Transformations in Argentinean soybean systems: Recent changes, challenges, and opportunities

Di Mauro Guido , F. Andrade José , H. Rotili Diego , Alvarez Prado Santiago

Crop and Environment ›› 2025, Vol. 4 ›› Issue (2) : 130 -141.

PDF
Crop and Environment ›› 2025, Vol. 4 ›› Issue (2) :130 -141. DOI: 10.1016/j.crope.2025.04.001
Original article

Transformations in Argentinean soybean systems: Recent changes, challenges, and opportunities

Author information +
History +
PDF

Abstract

We reviewed the historical agronomic shifts that made Argentina a major soybean producer and discussed some of the current challenges and opportunities to further increase soybean production. The early high adoption rate of this crop was a result of the combination of high relative soybean prices with low production costs and effectively developed technologies that simplified farm activities such as no-till sowing and the use of glyphosate-resistant cultivars. Decades of agronomic research have helped adjust management practices to suit different rainfed environments across Argentina. Despite these efforts, a substantial gap between the rainfed yield potential and current farmer yield remains. Further improvements via crop structure adjustment would require a better understanding of temporal weather variations. Additional possibilities for yield gap reduction rely on improvements in fertilization practices. At present, only half of the soybean area is fertilized, and fertilizer rates are typically below the crop demand driven by an unfavorable grain/fertilizer price ratio. While there is still work to be done to narrow the soybean yield gaps via yield-protecting practices, further progress in genetic yield potential is also desirable. Additionally, a faster adoption rate of newly released cultivars could further increase yield gains. Finally, the extensive adoption of soybean has revealed that fields frequently growing soybean experience soil degradation and lower crop yields. Diversifying rotations with cereal crops is crucial to prevent these issues. All these aspects are relevant to both local and global soybean production, considering the significant role that Argentina is expected to play in the coming years.

Keywords

Crop management / Fertilization / Intensification / Soybean / Yield gap

Cite this article

Download citation ▾
Di Mauro Guido, F. Andrade José, H. Rotili Diego, Alvarez Prado Santiago. Transformations in Argentinean soybean systems: Recent changes, challenges, and opportunities. Crop and Environment, 2025, 4(2): 130-141 DOI:10.1016/j.crope.2025.04.001

登录浏览全文

4963

注册一个新账户 忘记密码

Abbreviations

BA Buenos Aires province

Bt transgenic resistance to defoliating pest

CH Chaco province

CO Córdoba province

COR Córdoba region

CREA Regional Consortiums of Agricultural Experimentation

Enlis 2,4-D+glufosinate resistant

ENSO El Niño Southern Oscillation Phenomenon

ER Entre Ríos province

IRS intermediate row spacing

LP La Pampa province

NCOR North of Córdoba region

NRS narrow row spacing

RR glyphosate resistant

SE Santiago del Estero province

SF Santa Fe province

SSF South of Santa Fe region

STS sulfonylurea herbicide tolerance

WRS wide row spacing

Availability of data and materials

Not applicable.

Authors’ contributions

G.D., J.A., and D.R.: Manuscript; G.D., J.A., D.R., and S.A.: Conceptualization and methodology; G.D., J.A., and S.A.: Visualization; D.R. and S.A.: Data curation; and S.A.: Reviewing and editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

Authors thank CREA, and particularly the DAT CREA project, for providing data of soybean management practices. Authors thank J. Micheloud for the critical reading of this manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.crope.2025.04.001.

References

[1]

Abdala, L.J., Otegui, M.E., Di Mauro, G., 2024. On-farm soybean genetic progress and yield stability during the early 21st century: A case study of a commercial breeding program in Argentina and Brazil. Field Crops Res. 308, 109277.

[2]

Andrade, F.H., 2020. Los desafíos de la Agricultura Global, First edit. Ediciones INTA, Balcarce, Argentina. Andrade, F.H., Calviño, P., Cirilo, A., Barbieri, P., 2002. Yield responses to narrow rows depend on increased radiation interception. Agron. J. 94, 975-980.

[3]

Andrade, J.F., Ermacora, M., de Grazia, J., Rodríguez, H., Mc Grech, E., Satorre, E.H., 2023. Soybean seed yield and protein response to crop rotation and fertilization strategies in previous seasons. Eur. J. Agron. 149, 126915.

