Hyperspectral reflectance at canopy and leaf levels for predicting yield and physiological traits in spring wheat under Mediterranean conditions

Angie L. Gámez , Alvaro Chocarro , Miguel Garriga , Sebastián Romero-Bravo , Iker Aranjuelo , Gustavo A. Lobos , Alejandro del Pozo

Crop and Environment ›› 2025, Vol. 4 ›› Issue (3) : 173 -184.

PDF (2608KB)
Crop and Environment ›› 2025, Vol. 4 ›› Issue (3) : 173 -184. DOI: 10.1016/j.crope.2025.04.004
Original article
research-article

Hyperspectral reflectance at canopy and leaf levels for predicting yield and physiological traits in spring wheat under Mediterranean conditions

Author information +
History +
PDF (2608KB)

Abstract

High-throughput field phenotyping offers an efficient solution for identifying and selecting genotypes of interest in plant breeding. This study aimed to develop multivariate models using spectral reflectance data to estimate physiological and yield traits in spring wheat genotypes exposed to different water regimes. Fifteen spring wheat varieties and one triticale genotype were evaluated in sixteen environments, which were generated by combining data from over four seasons in two Mediterranean locations in Chile, along with two water regimes (irrigated and water deficit). Measured traits were leaf pigments, leaf area index (LAI), leaf water potential (Ψleaf), gas exchange, chlorophyll fluorescence, grain yield, and carbon isotope composition (δ13C). Hyperspectral reflectance was recorded at the leaf level and canopy level (45° and 90°) at anthesis and grain filling and used to generate predictive models using partial least squares (PLS), least absolute shrinkage and selection operator (LASSO), and elastic net (E.net) regression. Models explained over 60% of the trait variation (R2) for 70% of traits analysed. Fluorescence parameters (R2 ​= ​0.78-0.88), δ13C (R2 ​= ​0.80), leaf pigments (R2 ​= ​0.50-0.74), Ψleaf (R2 ​= ​0.72), and LAI (R2 ​= ​0.68) had the most robust predictions. LASSO regression showed the highest R2 and accuracy, while canopy-level spectra at 90° excelled in predicting grain yield and LAI, and leaf-level spectra were best for fluorescence traits. These methods facilitated the identification of genotypes with superior water-deficit adaptation and yield potential, accelerating breeding, enhancing crop resilience to climate change, and improving food security.

Keywords

Carbon isotope composition / Chlorophyll fluorescence / High-throughput phenotyping / Hyperspectral reflectance / Leaf gas exchange / Wheat

Cite this article

Download citation ▾
Angie L. Gámez, Alvaro Chocarro, Miguel Garriga, Sebastián Romero-Bravo, Iker Aranjuelo, Gustavo A. Lobos, Alejandro del Pozo. Hyperspectral reflectance at canopy and leaf levels for predicting yield and physiological traits in spring wheat under Mediterranean conditions. Crop and Environment, 2025, 4(3): 173-184 DOI:10.1016/j.crope.2025.04.004

登录浏览全文

4963

注册一个新账户 忘记密码

Authors' contributions

A.G., M.G., I.A., and A.P.: Writing, reviewing, and editing; A.G. and A.C.: Formal analysis; A.G., A.C., and S.R.: Data curation; M.G. and S.R.: Investigation; M.G., S.R., G.L., and A.D.: Methodology; M.G. and A.D.: Conceptualization; I.A. and A.D.: Supervision; G.L.: Software; G.L. and A.D.: Funding acquisition; and A.D.: Project administration.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors would like to express their gratitude to the National Agency for Research and Development (ANID), Chile, grants FONDEF Idea 14I10106 and ANILLO ATE220001, and the Marie Skłodowska-Curie Actions (MSCA), Research and Innovation Staff Exchange (RISE), H2020-MSCA-RISE-2019.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.crope.2025.04.004.

References

[1]

Anderegg, J., Yu, K., Aasen, H., Walter, A., Liebisch, F., Hund, A., 2020. Spectral vegetation indices to track senescence dynamics in diverse wheat germplasm. Front. Plant Sci. 10, 1749. https://doi.org/10.3389/fpls.2019.01749.

