analysis, providing a novel insight into the synergistic enhancement of yield and grain quality.
Grain quality / Net assimilation rate / Phenotyping / Rice / Unmanned aerial vehicle / Yield
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
/
| 〈 |
|
〉 |