[4]

Andrade, J.F., Mourtzinis, S., Rattalino Edreira, J.I., Conley, S., Gaska, J., Kandel, H.J., Lindsey, L.E., Naeve, S., Nelson, S., Singh, M., Thompson, L., Grassini, P., 2022. Field validation of a farmer supplied data approach to close soybean yield gaps in the US North Central region. Agric. Syst. 200, 103434.

[5]

Andrade, J.F., Rattalino Edreira, J.I., Mourtzinis, S., Conley, S.P., Ciampitti, I.A., Dunphy, J.E., Gaska, J.M., Glewen, K., Holshouser, D.L., Kandel, H.J., Kyveryga, P., Lee, C.D., Licht, M.A., Lindsey, L.E., McClure, M.A., Naeve, S., Nafziger, E.D., Orlowski, J.M., Ross, J., Staton, M.J., Thompson, L., Specht, J.E., Grassini, P., 2019. Assessing the influence of row spacing on soybean yield using experimental and producer survey data. Field Crops Res. 230, 98-106.

[6]

Andrade, J.F., Satorre, E.H., 2015. Single and double crop systems in the Argentine Pampas: Environmental determinants of annual grain yield. Field Crops Res. 177, 137-147.

[7]

Andrade, J.F., Satorre, E.H., Ermácora, C.M., Poggio, S.L., 2017. Weed communities respond to changes in the diversity of crop sequence composition and double cropping. Weed Res. 57, 148-158.

[8]

Aramburu Merlos, F., Monzon, J.P., Mercau, J.L., Taboada, M., Andrade, F.H., Hall, A.J., Jobbagy, E., Cassman, K.G., Grassini, P., 2015. Potential for crop production increase in Argentina through closure of existing yield gaps. Field Crops Res. 184, 145-154.

[9]

Bacigaluppo, S., Bodrero, M.L., Balzarini, M., Gerster, G.R., Andriani, J.M., Enrico, J.M., Dardanelli, J.L., 2011. Main edaphic and climatic variables explaining soybean yield in Argiudolls under no-tilled systems. Eur. J. Agron. 35, 247-254.

[10]

Batlla, D., Ghersa, C.M., Benech-Arnold, R.L., 2020. Dormancy, a critical trait for weed success in crop production systems. Pest Manag. Sci. 76, 1189-1194.

[11]

Bert, F.E., Podestá G.P., Satorre, E.H., Messina, C.D., 2007. Use of climate information in soybean farming on the Argentinean pampas. Clim. Res. 33, 123-134.

[12]

Biassoni, M.M., Vivas, H., Gutiérrez-Boem, F.H., Salvagiotti, F., 2023. Changes in soil phosphorus (P) fractions and P bioavailability after 10 years of continuous P fertilization. Soil Tillage Res. 232, 105777.

[13]

Bosaz, L.B., Alvarez Prado, S., Rotundo, J.L., Mortera, P., Gerde, J.A., 2023. Exploring seed and meal composition and protein solubility in soybean genotypes from different domestication periods. J. Am. Oil Chem. Soc. 100, 791-802.

[14]

Bosaz, L.B., Borrás, L., Gerde, J.A., Santachiara, G., Rotundo, J.L., 2021. Late-season N fertilization effects on soybean seed protein and biological N2 fixation. Agron. J. 113, 5076-5086.

[15]

Bosaz, L.B., Gerde, J.A., Borrás, L., Cipriotti, P.A., Ascheri, L., Campos, M., Gallo, S., Rotundo, J.L., 2019. Management and environmental factors explaining soybean seed protein variability in central Argentina. Field Crops Res. 240, 34-43.

[16]

Calviño, P.A., Monzon, J.P., 2009. Farming systems of Argentina:Yield constraints and risk management. In: SadrasV., CalderiniD. ( Crop Physiology: Academic, Press,Eds.), Applications for Genetic Improvement and Agronomy. Cambridge, USA, pp. 55-70.

[17]

Calviño, P.A., Sadras, V.O., 1999. Interannual variation in soybean yield: interaction among rainfall, soil depth and crop management. Field Crops Res. 63, 237-246.

[18]

Calviño, P.A., Sadras, V.O., Andrade, F.H., 2003a. Development, growth and yield of late-sown soybean in the southern Pampas. Eur. J. Agron. 19, 265-275.