[2]

Araus, J.L., Cairns, J.E., 2014. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 19, 52-61. https://doi.org/10.1016/j.tplants.2013.09.008.

[3]

Araus, J.L., Kefauver, S.C., 2018. Breeding to adapt agriculture to climate change: affordable phenotyping solutions. Curr. Opin. Plant Biol. 45, 237-247. https://doi.org/10.1016/j.pbi.2018.05.003.

[4]

Araus, J.L., Rezzouk, F.Z., Sanchez-Bragado, R., Aparicio, N., Serret, M.D., 2023. Phenotyping genotypic performance under multistress conditions: Mediterranean wheat as a case study. Field Crops Res. 303, 109122. https://doi.org/10.1016/j.fcr.2023.109122.

[5]

Araus, J.L., Slafer, G.A., Royo, C., Serret, M.D., 2008. Breeding for yield potential and stress adaptation in cereals. Crit. Rev. Plant Sci. 27, 377-412. https://doi.org/10.1080/07352680802467736.

[6]

Atlin, G.N., Cairns, J.E., Das, B., 2017. Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Glob. Food Secur. 12, 31-37. https://doi.org/10.1016/j.gfs.2017.01.008.

[7]

Baker, N.R., 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59, 89-113. https://doi.org/10.1146/annurev.arplant.59.032607.092759.

[8]

Barnes, R.J., Dhanoa, M.S., Lister, S.J., 1989. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 43, 772-777. https://doi.org/10.1366/0003702894202201.

[9]

Be_c, K.B., Grabska, J., Bonn, G.K., Popp, M., Huck, C.W., 2020. Principles and applications of vibrational spectroscopic imaging in plant science: a review. Front. Plant Sci. 11, 1226. https://doi.org/10.3389/fpls.2020.01226.

[10]

Be_c, K.B., Huck, C.W., 2019. Breakthrough potential in near-infrared spectroscopy: spectra simulation. A review of recent developments. Front. Chem. 7, 48. https://doi.org/10.3389/fchem.2019.00048.

[11]

Buchaillot, M.L., Soba, D., Shu, T., Liu, J., Aranjuelo, I., Araus, J.L., Runion, G.B., Prior, S.A., Kefauver, S.C., Sanz-Saez, A., 2022. Estimating peanut and soybean photosynthetic traits using leaf spectral reflectance and advanced regression models. Planta 255, 93. https://doi.org/10.1007/s00425-022-03867-6.

[12]

Bujak, R., Daghir-Wojtkowiak, E., Kaliszan, R., Markuszewski, M.J., 2016. PLS-based and regularization-based methods for the selection of relevant variables in non-targeted metabolomics data. Front. Mol. Biosci. 3, 35. https://doi.org/10.3389/fmolb.2016.00035.

[13]

Celis, J., Xiao, X., Wagle, P., Basara, J., McCarthy, H., Souza, L., 2024. A comparison of moderate and high spatial resolution satellite data for modelling gross primary production and transpiration of native prairie, alfalfa, and winter wheat. Agric. For. Meteorol. 344, 109797. https://doi.org/10.1016/j.agrformet.2023.109797.

[14]

Chairi, F., Sanchez-Bragado, R., Serret, M.D., Aparicio, N., Nieto-Taladriz, M.T., Araus, J.L., 2020. Agronomic and physiological traits related to the genetic advance of semi-dwarf durum wheat: The case of Spain. Plant Sci. 295, 110210. https://doi.org/10.1016/j.plantsci.2019.110210.

[15]

Coast, O., Shah, S., Ivakov, A., Gaju, O., Wilson, P.B., Posch, B.C., Bryant, C.J., Negrini, A.C.A., Evans, J.R., Condon, A.G., Silva-P_erez, V., Reynolds, M.P., Pogson, B.J., Millar, A.H., Furbank, R.T., Atkin, O.K., 2018. Predicting dark respiration rates of wheat leaves from hyperspectral reflectance. Plant Cell Environ. 42, 2133-2150. https://doi.org/10.1111/pce.13544.

[16]

Collins, B., Chenu, K., 2021. Improving productivity of Australian wheat by adapting sowing date and genotype phenology to future climate. Clim. Risk Manag. 32, 100300. https://doi.org/10.1016/j.crm.2021.100300.

