Effects of nitrogen, phosphorous, and potassium fertilization on rapeseed yield under freeze stress

Shishi Liu , Linxin Xiong , Wen Fang , Kunkun Wang , Xin Cui , Chen Liu , Tao Ren , Jianwei Lu

Crop and Environment ›› 2025, Vol. 4 ›› Issue (3) : 143 -153.

PDF (1053KB)
Crop and Environment ›› 2025, Vol. 4 ›› Issue (3) : 143 -153. DOI: 10.1016/j.crope.2025.04.002
Original article
research-article

Effects of nitrogen, phosphorous, and potassium fertilization on rapeseed yield under freeze stress

Author information +
History +
PDF (1053KB)

Abstract

Climate variability, particularly freeze stress, poses a substantial challenge to crop yields worldwide. This study examined the impact of early 2024 freeze stress on rapeseed yields in the Yangtze River Basin, China, and assessed yield responses to nitrogen (N), phosphorus (P), and potassium (K) fertilizer rates. Six field experiments with varying N, P, and K fertilizer rates were conducted from 2022 to 2024 at two sites. In 2023-2024, a severe freeze event caused yield losses ranging from 13.4% to 63.3%, depending on nutrient fertilizer rates and sites. The effect of N fertilization on mitigating freeze stress varied across different sites, while high P fertilizer rates were associated with a reduced yield decline under freeze stress. The K fertilizer application also decreased the yield reductions caused by the freeze stress. Freeze stress disproportionately affected yield components, particularly the number of siliques per plant. Membership function values (MFV) were used as a comprehensive indicator of yield-related traits to quantify the combined effects of freeze stress and fertilization on rapeseed yield. The optimal fertilizer rates that maximized MFV were 343 ​kg ​N ​ha−1, 118 ​kg P2O5 ​ha−1, and 166 ​kg K2O ha−1 for 2022-2023 and 239 ​kg ​N ​ha−1, 110 ​kg P2O5 ​ha−1, and 169 ​kg K2O ha−1 for 2023-2024. These results highlight the importance of balanced nutrient management in improving rapeseed resilience to freeze stress and provide practical recommendations for optimizing nutrient management in cold-prone regions.

Keywords

Fertilizer rates / Freeze stress / Harvest index / Rapeseed / Yield / Yield components

Cite this article

Download citation ▾
Shishi Liu, Linxin Xiong, Wen Fang, Kunkun Wang, Xin Cui, Chen Liu, Tao Ren, Jianwei Lu. Effects of nitrogen, phosphorous, and potassium fertilization on rapeseed yield under freeze stress. Crop and Environment, 2025, 4(3): 143-153 DOI:10.1016/j.crope.2025.04.002

登录浏览全文

4963

注册一个新账户 忘记密码

Abbreviations

Not applicable.

Availability of data and materials

Data will be shared upon request by the readers.

Authors' contributions

S.L.: Manuscript writing; S.L.: Methodology; S.L. and J.L.: Conceptualization; L.X. and W.F.: Visualization; L.X.: Software; L.X., K.W., X.C., and C.L.: Data curation; W.F., K.W., X.C., and C.L.: Investigation; T.R.: Supervision; J.L.: Writing, review, and editing; and J.L.: Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This research was supported by the National Key Research and Development Program of China (2023YFD1901100), the earmarked fund for CARS-12, and the Fundamental Research Funds for the Central Universities (2662024PY017).

References

[1]

Basal, O., Szab_o, A., 2020. The combined effect of drought stress and nitrogen fertilization on soybean. Agronomy 10, 384. https://doi.org/10.3390/agronomy10030384.

[2]

Brown, J.K.M., Beeby, R., Penfield, S., 2019. Yield instability of winter oilseed rape modulated by early winter temperature. Sci. Rep. 9, 6953. https://doi.org/10.1038/s41598-019-43461-7.

[3]

Chen, X., Min, D., Yasir, T.A., Hu, Y., 2012. Evaluation of 14 morphological, yield-related and physiological traits as indicators of drought tolerance in Chinese winter bread wheat revealed by analysis of the membership function value of drought tolerance (MFVD). Field Crops Res. 137, 195-201. https://doi.org/10.1016/j.fcr.2012.09.008.