[19]

Calviño, P.A., Sadras, V.O., Andrade, F.H., 2003b. Quantification of environmental and management effects on the yield of late-sown soybean. Field Crops Res. 83, 67-77.

[20]

Carciochi, W.D., Schwalbert, R., Andrade, F.H., Corassa, G.M., Carter, P., Gaspar, A.P., Schmidt, J., Ciampitti, I.A., 2019. Soybean seed yield response to plant density by yield environment in North America. Agron. J. 111, 1923-1932.

[21]

Carmona, M.A., Sautua, F.J., Perelman, S.B., Gally, M.E., Reis, E.M., 2015. Development and validation of a fungicide scoring system for management of late season soybean diseases in Argentina. Crop Prot. 70, 83-91.

[22]

Carmona, M.A., Sautua, F.J., Pérez-Hernández, O., Mandolesi, J.I., 2018. AgroDecisor EFC: First AndroidTM app decision support tool for timing fungicide applications for management of late-season soybean diseases. Comput. Electron. Agric. 144, 310-313.

[23]

Carpane, P.D., Llebaria, M., Nascimento, A.F., Vivan, L., 2022. Feeding injury of major lepidopteran soybean pests in South America. PLoS One 17, e0271084.

[24]

Cassidy, E.S., West, P.C., Gerber, J.S., Foley, J.A., 2013. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 034015.

[25]

Cerrudo, A., Miller-Garvin, J., Naeve, S.L., 2023. Western Hemisphere quality and production capacity of soybean protein. Front. Sustain. Food Syst. 7, 1223921.

[26]

Corassa, G.M., Amado, T.J.C., Liska, T., Sharda, A., Fulton, J., Ciampitti, I., 2018a. Planter technology to reduce double-planted area and improve corn and soybean yields. Agron. J. 110, 300-310.

[27]

Corassa, G.M., Amado, T.J.C., Strieder, M.L., Schwalbert, R., Pires, J.L.F., Carter, P.R., Ciampitti, I.A., 2018b. Optimum soybean seeding rates by yield environment in southern Brazil. Agron. J. 110, 2430-2438.

[28]

Correndo, A.A., McArton, B., Prestholt, A., Hernandez, C.M., Kyveryga, P.M., Ciampitti, I.A., 2022. Interactive soybean variable-rate seeding simulator for farmers. Agron. J. 114, 3554-3565.

[29]

Cox, W.J., Jolliff, G.D., 1987. Crop-water relations of sunflower and soybean under irrigated and dryland conditions. Crop Sci. 27, 553-557.

[30]

Crespo, C., Wyngaard, N., Sainz Rozas, H., Studdert, G., Barraco, M., Gudelj, V., Barbagelata, P., Barbieri, P., 2021. Effect of the intensification of cropping sequences on soil organic carbon and its stratification ratio in contrasting environments. Catena 200, 105145.

[31]

Dácunto, L., Andrade, J.F., Poggio, S.L., Semmartin, M., 2018. Diversifying crop rotation increased metabolic soil diversity and activity of the microbial community. Agric. Ecosyst. Environ. 257, 159-164.

[32]

Dardanelli, J.L., Bachmeier, O.A., Sereno, R., Gil, R., 1997. Rooting depth and soil water extraction patterns of different crops in a silty loam haplustoll. Field Crops Res. 54, 29-38.

[33]

Dardanelli, J.L., Suero, E.E., Andrade, F.H., Andriani, J., 1991. Water deficits during reproductive growth of soybeans. II. Water use and water deficiency indicators. Agronomie 11, 747-756.

[34]

de Abelleyra, D., Banchero, S., Verón, S., 2024. Characterization of crop sequences in Argentina. Spatial distribution and determinants. Agric. Syst. 220, 104069.

[35]

de Felipe, M., Alvarez Prado, S., 2021. Has yield plasticity already been exploited by soybean breeding programmes in Argentina? J. Exp. Bot. 72, 7264-7273.

[36]

de Felipe, M., Borras, L., Truong, S.K., McCormick, R.F., Rotundo, J.L., 2020. Physiological processes associated with soybean genetic progress in Argentina. Agrosyst. Geosci. Environ. 3, e20041.