[17]

Cotrozzi, L., Lorenzini, G., Nali, C., Pellegrini, E., Saponaro, V., Hoshika, Y., Arab, L., Rennenberg, H., Paoletti, E., 2020a. Hyperspectral reflectance of light-adapted leaves can predict both dark- and light-adapted chlorophyll fluorescence parameters, and the effects of chronic ozone exposure on date palm (Phoenix dactylifera). Int. J. Mol. Sci. 21, 6441. https://doi.org/10.3390/ijms21176441.

[18]

Cotrozzi, L., Peron, R., Tuinstra, M.R., Mickelbart, M.V., Couture, J.J., 2020b. Spectral phenotyping of physiological and anatomical leaf traits related with maize water status. Plant Physiol. 184, 1363-1377. https://doi.org/10.1104/pp.20.00577.

[19]

del Pozo, A., Brunel-Saldias, N., Engler, A., Ortega-Farias, S., Acevedo-Opazo, C., Lobos, G.A., Jara-Rojas, R., Molina-Montenegro, M.A., 2019. Climate change impacts and adaptation strategies of agriculture in Mediterranean-climate regions (MCRs). Sustainability 11, 2769. https://doi.org/10.3390/su11102769.

[20]

del Pozo, A., M_endez-Espinoza, A.M., Garriga, M., Estrada, F., Castillo, D., Matus, I., Lobos, G.A., 2023. Phenotypic variation in leaf photosynthetic traits, leaf area index, and carbon discrimination of field-grown wheat genotypes and their relationship with yield performance in Mediterranean environments. Planta 258, 41. https://doi.org/10.1007/s00425-023-04163-7.

[21]

del Pozo, A., Y_a-nez, A., Matus, I.A., Tapia, G., Castillo, D., Sanchez-Jard_on, L., Araus, J.L., 2016. Physiological traits associated with wheat yield potential and performance under water-stress in a Mediterranean environment. Front. Plant Sci. 7, 987. https://doi.org/10.3389/fpls.2016.00987.

[22]

El-Hendawy, S., Al-Suhaibani, N., Mubushar, M., Tahir, M.U., Marey, S., Refay, Y., Tola, E., 2022. Combining hyperspectral reflectance and multivariate regression models to estimate plant biomass of advanced spring wheat lines in diverse phenological stages under salinity conditions. Appl. Sci. 12, 1983. https://doi.org/10.3390/app12041983.

[23]

Falcioni, R., Antunes, W.C., Dematt^e, J.A.M., Nanni, M.R., 2023. Reflectance spectroscopy for the classification and prediction of pigments in agronomic crops. Plants 12, 2347. https://doi.org/10.3390/plants12122347.

[24]

Falcioni, R., Moriwaki, T., Antunes, W.C., Nanni, M.R., 2022. Rapid quantification method for yield, calorimetric energy and chlorophyll a fluorescence parameters in Nicotiana tabacum L. using Vis-NIR-SWIR hyperspectroscopy. Plants 11, 2406. https://doi.org/10.3390/plants11182406.

[25]

Fan, L., Chen, S., Li, Q., Zhu, Z., 2015. Variable selection and model prediction based on Lasso, adaptive Lasso and elastic net. In: 2015 4th International Conference on Computer Science and Network Technology (ICCSNT), IEEE, Harbin, China, pp. 579-583. https://doi.org/10.1109/ICCSNT.2015.7490813.

[26]

FAO, IFAD, UNICEF, WFP, WHO, 2023. Food and Agriculture Organization of the United Nations, International Fund for Agricultural Development, United Nations Children’s Fund, World Food Programme, World Health Organization. In:The State of Food Security and Nutrition in the World 2023. Urbanization, agrifood systems transformation and healthy diets across the rural-urban continuum. Rome, Italy. https://doi.org/10.4060/cc3017en.

[27]

FAOSTAT, 2024. FAOSTAT Database. http://faostat.fao.org/. (Accessed 14 May 2024).