[4]

Chen, Y., Zhang, P., Wang, L., Ma, G., Li, Z., Wang, C., 2020. Interaction of nitrogen and phosphorus on wheat yield, N use efficiency and soil nitrate nitrogen distribution in the North China plain. Int. J. Plant Prod. 14, 415-426. https://doi.org/10.1007/s42106-020-00093-6.

[5]

Choudhary, A., Kaur, N., Sharma, A., Kumar, A., 2021. Evaluation and screening of elite wheat germplasm for salinity stress at the seedling phase. Physiol. Plant. 173, 2207-2215. https://doi.org/10.1111/ppl.13571.

[6]

Cong, R., Li, H., Zhang, Z., Ren, T., Li, X., Lu, J., 2016. Evaluate regional potassium fertilization strategy of winter oilseed rape under intensive cropping systems: largescale field experiment analysis. Field Crops Res. 193, 34-42. https://doi.org/10.1016/j.fcr.2016.03.004.

[7]

de Bang, T.C., Husted, S., Laursen, K.H., Persson, D.P., Schjoerring, J.K., 2021. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol. 229, 2446-2469. https://doi.org/10.1111/nph.17074.

[8]

Dong, Q., Huo, Y., Jiang, J., Pei, S., Wu, J., Yao, L., Wu, J., Chen, H., 2015. Research on meteorological index grades and disaster warning indicators during the growth period of rapeseed. Jiangsu Agric. Sci. 43, 84-90 (in Chinese).

[9]

Du, M., Zhang, W., Gao, J., Liu, M., Zhou, Y., He, D., Zhao, Y., Liu, S., 2021. Improvement of root characteristics due to nitrogen, phosphorus, and potassium interactions increases rice (Oryza sativa L.) yield and nitrogen use efficiency. Agronomy 12, 23. https://doi.org/10.3390/agronomy12010023.

[10]

Evans, M.A., Skinner, D.Z., Koenig, R.T., Hulbert, S.H., Pan, W.L., 2016. Effect of phosphorus, potassium, and chloride nutrition on cold tolerance of winter canola (Brassica napus L.). J. Plant Nutr. 39, 1112-1122. https://doi.org/10.1080/01904167.2014.990095.

[11]

Fageria, V.D., 2001. Nutrient interactions in crop plants. J. Plant Nutr. 24, 1269-1290. https://doi.org/10.1081/PLN-100106981.

[12]

Faranda, D., Bourdin, S., Ginesta, M., Krouma, M., Noyelle, R., Pons, F., Yiou, P., Messori, G., 2022. A climate-change attribution retrospective of some impactful weather extremes of 2021. Weather Clim. Dyn. 3, 1311-1340. https://doi.org/10.5194/wcd-3-1311-2022.

[13]

Frieler, K., Schauberger, B., Arneth, A., Balkovi_c, J., Chryssanthacopoulos, J., Deryng, D., Elliott, J., Folberth, C., Khabarov, N., Müller, C., Olin, S., Pugh, T.A.M., Schaphoff, S., Schewe, J., Schmid, E., Warszawski, L., Levermann, A., 2017. Understanding the weather signal in national crop-yield variability. Earth Future 5, 605-616. https://doi.org/10.1002/2016EF000525.

[14]

Gholizadeh, A., Dehghani, H., Akbarpour, O., Amini, A., Sadeghi, K., Hanifei, M., Sharifi-Zagheh, A., 2022. Assessment of Iranian wheat germplasm for salinity tolerance using analysis of the membership function value of salinity tolerance (MFVS). J. Crop Sci. Biotechnol. 25, 611-619. https://doi.org/10.1007/s12892-022-00156-2.

[15]

Gyanagoudar, H.S., Hatiya, S.T., Guhey, A., Dharmappa, P.M., Seetharamaiah, S.K., 2024. A comprehensive approach for evaluating salinity stress tolerance in brinjal (Solanum melongena L.) germplasm using membership function value. Physiol. Plant. 176, e14239. https://doi.org/10.1111/ppl.14239.