[37]

de Felipe, M., Gerde, J.A., Rotundo, J.L., 2016. Soybean genetic gain in maturity groups III to V in Argentina from 1980 to 2015. Crop Sci. 56, 3066-3077.

[38]

de la, Fuente, E.B., Oreja, F.H., Lenardis, A.E., Fuentes, M.T., Agosti, B., Barrio, A., Barberis, S., Robredo, J., Gil, A., Marzetti, M., Niccia, E., 2021. Intensification of crop rotation affecting weed communities and the use of herbicides in the rolling Pampa. Heliyon 7, e06089.

[39]

de la, Fuente, E.B., Suárez, S.A., Ghersa, C.M., 2006. Soybean weed community composition and richness between 1995 and 2003 in the Rolling Pampas (Argentina). Agric. Ecosyst. Environ. 115, 229-236.

[40]

Di Mauro, G., Borrás, L., Rugeroni, P., Rotundo, J.L., 2019. Exploring soybean management options for environments with contrasting water availability. J. Agron. Crop Sci. 205, 274-282.

[41]

Di Mauro, G., Cipriotti, P.A., Gallo, S., Rotundo, J.L., 2018. Environmental and management variables explain soybean yield gap variability in Central Argentina. Eur. J. Agron. 99, 186-194.

[42]

Di Mauro, G., Parra, G., Santos, D.J., Enrico, J.M., Zuil, S., Murgio, M., Zbinden, F., Costanzi, J., Arias, N., Carrio, A., Vissani, C., Fuentes, F., Salvagiotti, F., 2022a. Defining soybean maturity group options for contrasting weather scenarios in the American Southern Cone. Field Crops Res. 287, 108676.

[43]

Di Mauro, G., Salvagiotti, F., Gambin, B.L., Condori, A., Gallo, S., Pozzi, R., Boxler, M., Rotundo, J.L., 2022b. Assessing the impact of high-input management for reducing soybean yield gaps on high-productivity farms. Field Crops Res. 278, 108434.

[44]

Di Mauro, G., Schwalbert, R., Prado, S.A., Saks, M.G., Ramirez, H., Costanzi, J., Parra, G., 2023. Exploring practical nutrition options for maximizing seed yield and protein concentration in soybean. Eur. J. Agron. 146, 126794.

[45]

Evans, L.T., 1993. Processes, genes, and yield potential. In: BuxtonD.R., ShiblesR., ForsbergR.A., BladB.L., AsayK.H., PaulsenG.M., WilsonR.F. ( InternationalCrop Science I. CropScience Society of America, MadisonUSA,Eds.), pp.687-696.

[46]

FAO, 2025. Food and Agriculture Organization of the United Nations, Rome, Italy. June 2024).

[47]

Fernández-Long, M.E., Barnatán, I., Dominici, C., Murphy, G., 2016. Información agroclimática de las heladas en la Argentina: generación y uso. Meteorologica 41, 7-31.

[48]

Ferraro, D.O., Gagliostro, M., 2017. Trade-off assessments between environmental and economic indicators in cropping systems of Pampa region (Argentina). Ecol. Indic. 83, 328-337.

[49]

Fontana, M.B., Novelli, L.E., Sterren, M.A., Uhrich, W.G., Benintende, S.M., Barbagelata, P.A., 2021. Long-term fertilizer application and cover crops improve soil quality and soybean yield in the Northeastern Pampas region of Argentina. Geoderma 385, 114902.

[50]

Franzluebbers, A.J., 2002. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res. 66, 197-205.

[51]

Gerber, J.S., Ray, D.K., Makowski, D., Butler, E.E., Mueller, N.D., West, P.C., Johnson, J.A., Polasky, S., Samberg, L.H., Siebert, S., Sloat, L., 2024. Global spatially explicit yield gap time trends reveal regions at risk of future crop yield stagnation. Nat. Food 5, 125-135.

[52]

Grassini, P., La Menza, N.C., Edreira, J.I.R., Monzón, J.P., Tenorio, F.A., Specht, J.E., 2021. Soybean. In: SadrasV., CalderiniD. ( Crop Physiology Case Histories for Major Crops.Eds.), Elsevier, Amsterdam, Netherlands, pp. 282-319.