[28]

Farooq, M., Hussain, M., Siddique, K.H.M., 2014. Drought stress in wheat during flowering and grain-filling periods. Crit. Rev. Plant Sci. 33, 331-349. https://doi.org/10.1080/07352689.2014.875291.

[29]

Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., 1989. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503-537.

[30]

Fei, S., Li, L., Han, Z., Chen, Z., Xiao, Y., 2022. Combining novel feature selection strategy and hyperspectral vegetation indices to predict crop yield. Plant Methods 18, 119. https://doi.org/10.1186/s13007-022-00949-0.

[31]

Fei, S., Xiao, S., Zhu, J., Xiao, Y., Ma, Y., 2024. Dual sampling linear regression ensemble to predict wheat yield across growing seasons with hyperspectral sensing. Comput. Electron. Agric. 216, 108514. https://doi.org/10.1016/j.compag.2023.108514.

[32]

Fu, P., Meacham-Hensold, K., Guan, K., Wu, J., Bernacchi, C., 2020. Estimating photosynthetic traits from reflectance spectra: A synthesis of spectral indices numerical inversion, and partial least square regression. Plant Cell Environ. 43, 1241-1258. https://doi.org/10.1111/pce.13718.

[33]

Furbank, R.T., Silva-Perez, V., Evans, J.R., Condon, A.G., Estavillo, G.M., He, W., Newman, S., Poir_e, R., Hall, A., He, Z., 2021. Wheat physiology predictor: predicting physiological traits in wheat from hyperspectral reflectance measurements using deep learning. Plant Methods 17, 108. https://doi.org/10.1186/s13007-021-00806-6.

[34]

Furbank, R.T., Tester, M., 2011. Phenomics - technologies to relieve the phenotyping bottleneck. Trends Plant Sci. 16, 635-644. https://doi.org/10.1016/j.tplants.2011.09.005.

[35]

Gao, G., Zhang, L., Wu, L., Yuan, D., 2024. Estimation of chlorophyll content in wheat based on optimal spectral index. Appl. Sci. 14, 703. https://doi.org/10.3390/app14020703.

[36]

Garreaud, R.D., Boisier, J.P., Rondanelli, R., Montecinos, A., Sepúlveda, H.H., Veloso-_Aguila, D., 2020. The Central Chile Mega Drought (2010-2018): A climate dynamics perspective. Int. J. Climatol. 40, 421-439. https://doi.org/10.1002/joc.6219.

[37]

Garriga, M., Romero-Bravo, S., Estrada, F., Escobar, A., Matus, I.A., del Pozo, A., Astudillo, C.A., Lobos, G.A., 2017. Assessing wheat traits by spectral reflectance: do we really need to focus on predicted trait-values or directly identify the elite genotypes group? Front. Plant Sci. 8, 280. https://doi.org/10.3389/fpls.2017.00280.

[38]

Garriga, M., Romero-Bravo, S., Estrada, F., M_endez-Espinoza, A.M., Gonz_alez-Martínez, L., Matus, I.A., Castillo, D., Lobos, G.A., del Pozo, A., 2021. Estimating carbon isotope discrimination and grain yield of bread wheat grown under waterlimited and full irrigation conditions by hyperspectral canopy reflectance and multilinear regression analysis. Int. J. Remote. Sens. 42, 2848-2871. https://doi.org/10.1080/01431161.2020.1854888.

[39]

Grzybowski, M., Wijewardane, N.K., Atefi, A., Ge, Y., Schnable, J.C., 2021. Hyperspectral reflectance-based phenotyping for quantitative genetics in crops: Progress and challenges. Plant Commun. 2, 100209. https://doi.org/10.1016/j.xplc.2021.100209.

[40]

Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning. Springer, New York, USA. https://doi.org/10.1007/978-0-387-84858-7.

[41]

Hennessy, A., Clarke, K., Lewis, M., 2020. Hyperspectral classification of plants: a review of waveband selection generalisability. Remote Sens. 12, 113. https://doi.org/10.3390/rs12010113.

[42]

Hernandez, J., Lobos, G., Matus, I., del Pozo, A., Silva, P., Galleguillos, M., 2015. Using ridge regression models to estimate grain yield from field spectral data in bread wheat (Triticum aestivum L.) grown under three water regimes. Remote Sens. 7, 2109-2126. https://doi.org/10.3390/rs70202109.