[16]

Hasanuzzaman, M., Bhuyan, M.H.M., Nahar, K., Hossain, M.S., AI Mahmud, J., Hossen, M.S., Chowdhury, A.A.M., Moumita, Fujita, M., 2018. Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 8, 31. https://doi.org/10.3390/agronomy8030031.

[17]

Hawkesford, M., Horst, W., Kichey, T., Lambers, H., Schjoerring, J., Møller, I.S., White, P., 2012. Functions of macronutrients. In: Marschner, H. (Ed.), Marschner’s Mineral Nutrition of Higher Plants, Third Edition. Elsevier, London, UK, pp. 135-189. https://doi.org/10.1016/B978-0-12-384905-2.00006-6.

[18]

Hu, Q., Hua, W., Yin, Y., Zhang, X., Liu, L., Shi, J., Zhao, Y., Qin, L., Chen, C., Wang, H., 2017. Rapeseed research and production in China. Crop J. 5, 127-135. https://doi.org/10.1016/j.cj.2016.06.005.

[19]

Khan, F., Siddique, A.B., Shabala, S., Zhou, M., Zhao, C., 2023. Phosphorus plays key roles in regulating plants’ physiological responses to abiotic stresses. Plants 12, 2861. https://doi.org/10.3390/plants12152861.

[20]

Kumari, V.V., Banerjee, P., Verma, V.C., Sukumaran, S., Chandran, M.A.S., Gopinath, K.A., Venkatesh, G., Yadav, S.K., Singh, V.K., Awasthi, N.K., 2022. Plant nutrition: an effective way to alleviate abiotic stress in agricultural crops. Int. J. Mol. Sci. 23, 8519. https://doi.org/10.3390/ijms23158519.

[21]

Lamb, D.W., Steyn-Ross, M., Schaare, P., Hanna, M.M., Silvester, W., Steyn-Ross, A., 2002. Estimating leaf nitrogen concentration in ryegrass (Lolium spp.) pasture using the chlorophyll red-edge: Theoretical modelling and experimental observations. Int. J. Remote Sens. 23, 3619-3648. https://doi.org/10.1080/01431160110114529.

[22]

Li, C., Liu, M., Dai, C., Zhu, Y., Zhu, M., Ding, J., Zhu, X., Zhou, G., Guo, W., 2022. Morphology and nitrogen uptake and distribution of wheat plants as influenced by applying remedial urea prior to or post low-temperature stress at seedling stage. Agronomy 12, 2338. https://doi.org/10.3390/agronomy12102338.

[23]

Liu, C., Yang, Z., Hu, Y., 2015. Drought resistance of wheat alien chromosome addition lines evaluated by membership function value based on multiple traits and drought resistance index of grain yield. Field Crops Res. 179, 103-112. https://doi.org/10.1016/j.fcr.2015.04.016.

[24]

Liu, J., Yang, L., Luan, M., Wang, Y., Zhang, C., Zhang, B., Shi, J., Zhao, F., Lan, W., Luan, S., 2015. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 112, E6571-6578. https://doi.org/10.1073/pnas.1514598112.

[25]

Ma, Q., Bell, R., Biddulph, B., 2019. Potassium application alleviates grain sterility and increases yield of wheat (Triticum aestivum) in frost-prone Mediterranean-type climate. Plant Soil 434, 203-216. https://doi.org/10.1007/s11104-018-3620-y.

[26]

Mahiwal, S., Pandey, G.K., 2022. Potassium: a vital nutrient mediating stress tolerance in plants. J. Plant Biochem. Biotechnol. 31, 705-719. https://doi.org/10.1007/s13562-022-00775-4.

[27]

Norozi, M., ValizadehKaji, B., Karimi, R., Solgi, M., 2020. Potassium and zinc-induced frost tolerance in pistachio flowers is associated with physiological and biochemical changes. Trees 34, 1021-1032. https://doi.org/10.1007/s00468-020-01978-9.