[53]

Gutiérrez Boem, F.H., Alvarez, C., Cabello, M., Fernandez, P., Bono, A., Prystupa, P., Taboada, M.A., 2008. Phosphorus retention on soil surface of tilled and no-tilled soils. Soil Sci. Soc. Am. J. 72, 1158-1162.

[54]

Hammer, G.L., McLean, G., Chapman, S., Zheng, B., Doherty, A., Harrison, M.T., van Oosterom, E., Jordan, D., 2014. Crop design for specific adaptation in variable dryland production environments. Crop Pasture Sci. 65, 614-626.

[55]

Hintz, G., Carcedo, A., Almeida, L.F., Corassa, G., Horbe, T., Pott, L., Schwalbert, R., Hefley, T., Prasad, P.V.V., Ciampitti, I., 2025. Climate-adaptative management strategies for soybean production under ENSO scenarios in Southern Brazil: An in- silico analysis of crop failure risk. Agric. Syst. 222, 104153.

[56]

Kantolic, A., Slafer, G.A., 2001. Photoperiod sensitivity after flowering and seed number determination in indeterminate soybean cultivars. Field Crops Res. 72, 109-118.

[57]

Koritschoner, J.J., Whitworth Hulse, J.I.W., Cuchietti, A., Arrieta, E.M., 2023. Spatial patterns of nutrients balance of major crops in Argentina. Sci. Total Environ. 858, 159863.

[58]

Leguizamón, Y., Goldenberg, M.G., Jobbágy, E., Seppelt, R., Garibaldi, L.A., 2023. Environmental potential for crop production and tenure regime influence fertilizer application and soil nutrient mining in soybean and maize crops. Agric. Syst. 210, 103690.

[59]

Madias, A., Di Mauro, G., Vitantonio-Mazzini, L.N., Gambin, B.L., Borrás, L., 2021. Environment quality, sowing date, and genotype determine soybean yields in the Argentinean Gran Chaco. Eur. J. Agron. 123, 126217.

[60]

Malaspina, M., Chantre, G.R., Yanniccari, M., 2023. Effect of cover crops mixtures on weed suppression capacity in a dry sub-humid environment of Argentina. Front. Agron. 5, 1-13.

[61]

Manenti, L., Macholdt, J., Garcia, F.O., Rubio, G., 2023. Resilience of maize, wheat, and soybean cropping systems as affected by fertilization: Analysis of a long-term field network. Agron. J. 115, 2017-2029.

[62]

Marin, A., Stubrin, L.I., Palacín Roitbarg, R., 2022. Growing from the South in the seed market: Grupo Don Mario. J. Agribus. Dev. Emerg. Econ. 12, 656-672.

[63]

Martínez, J.P., Crespo, C., Cuervo, M., Echeverría, H., Martínez, F., Cordone, G., Barbieri, P., 2022. Sustainable intensification of agriculture improves soil nitrogen in the Argentinean Humid Pampas. Agron. J. 114, 2200-2212.

[64]

Martínez Alvarez, D., 2012. Historia de la soja en la Argentina:Introducción y adopción del cultivo. In: BaigorriH., Salado-NavarroL. ( El Cultivo de Soja en Argentina.Eds.), Agroeditorial, Buenos Aires, Argentina, pp. 11-31.

[65]

Martínez Cuesta, N., Carciochi, W., Wyngaard, N., Sainz Rozas, H., Silva, S., Salvagiotti, F., Barbieri, P., 2023. Zinc fertilization strategies in soybean: plant uptake, yield, and seed concentration. J. Plant Nutr. 46, 1134-1144.

[66]

Martínez-Ghersa, M.A., Ghersa, C.M., Satorre, E.H., 2000. Coevolution of agricultural systems and their weed companions: implications for research. Field Crops Res. 67, 181-190.

[67]

Masino, A., Rugeroni, P., Borrás, L., Rotundo, J.L., 2018. Spatial and temporal plant-to-plant variability effects on soybean yield. Eur. J. Agron. 98, 14-24.

[68]

Monzon, J.P., Cafaro La Menza, N., Cerrudo, A., Canepa, M., Rattalino Edreira, J.I., Specht, J., Andrade, F.H., Grassini, P., 2021. Critical period for seed number determination in soybean as determined by crop growth rate, duration, and dry matter accumulation. Field Crops Res. 261, 108016.