[43]

IPCC, 2021. Intergovernmental Panel on Climate Change. In: Climate Change 2021, the Physical Science Basis. Cambridge University Press, Cambridge, UK.

[44]

Jia, M., Li, D., Colombo, R., Wang, Y., Wang, X., Cheng, T., Zhu, Y., Yao, X., Xu, C., Ouer, G., Li, H., Zhang, C., 2019. Quantifying chlorophyll fluorescence parameters from hyperspectral reflectance at the leaf scale under various nitrogen treatment regimes in winter wheat. Remote Sens. 11, 2838. https://doi.org/10.3390/rs11232838.

[45]

Leuning, R., Hughes, D., Daniel, P., Coops, N.C., Newnham, G., 2006. A multi-angle spectrometer for automatic measurement of plant canopy reflectance spectra. Remote Sens. Environ. 103, 236-245. https://doi.org/10.1016/j.rse.2005.06.016.

[46]

Li, D., Quan, C., Song, Z., Li, X., Yu, G., Li, C., Muhammad, A., 2021. High-throughput plant phenotyping platform (HT3P) as a novel tool for estimating agronomic traits from the lab to the field. Front. Bioeng. Biotechnol. 8, 623705. https://doi.org/10.3389/fbioe.2020.623705.

[47]

Lobos, G.A., Matus, I., Rodríguez, A., Romero-Bravo, S., Araus, J.L., del Pozo, A., 2014. Wheat genotypic variability in grain yield and carbon isotope discrimination under Mediterranean conditions assessed by spectral reflectance. J. Integr. Plant Biol. 56, 470-479. https://doi.org/10.1111/jipb.12114.

[48]

Lobos, G.A., Poblete-Echeverría, C., 2017. Spectral Knowledge (SK-UTALCA): software for exploratory analysis of high-resolution spectral reflectance data on plant breeding. Front. Plant Sci. 7, 1996. https://doi.org/10.3389/fpls.2016.01996.

[49]

Lopes, M.S., Reynolds, M.P., 2012. Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. J. Exp. Bot. 63, 3789-3798. https://doi.org/10.1093/jxb/ers071.

[50]

Martínez-Moreno, F., Ammar, K., Solís, I., 2022. Global changes in cultivated area and breeding activities of durum wheat from 1800 to date: a historical review. Agronomy 12, 1135. https://doi.org/10.3390/agronomy12051135.

[51]

Munns, R., James, R.A., Sirault, X.R.R., Furbank, R.T., Jones, H.G., 2010. New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J. Exp. Bot. 61, 3499-3507. https://doi.org/10.1093/jxb/erq199.

[52]

Noto, L.V., Cipolla, G., Pumo, D., Francipane, A., 2023. Climate change in the Mediterranean Basin (Part II): a review of challenges and uncertainties in climate change modeling and impact analyses. Water Resour. Manag. 37, 2307-2323. https://doi.org/10.1007/s11269-023-03444-w.

[53]

Ollinger, S.V., 2011. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 189, 375-394. https://doi.org/10.1111/j.1469-8137.2010.03536.x.

[54]

Pannu, J., Billor, N., 2017. Robust group-Lasso for functional regression model. Commun. Stat. Simul. Comput. 46, 3356-3374. https://doi.org/10.1080/03610918.2015.1096375.

[55]

Pe-nuelas, J., Filella, I., 1998. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci. 3, 151-156. https://doi.org/10.1016/S1360-1385(98)01213-8.

[56]

Pe-nuelas, J., Filella, I., Gamon, J.A., 1995. Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol. 131, 291-296. https://doi.org/10.1111/j.1469-8137.1995.tb03064.x.

[57]

Pinter, P.J., Jackson, R.D., Ezra, C.E., Gausman, H.W., 1985. Sun-angle and canopyarchitecture effects on the spectral reflectance of sixwheat cultivars. Int. J. Remote Sens. 6, 1813-1825. https://doi.org/10.1080/01431168508948330.

[58]

R, Core Team, 2024. R, a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/.