[28]

Ocwa, A., Harsanyi, E., Sz_eles, A., Holb, I.J., Szab_o, S., R_atonyi, T., Mohammed, S., 2023. A bibliographic review of climate change and fertilization as the main drivers of maize yield: implications for food security. Agric. Food Secur. 12, 14. https://doi.org/10.1186/s40066-023-00419-3.

[29]

Qu, Y., Bao, G., Pan, X., Guo, J., Xiang, T., Fan, X., Zhang, X., Yang, Y., Yan, B., Zhao, H., Li, G., 2022. Resistance of highland barley seedlings to alkaline salt and freeze-thaw stress with the addition of potassium fulvic acid. Plant Soil Environ. 68, 299-308. https://doi.org/10.17221/84/2022-PSE.

[30]

Raese, J.T., Drake, S.R., Curry, E.A., 2007. Nitrogen fertilizer influences fruit quality, soil nutrients and cover crops, leaf color and nitrogen content, biennial bearing and cold hardiness of ‘golden delicious’. J. Plant Nutr. 30, 1585-1604. https://doi.org/10.1080/01904160701615483.

[31]

Rapacz, M., 2002. Cold-deacclimation of oilseed rape (Brassica napus var. oleifera) in response to fluctuating temperatures and photoperiod. Ann. Bot. 89, 543-549. https://doi.org/10.1093/aob/mcf090.

[32]

Raun, W.R., Johnson, G.V., 1999. Improving nitrogen use efficiency for cereal production. Agron. J. 91, 357-363. https://doi.org/10.2134/agronj1999.00021962009100030001x.

[33]

Ray, D.K., Gerber, J.S., MacDonald, G.K., West, P.C., 2015. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989. https://doi.org/10.1038/ncomms6989.

[34]

Razmjoo, K., Kaneko, S., 1993. Effect of potassium rate on growth, quality, chemical composition, and winter hardiness of perennial ryegrass. J. Plant Nutr. 16, 195-201. https://doi.org/10.1080/01904169309364522.

[35]

Ren, T., Zou, J., Wang, Y., Li, X., Cong, R., Lu, J., 2016. Estimating nutrient requirements for winter oilseed rape based on QUEFTS analysis. J. Agric. Sci. 154, 425-437. https://doi.org/10.1017/S0021859615000301.

[36]

Ridder, N.N., Ukkola, A.M., Pitman, A.J., Perkins-Kirkpatrick, S.E., 2022. Increased occurrence of high impact compound events under climate change. npj Clim. Atmos. Sci. 5, 3. https://doi.org/10.1038/s41612-021-00224-4.

[37]

Saravia, D., Farf_an-Vignolo, E.R., Guti_errez, R., De Mendiburu, F., Schafleitner, R., Bonierbale, M., Khan, M.A., 2016. Yield and physiological response of potatoes indicate different strategies to cope with drought stress and nitrogen fertilization. Am. J. Potato Res. 93, 288-295. https://doi.org/10.1007/s12230-016-9505-9.

[38]

Sarikhani, H., Haghi, H., Ershadi, A., Esna-Ashari, M., Pouya, M., 2014. Foliar application of potassium sulphate enhances the cold-hardiness of grapevine (Vitis vinifera L.). J. Hortic. Sci. Biotechnol. 89, 141-146. https://doi.org/10.1080/14620316.2014.11513060.

[39]

She, B., Huang, J., Zhang, D., Huang, L., 2017. Assessing and characterizing oilseed rape freezing injury based on MODIS and MERIS data. Int. J. Agric. Biol. Eng. 10, 143-157.

[40]

Tian, C., Zhou, X., Fahmy, A.E., Ding, Z., Zhran, M.A., Liu, Q., Peng, J., Zhang, Z., Song, H., Guan, C., Kheir, A.M.S., Eissa, M.A., 2020. Balanced fertilization under different plant densities for winter oilseed rape (Brassica napus L.) grown on paddy soils in Southern China. Ind. Crops Prod. 151, 112413. https://doi.org/10.1016/j.indcrop.2020.112413.

[41]

Tian, Z., Ji, Y., Sun, L., Xu, X., Fan, D., Zhong, H., Liang, Z., Gunther, F., 2018. Changes in production potentials of rapeseed in the Yangtze River Basin of China under climate change: A multi-model ensemble approach. J. Geogr. Sci. 28, 1700-1714. https://doi.org/10.1007/s11442-018-1538-1.