[69]

Monzon, J.P., Calviño, P.A., Sadras, V.O., Zubiaurre, J.B., Andrade, F.H., 2018. Precision agriculture based on crop physiological principles improves whole-farm yield and profit: A case study. Eur. J. Agron. 99, 62-71.

[70]

Monzon, J.P., Sadras, V.O., Abbate, P.A., Caviglia, O.P., 2007. Modelling management strategies for wheat-soybean double crops in the south-eastern Pampas. Field Crops Res. 101, 44-52.

[71]

Nickel, S.E., Crookston, R.K., Russelle, M.P., 1995. Root growth and distribution are affected by corn-soybean cropping sequence. Agron. J. 87, 895-902.

[72]

Nocelli Pac, S., 2018. Evolución y retos de la Siembra Directa en Argentina (In Spanish). June 2024).

[73]

Nosetto, M.D., Jobbágy, E.G., Brizuela, A.B., Jackson, R.B., 2012. The hydrologic consequences of land cover change in central Argentina. Agric. Ecosyst. Environ. 154, 2-11.

[74]

Nosetto, M.D., Paez, R.A., Ballesteros, S.I., Jobbágy, E.G., 2015. Higher water-table levels and flooding risk under grain vs. livestock production systems in the subhumid plains of the Pampas. Agric. Ecosyst. Environ. 206, 60-70.

[75]

Novelli, L.E., Caviglia, O.P., Melchiori, R.J.M., 2011. Impact of soybean cropping frequency on soil carbon storage in Mollisols and Vertisols. Geoderma 167-168, 254-260.

[76]

Oerke, E.-C., 2006. Crop losses to pests. J. Agric. Sci. 144, 31-43.

[77]

Oreja, F.H., Moreno, N., Gundel, P.E., Vercellino, R.B., Pandolfo, C.E., Presotto, A., Perotti, V., Permingeat, H., Tuesca, D., Scursoni, J.A., Dellaferrera, I., Cortes, E., Yanniccari, M., Vila-Aiub, M., 2024. Herbicide-resistant weeds from dryland agriculture in Argentina. Weed Res. 64, 89-106.

[78]

Ortez, O.A., Salvagiotti, F., Enrico, J.M., Prasad, P.V.V., Armstrong, P., Ciampitti, I.A., 2018. Exploring nitrogen limitation for historical and modern soybean genotypes. Agron. J. 110, 2080-2090.

[79]

Otegui, M.E., Riglos, M., Mercau, J.L., 2021. Genetically modified maize hybrids and delayed sowing reduced drought effects across a rainfall gradient in temperate Argentina. J. Exp. Bot. 72, 5180-5188.

[80]

Páez Jerez, P.G., Hill, J.G., Pereira, E.J.G., Alzogaray, R.A., Vera, M.T., 2023. Ten years of Cry1Ac Bt soybean use in Argentina: Historical shifts in the community of target and non-target pest insects. Crop Prot. 170, 106265.

[81]

Penalba, O.C., Bettolli, M.L., Vargas, W.M., 2007. The impact of climate variability on soybean yields in Argentina. Multivariate regression. Meteorol. Appl. 14, 3-14.

[82]

Puntel, L.A., Bolfe, L., Melchiori, R.J.M., Ortega, R., Tiscornia, G., Roel, A., Scaramuzza, F., Best, S., Berger, A.G., Hansel, D.S.S., Palacios Durán, D., Balboa, G.R., 2022. How digital is agriculture in a subset of countries from South America? Adoption and limitations. Crop Pasture Sci. 74, 555-572.

[83]

Puricelli, E., Tuesca, D., 2005. Weed density and diversity under glyphosate-resistant crop sequences. Crop Prot. 24, 533-542.

[84]

Ranaivoson, L., Naudin, K., Ripoche, A., Affholder, F., Rabeharisoa, L., Corbeels, M., 2017. Agro-ecological functions of crop residues under conservation agriculture. A review. Agron. Sustain. Dev. 37, 1-17.

[85]

ReTAA, 2023. Relevamiento de Tecnología aplicada Soja 2022/23. Bolsa de Cereales. Buenos Aires, Argentina (in Spanish).

[86]

Rodriguez, S., Kruk, B.C., Satorre, E.H., 2019. Percepción de los agricultores de la Región Pampeana sobre las adversidades bióticas de los cultivos de granos. Rev. Fac. Agron. 39, 16-25.