[59]

Reynolds, M.P., Lewis, J.M., Ammar, K., Basnet, B.R., Crespo-Herrera, L., Crossa, J., Dhugga, K.S., Dreisigacke, S., Juliana, P., Karwat, H., Kishii, M., Krause, M.R., Langridge, P., Lashkari, A., Mondal, S., Payne, T., Pequeno, D., Pinto, F., Sansaloni, C., Schulthess, U., Singh, R.P., Sonder, K., Sukumaran, S., Xiong, W., Braun, H.J., 2021. Harnessing translational research in wheat for climate resilience. J. Exp. Bot. 72, 5134-5157. https://doi.org/10.1093/jxb/erab256.

[60]

Reynolds, M., Manes, Y., Izanloo, A., Langridge, P., 2009. Phenotyping approaches for physiological breeding and gene discovery in wheat. Ann. Appl. Biol. 155, 309-320. https://doi.org/10.1111/j.1744-7348.2009.00351.x.

[61]

Rezzouk, F.Z., Gracia-Romero, A., Kefauver, S.C., Guti_errez, N.A., Aranjuelo, I., Serret, M.D., Araus, J.L., 2020. Remote sensing techniques and stable isotopes as phenotyping tools to assess wheat yield performance: effects of growing temperature and vernalization. Plant Sci. 295, 110281. https://doi.org/10.1016/j.plantsci.2019.110281.

[62]

Rezzouk, F.Z., Gracia-Romero, A., Segarra, J., Kefauver, S.C., Aparicio, N., Serret, M.D., Araus, J.L., 2023. Root traits and resource acquisition determining durum wheat performance under Mediterranean conditions: an integrative approach. Agric. Water Manage. 288, 108487. https://doi.org/10.1016/j.agwat.2023.108487.

[63]

Richards, R.A., 2006. Physiological traits used in the breeding of new cultivars for waterscarce environments. Agric. Water Manage. 80, 197-211. https://doi.org/10.1016/j.agwat.2005.07.013.

[64]

Savitzky, A., Golay, M.J.E., 1964. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627-1639. https://doi.org/10.1021/ac60214a047.

[65]

Segarra, J., Gonz_alez-Torralba, J., Aranjuelo, I., Araus, J.L., Kefauver, S.C., 2020. Estimating wheat grain yield using Sentinel-2 imagery and exploring topographic features and rainfall effects on wheat performance in Navarre, Spain. Remote Sens. 12, 2278. https://doi.org/10.3390/rs12142278.

[66]

Sexton, T., Sankaran, S., Cousins, A.B., 2021. Predicting photosynthetic capacity in tobacco using shortwave infrared spectral reflectance. J. Exp. Bot. 72, 4373-4383. https://doi.org/10.1093/jxb/erab118.

[67]

Siegmann, B., Jarmer, T., 2015. Comparison of different regression models and validation techniques for the assessment of wheat leaf area index from hyperspectral data. Int. J. Remote Sens. 36, 4519-4534. https://doi.org/10.1080/01431161.2015.1084438.

[68]

Silva-Perez, V., Molero, G., Serbin, S.P., Condon, A.G., Reynolds, M.P., Furbank, R.T., Evans, J.R., 2018. Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat. J. Exp. Bot. 69, 483-496. https://doi.org/10.1093/jxb/erx421.

[69]

Song, Q., Zhu, X., 2024. Techniques for photosynthesis phenomics: gas exchange, fluorescence, and reflectance spectrums. Crop Environ. 3, 147-158. https://doi.org/10.1016/j.crope.2024.05.002.

[70]

Su, M., Wang, W., 2021. Elastic net penalized quantile regression model. J. Comput. Appl. Math. 392, 113462. https://doi.org/10.1016/j.cam.2021.113462.

[71]

Su, Y., Gao, X., Li, X., Tao, D., 2012. Multivariate multilinear regression. IEEE Trans. Syst. Man Cybern. B Cybern. 42, 1560-1573. https://doi.org/10.1109/TSMCB.2012.2195171.

[72]

Sun, H., Feng, M., Xiao, L., Yang, W., Ding, G., Wang, C., Jia, X., Wu, G., Zhang, S., 2021. Potential of multivariate statistical technique based on the effective spectra bands to estimate the plant water content of wheat under different irrigation regimes. Front. Plant Sci. 12, 631573. https://doi.org/10.3389/fpls.2021.631573.