[42]

Tompkins, D.K., Ross, J.B., Moroz, D.L., 2000. Dehardening of annual bluegrass and creeping bentgrass during late winter and early spring. Agron. J. 92, 5-9. https://doi.org/10.2134/agronj2000.9215.

[43]

Tyler, N.J., Gusta, L.V., Fowler, D.B., 1981. The influence of nitrogen, phosphorous and potassium on the cold accimation of winter wheat (Triticum aestivum L.). Can. J. Plant Sci. 61, 879-885. https://doi.org/10.4141/cjps81-131.

[44]

van der, Sloot, M., Kleijn, D., De, Deyn, G.B., Limpens, J., 2022. Carbon to nitrogen ratio and quantity of organic amendment interactively affect crop growth and soil mineral N retention. Crop Environ. 1, 161-167. https://doi.org/10.1016/j.crope.2022.08.001.

[45]

Webster, D.E., Ebdon, J.S., 2005. Effects of nitrogen and potassium fertilization on perennial ryegrass cold tolerance during deacclimation in late winter and early spring. Hortscience 40, 842-849. https://doi.org/10.21273/HORTSCI.40.3.842.

[46]

Willick, I.R., Tanino, K.K., Gusta, L.V., 2021. The impact of global climate change on the freezing tolerance of winter cereals in Western Canada. J. Agron. Crop Sci. 207, 88-99. https://doi.org/10.1111/jac.12447.

[47]

Woodfield,, H.K., Harwood, J.L., 2017. Oilseed crops:linseed, rapeseed, soybean, and sunflower. In: Thomas, B., Brian, G.M., Murphy, D.J. (Eds.), Encyclopedia of Applied Plant Sciences. Elsevier, London, UK, pp. 34-38. https://doi.org/10.1016/B978-0-12-394807-6.00212-4.

[48]

Xu, H., Hassan, M.A., Sun, D., Wu, Z., Jiang, G., Liu, B., Ni, Q., Yang, W., Fang, H., Li, J., Chen, X., 2022a. Effects of low temperature stress on source-sink organs in wheat and phosphorus mitigation strategies. Front. Plant Sci. 13, 807844. https://doi.org/10.3389/fpls.2022.807844.

[49]

Xu, H., Wu, Z., Xu, B., Sun, D., Hassan, M.A., Cai, H., Wu, Y., Yu, M., Chen, A., Li, J., Chen, X., 2022b. Optimized phosphorus application alleviated adverse effects of short-term low-temperature stress in winter wheat by enhancing photosynthesis and improved accumulation and partitioning of dry matter. Agronomy 12, 1700. https://doi.org/10.3390/agronomy12071700.

[50]

Yadav, S.K., 2010. Cold stress tolerance mechanisms in plants. A review. Agron. Sustain. Dev. 30, 515-527. https://doi.org/10.1051/agro/2009050.

[51]

Yoshida, S., Sakai, A., 1974. Phospholipid degradation in frozen plant cells associated with freezing injury. Plant Physiol. 53, 509-511. https://doi.org/10.1104/pp.53.3.509.

[52]

Zeng, Y., Lei, Y., Li, J., Hu, L., 2012. Effects of application amounts of nitrogen, phosphate and potassium and planting density on yield and quality of rapeseed. Plant Nutr. Fertil. Sci. 18, 146-153 (in Chinese with English abstract).

[53]

Zhang, Q., Wang, G., Xie, W., 2006. Soil organic N forms and N supply as affected by fertilization under intensive rice cropping system. Pedosphere 16, 345-353. https://doi.org/10.1016/S1002-0160(06)60062-3.

[54]

Zhu, Z., Chen, D., 2002. Nitrogen fertilizer use in China - Contributions to food production, impacts on the environment and best management strategies. Nutr. Cycl. Agroecosyst. 63, 117-127. https://doi.org/10.1023/A:1021107026067.

AI Summary AI Mindmap
PDF (1053KB)

543

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/