[87]

Rotili, D.H., Alvarez Prado, S., Barattini, A., Lamattina, I., Saks, M.G., Gregorini, M., Garcia, F.O., Andrade, J.F., 2023. Medium-term fertilization strategies on extensive grain cropping systems under water table influence. Agric. Syst. 210, 103715.

[88]

Rotili, D.H., Giorno, A., Tognetti, P.M., Maddonni, G.Á., 2019. Expansion of maize production in a semi-arid region of Argentina: Climatic and edaphic constraints and their implications on crop management. Agric. Water Manage. 226, 105761.

[89]

Rotundo, J.L., Rech, R., Cardoso, M.M., Fang, Y., Tang, T., Olson, N., Pyrik, B., Conrad, G., Borras, L., Mihura, E., Messina, C.D., 2022. Development of a decision-making application for optimum soybean and maize fertilization strategies in Mato Grosso. Comput. Electron. Agric. 193, 106659.

[90]

Sadras, V.O., Connor, D.J., 1991. Physiological basis of the response of harvest index to the fraction of water transpired after anthesis: A simple model to estimate harvest index for determinate species. Field Crops Res. 26, 227-239.

[91]

Sainz Rozas, H., Eyherabide, M., Echeverría, H.E., Barbieri, P., Angelini, H., Larrea, G.E., Ferraris, G.N., Barraco, M., 2013. ¿Cuál es el estado de la fertilidad de los suelos argentinos? In: Conferencia International Plant Nutrition Institute (IPNI) and Fertilizar, Buenos Aires, Argentina, pp. 17-23 (in Spanish).

[92]

Salvagiotti, F., Barraco, M., Dignani, D., Sanchez, H., Bono, A., Vallone, P., Gerster, G., Galarza, C., Montoya, J., Gudelj, V.J., 2013. Plant stand, nodulation and seed yield in soybean as affected by phosphate fertilizer placement, source and application method. Eur. J. Agron. 51, 25-33.

[93]

Salvagiotti, F., Ferraris, G., Quiroga, A., Barraco, M., Vivas, H., Prystupa, P., Echeverría, H., Gutiérrez Boem, F.H., 2012. Identifying sulfur deficient fields by using sulfur content; N:S ratio and nutrient stoichiometric relationships in soybean seeds. Field Crops Res. 135, 107-115.

[94]

Salvagiotti, F., Gerster, G., Bacigaluppo, S., Castellarín, J., Galarza, C., González, N., Gudelj, V., Novello, O., Pedrol, H., Vallone, P., 2004. Residual and fresh effects of phosphorus and sulphur on soybean following wheat. Cienc. del Suelo 22, 92-101 (in Spanish with English abstract).

[95]

Satorre, E.H., 2011. Recent changes in Pampean agriculture:possible new avenues in coping with global change challenges. In: SlaferG.A., ArausJ.L. ( Crop Stress Management and Global Climate Change.Eds.), Centre for Agriculture and Bioscience International, Wallingford, United Kingdom, pp. 47-57.

[96]

Satorre, E.H., Andrade, F.H., 2021. Cambios productivos y tecnológicos de la agricultura extensiva argentina en los últimos quince años. Cienc. Hoy 29, 39-47 (in Spanish).

[97]

Satorre, E.H., Andrade, J.F., 2023. El maíz en los sistemas productivos de Argentina: Un análisis global y regional de su desarrollo reciente. In: AndradeF.H., OteguiM.E., CiriloA., UhartS. ( Ecofisiología y Manejo del Cultivo de Maíz.Eds.), Asociación Maíz y Sorgo Argentino, Buenos Aires, Argentina, pp. 25-49 (in Spanish).

[98]

Satorre, E.H., de la Fuente, E.B., Mas, M.T., Suárez, S.A., Kruk, B.C., Guglielmini, A.C., Verdú A.M.C., 2020. Crop rotation effects on weed communities of soybean (Glycine max L. Merr.) agricultural fields of the Flat Inland Pampa. Crop Prot. 130, 105068.

[99]

Scursoni, J.A., Satorre, E.H., 2010. Glyphosate management strategies, weed diversity and soybean yield in Argentina. Crop Prot. 29, 957-962.