[73]

Tang, Z., Guo, J., Xiang, Y., Lu, X., Wang, Q., Wang, H., Cheng, M., Wang, H., Wang, X., An, J., Abdelghany, A., Li, Z., Zhang, F., 2022. Estimation of leaf area index and above-ground biomass of winter wheat based on optimal spectral index. Agronomy 12, 1729. https://doi.org/10.3390/agronomy12071729.

[74]

Tardieu, F., Simonneau, T., Muller, B., 2018. The physiological basis of drought tolerance in crop plants: a scenario-dependent probabilistic approach. Annu. Rev. Plant Biol. 69, 733-759. https://doi.org/10.1146/annurev-arplant-042817-040218.

[75]

Tardieu, F., Tuberosa, R., 2010. Dissection and modelling of abiotic stress tolerance in plants. Curr. Opin. Plant Biol. 13, 206-212. https://doi.org/10.1016/j.pbi.2009.12.012.

[76]

Thungo, Z., Shimelis, H., Odindo, A., Mashilo, J., 2021. Genetic gain for agronomic, physiological, and biochemical traits and quality attributes in bread wheat (Triticum aestivum L.): a meta-analysis. Euphytica 217, 119. https://doi.org/10.1007/s10681-021-02846-4.

[77]

Tibshirani, R., 1996. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 58, 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.

[78]

Tilman, D., Clark, M., 2015. Food, agriculture and the environment: can we feed the world and save the Earth? Daedalus 144, 8-23. https://doi.org/10.1162/DAED_a_00350.

[79]

Tramblay, Y., Koutroulis, A., Samaniego, L., Vicente-Serrano, S.M., Volaire, F., Boone, A., Le Page, M., Llasat, M.C., Albergel, C., Burak, S., Cailleret, M., Kalin, K.C., Davi, H., Dupuy, J.L., Greve, P., Grillakis, M., Hanich, L., Jarlan, L., Martin-StPaul, N., Martínez-Vilalta, J., Mouillot, F., Pulido-Velazquez, D., Quintana-Seguí, P., Renard, D., Turco, M., Türkes, M., Trigo, R., Vidal, J.P., Vilagrosa, A., Zribi, M., Polcher, J., 2020. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth-Sci. Rev. 210, 103348. https://doi.org/10.1016/j.earscirev.2020.103348.

[80]

Tshikunde, N.M., Mashilo, J., Shimelis, H., Odindo, A., 2019. Agronomic and physiological traits, and associated quantitative trait loci (QTL) affecting yield response in wheat (Triticum aestivum L.): a review. Front. Plant Sci. 10, 1428. https://doi.org/10.3389/fpls.2019.01428.

[81]

Vergara-Díaz, O., Vatter, T., Kefauver, S.C., Obata, T., Fernie, A.R., Araus, J.L., 2020. Assessing durum wheat ear and leaf metabolomes in the field through hyperspectral data. Plant J. 102, 615-630. https://doi.org/10.1111/tpj.14636.

[82]

Wang, D., Cao, W., Zhang, F., Li, Z., Xu, S., Wu, X., 2022. A review of deep learning in multiscale agricultural sensing. Remote Sens. 14, 559. https://doi.org/10.3390/rs14030559.

[83]

Weber, V.S., Araus, J.L., Cairns, J.E., Sanchez, C., Melchinger, A.E., Orsini, E., 2012. Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes. Field Crops Res. 128, 82-90. https://doi.org/10.1016/j.fcr.2011.12.016.

[84]

Wen, S., Shi, N., Lu, J., Gao, Q., Yang, H., Gao, Z., 2023. Estimating chlorophyll fluorescence parameters of rice (Oryza sativa L.) based on spectrum transformation and a joint feature extraction algorithm. Agronomy 13, 337. https://doi.org/10.3390/agronomy13020337.

[85]

Wold, S., Sj€ostr€om, M., Eriksson, L., 2001. PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58, 109-130. https://doi.org/10.1016/S0169-7439(01)00155-1.

[86]

Yang, Y., Nan, R., Mi, T., Song, Y., Shi, F., Liu, X., Wang, Y., Sun, F., Xi, Y., Zhang, C., 2023. Rapid and nondestructive evaluation of wheat chlorophyll under drought stress using hyperspectral imaging. Int. J. Mol. Sci. 24, 5825. https://doi.org/10.3390/ijms24065825.

[87]

Yang, Y., Tilman, D., Jin, Z., Smith, P., Barrett, C.B., Zhu, Y.G., Burney, J., D’Odorico, P., Fantke, P., Fargione, J., Finlay, J.C., Rulli, M.C., Sloat, L., van Groenigen, K.J., West, P.C., Ziska, L., Michalak, A.M., Lobell, D.B., Clark, M., Colquhoun, J., Garg, T., Garrett, K.A., Geels, C., Hernandez, R.R., Herrero, M., Hutchison, W.D., Jain, M., Jungers, J.M., Liu, B., Mueller, N.D., Ortiz-Bobea, A., Schewe, J., Song, J., Verheyen, J., Vitousek, P., Wada, Y., Xia, L., Zhang, X., Zhuang, M., 2024. Climate change exacerbates the environmental impacts of agriculture. Science 385, eadn3747. https://doi.org/10.1126/science.adn3747.

[88]

Yendrek, C.R., Tomaz, T., Montes, C.M., Cao, Y., Morse, A.M., Brown, P.J., McIntyre, L.M., Leakey, A.D.B., Ainsworth, E.A., 2017. High-throughput phenotyping of maize leaf physiological and biochemical traits using hyperspectral reflectance. Plant Physiol. 173, 614-626. https://doi.org/10.1104/pp.16.01447.

[89]

Yousfi, S., Gracia-Romero, A., Kellas, N., Kaddour, M., Chadouli, A., Karrou, M., Araus, J.L., Serret, M.D., 2019. Combined use of low-cost remote sensing techniques and δ13C to assess bread wheat grain yield under different water and nitrogen conditionsarticle-title. Agronomy 9, 285. https://doi.org/10.3390/agronomy9060285.

[90]

Yu, N., Li, L., Schmitz, N., Tian, L.F., Greenberg, J.A., Diers, B.W., 2016. Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle-based platform. Remote Sens. Environ. 187, 91-101. https://doi.org/10.1016/j.rse.2016.10.005.

[91]

Zaman-Allah, M., Vergara, O., Araus, J.L., Tarekegne, A., Magorokosho, C., Zarco-Tejada, P.J., Hornero, A., Hern_andez Alba, A., Das, B., Craufurd, P., Olsen, M., Pasanna, B.M., Cairns, J., 2015. Unmanned aerial platform-based multispectral imaging for field phenotyping of maize. Plant Methods 11, 35. https://doi.org/10.1186/s13007-015-0078-2.

[92]

Zarco-Tejada, P.J., Miller, J.R., Mohammed, G.H., Noland, T.L., 2000. Chlorophyll fluorescence effects on vegetation apparent reflectance: I. Leaf-level measurements and model simulation. Remote Sens. Environ. 74, 582-595. https://doi.org/10.1016/S0034-4257(00)00148-6.

[93]

Zheng, W., Lu, X., Li, Y., Li, S., Zhang, Y., 2021. Hyperspectral identification of chlorophyll fluorescence parameters of Suaeda salsa in coastal wetlands. Remote Sens. 13, 2066. https://doi.org/10.3390/rs13112066.

[94]

Zhuang, J., Wang, Q., 2024. Hyperspectral indices developed from fractional-order derivative spectra improved estimation of leaf chlorophyll fluorescence parameters. Plants 13, 1923. https://doi.org/10.3390/plants13141923.

[95]

Zhuang, J., Wang, Q., Song, G., Jin, J., 2023. Validating and developing hyperspectral indices for tracing leaf chlorophyll fluorescence parameters under varying light conditions. Remote Sens. 15, 4890. https://doi.org/10.3390/rs15194890.

[96]

Zou, H., Hastie, T., 2005. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67, 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x.

AI Summary AI Mindmap
PDF (2608KB)

370

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/