[100]

Scursoni, J.A., Vera, A.C.D., Oreja, F.H., Kruk, B.C., De La Fuente, E.B., 2019. Weed management practices in Argentina crops. Weed Technol. 33, 459-463.

[101]

Semmartin, M., Cosentino, D., Poggio, S.L., Benedit, B., Biganzoli, F., Peper, A., 2023. Soil carbon accumulation in continuous cropping systems of the rolling Pampa (Argentina): The role of crop sequence, cover cropping and agronomic technology. Agric. Ecosyst. Environ. 347, 108368.

[102]

Senesi, S.I., Daziano, M.F., Chaddad, F.R., Palau, H., 2017. Ownership versus management: the role of farming networks in Argentina. Int. Food Agribus. Manag. Rev. 20, 221-238.

[103]

Severini, A.D., Álvarez-Prado, S., Otegui, M.E., Kavanová M., Vega, C.R.C., Zuil, S., Ceretta, S., Acreche, M., Amarilla, F., Cicchino, M., Fernández-Long, M.E., Crespo, A., Serrago, R., Miralles, D.J., 2024. CRONOSOJA: a daily time-step hierarchical model predicting soybean development across maturity groups in the Southern Cone. In Silico Plants 6, diae005.

[104]

Sinclair, T.R., Salado-Navarro, L., Morandi, E.N., Bodrero, M.L., Martignone, R.A., 1992. Soybean yield in Argentina in response to weather variation among cropping seasons. Field Crops Res. 30, 1-11.

[105]

SISA, 2022. Sistema de Información Simplificado Agrícola. In:Soja Campanã 2021- 2022. Instituto Nacional de Semillas, Autonomous City of Buenos Aires, Argentina (in Spanish).

[106]

Studdert, G.A., Echeverría, H.E., 2000. Crop rotations and nitrogen fertilization to manage soil organic carbon dynamics. Soil Sci. Soc. Am. J. 64, 1496-1503.

[107]

Sucunza, F.A., Gutierrez Boem, F.H., Garcia, F.O., Boxler, M., Rubio, G., 2018. Long-term phosphorus fertilization of wheat, soybean and maize on Mollisols: Soil test trends, critical levels and balances. Eur. J. Agron. 96, 87-95.

[108]

Urcola, H.A., de Sartre, X.A., Veiga, I., Elverdin, J., Albaladejo, C., 2015. Land tenancy, soybean, actors and transformations in the pampas: A district balance. J. Rural Stud. 39, 32-40.

[109]

USDA, 2024. United States Department of Agriculture. In: Oilseeds: World Markets and Trade. U.S. Soybean Oil Price Premium Declines. Foreign Agricultural Service, Washington, United States.

[110]

Videla-Mensegue, H., Córdoba, M.A., Caviglia, O.P., Sadras, V.O., 2024. Soybean yield and water productivity gaps associate with ENSO-dependent effects of fungicide, sowing date and maturity group. Eur. J. Agron. 155, 127133.

[111]

Viglizzo, E.F., Frank, F.C., Carreño, L.V., Jobbágy, E.G., Pereyra, H., Clatt, J., Pincén, D., Ricard, M.F., 2011. Ecological and environmental footprint of 50 years of agricultural expansion in Argentina. Glob. Change Biol. 17, 959-973.

[112]

Vitantonio-Mazzini, L.N., Gómez, D., Gambin, B.L., Di Mauro, G., Iglesias, R., Costanzi, J., Jobbágy, E.G., Borrás, L., 2021. Sowing date, genotype choice, and water environment control soybean yields in central Argentina. Crop Sci. 61, 715-728.

[113]

Vitta, J.I., Tuesca, D., Puricelli, E., 2004. Widespread use of glyphosate tolerant soybean and weed community richness in Argentina. Agric. Ecosyst. Environ. 103, 621-624.

[114]

Wang, J., Hesketh, J.D., Woolley, J.T., 1986. Preexisting channels and soybean rooting patterns. Soil Sci. 141, 432-437.

[115]

Wingeyer, A.B., Echeverría, H., Rozas, H.S., 2014. Growth and yield of irrigated and rainfed soybean with late nitrogen fertilization. Agron. J. 106, 567-576.

PDF

2304

Accesses

0

Citation

Detail

Sections
Recommended

/