Foliar application of zinc oxide nanoparticles improved yield and 2-acetyl-1-pyrroline content in fragrant rice under salt stress

Li Lin , Huang Zheng , Zhou Zhenxiang , Tao Ye , Zhang Yicheng , Mu Yixue , Wu Shu , Nie Lixiao

Crop and Environment ›› 2025, Vol. 4 ›› Issue (2) : 107 -117.

PDF
Crop and Environment ›› 2025, Vol. 4 ›› Issue (2) : 107 -117. DOI: 10.1016/j.crope.2025.03.004
Original article

Foliar application of zinc oxide nanoparticles improved yield and 2-acetyl-1-pyrroline content in fragrant rice under salt stress

Author information +
History +
PDF

Abstract

Exogenous application of zinc oxide nanoparticles (ZnO NPs) has been shown to increase the stress resistance of crops, however, its effects on the yield and 2-acetyl-1-pyrroline (2-AP) content of fragrant rice under salt stress remain unclear. The present study investigated the effects of foliar application of ZnO NPs on the yield and 2-AP content of fragrant rice under salt stress. The experiment involved two fragrant rice varieties, i.e. Ruanhuayou1179 and Ruanhuayoujinsi, and four levels of ZnO NPs, i.e. spraying water (CK), 100 ​mg ​L−1 (NP1), 200 ​mg ​L−1 (NP2), and 400 ​mg ​L−1 (NP3), with 0.3​% (5 ​dS ​m−1) saltwater (a mixture of freshwater and seawater). The results demonstrated that the NP1 treatment exhibited the highest yield for both fragrant rice varieties among all treatments, primarily due to an increase in grain number per panicle and grain filling rate. Furthermore, compared with CK, the NP1 treatment significantly enhanced aboveground biomass, chlorophyll content, and potassium ion content in the leaves while reducing malondialdehyde content. Compared with CK, the NP1, NP2, and NP3 treatments significantly increased 2-AP content of both fragrant rice varieties by 46.23-46.67​%, 31.66-43.99​%, and 21.72-39.31​%, respectively, mainly due to increased levels of leaf proline, Δ1-pyrroline-5-carboxylate, 1-pyridine, and methylglyoxal contents. The NP1 treatment also upregulated the 2-AP synthesis enzymes and their gene expression (such as ornithine aminotransferase, diamine oxidase, and Δ1-pyrroline-5-carboxylate synthetase) in comparison with CK. In conclusion, foliar application of 100 ​mg ​L−1 ZnO NPs proved to be the most effective in enhancing both yield and 2-AP content in fragrant rice under salt stress.

Keywords

Antioxidant enzyme activity / Aroma / Fragrant rice / Salt stress / ZnO nanoparticles

Cite this article

Download citation ▾
Li Lin, Huang Zheng, Zhou Zhenxiang, Tao Ye, Zhang Yicheng, Mu Yixue, Wu Shu, Nie Lixiao. Foliar application of zinc oxide nanoparticles improved yield and 2-acetyl-1-pyrroline content in fragrant rice under salt stress. Crop and Environment, 2025, 4(2): 107-117 DOI:10.1016/j.crope.2025.03.004

登录浏览全文

4963

注册一个新账户 忘记密码

Abbreviations

2-AP 2-acetyl-1-pyrroline

BADH2 Betaine betainealdehyde dehydrogenase 2

CAT catalase

DAH days after heading

DAO diamine oxidase

GABA gamma-aminobutyric acid

HS heading stage

HAK17 high-affinity K+ transporter protein

MDA malondialdehyde

MS maturity stage

OAT Ornithine transaminase

POD Peroxidase

PDH Proline dehydrogenase

P5C 1-pyrroline-5- carboxylic acid

P5CS Δ1-pyrroline-5-carboxylate synthase

RHY1179 Ruanhuayou1179

RHYJS Ruanhuayoujinsi

SOD superoxide dismutase

SKOR external rectifier K+ channel protein

ZnO NPs zinc oxide nanoparticles

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

CRediT authorship contribution statement

L.L.: Writing - review & editing, Writing - original draft, Formal analysis, Data curation, Conceptualization. Z.H.: Validation, Methodology, Investigation, Data curation, Conceptualization. Z.Z.: Visualization, Resources, Formal analysis, Data curation. Y.T.: Resources, Project administration, Methodology, Formal analysis. Y.Z.: Supervision, Software, Data curation. Y.M.: Visualization, Software, Resources. S.W.: Project administration, Methodology, Investigation. L.N.: Writing - review & editing, Validation, Investigation, Funding acquisition, Formal analysis.

Declaration of competing interest

The authors declare that they have no any competing interest. Author Lixiao Nie (Editorial Board member) was not involved in the journal's review or decisions related to this manuscript.

Acknowledgments

This work was supported by earmarked fund for HNARS (HINARS-04-G03) and Hainan Major Science and Technology Projects (ZDKJ202001). The authors would also like to express their appreciation to all the students and staff for their contributions to the development of this research.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.crope.2025.03.004.

References

[1]

Afzal, S., Singh, N.K., 2022. Effect of zinc and iron oxide nanoparticles on plant physiology, seed quality and microbial community structure in a rice-soil-microbial ecosystem. Environ. Pollut. 314, 120224.

[2]

Ahmad, A., Tola, E., Alshahrani, T.S., Seleiman, M.F., 2023. Enhancement of morphological and physiological performance of Zea mays L. under saline stress using ZnO nanoparticles and 24-Epibrassinolide seed priming. Agronomy-Basel 13, 771.

[3]

Ashraf, U., Anjum, S.A., Naseer, S., 2024. Gamma amino butyric acid (GABA) application modulated the morpho-physiological and yield traits of fragrant rice under well- watered and drought conditions. BMC Plant Biol. 24, 569.

[4]

Ayuso-Calles, M., Flores-Felix, J.D., Rivas, R., 2021. Overview of the role of rhizobacteria in plant salt stress tolerance. Agronomy-Basel 11, 1759.

[5]

Bao, G.G., Ashraf, U., Wan, X., Zhou, Q., Li, S., Wang, C., He, L., Tang, X., 2021. Transcriptomic analysis provides insights into foliar zinc application induced upregulation in 2-acetyl-1-pyrroline and related transcriptional regulatory mechanism in fragrant rice. J. Agric. Food Chem. 69, 11350-11360.

[6]

Bao, G.G., Ashraf, U., Wang, C.L., He, L.X., Wei, X.S., Zheng, A., Mo, Z.W., Tang, X.R., 2018. Molecular basis for increased 2-acetyl-1-pyrroline contents under alternate wetting and drying (AWD) conditions in fragrant rice. Plant Physiol. Biochem. 133, 149-157.

[7]

Cui, R., Zhou, T., Shu, C., Zhu, K., Ye, M., Zhang, W., Zhang, H., Liu, L., Wang, Z., Gu, J., Yang, J., 2024. Effects of salt stress on grain quality and starch properties of high- quality rice cultivars. Agronomy-Basel 14 (3), 444.

[8]

Fitzgerald, T.L., Waters, D., Brooks, L.O., Henry, R.J., 2010. Fragrance in rice (Oryza sativa) is associated with reduced yield under salt treatment. Environ. Exp. Bot. 68, 292-300.

[9]

Fu, C., Khan, M.N., Yan, J., Hong, X., Zhao, F., Chen, L., Ma, H., Li, Y., Li, J., Wu, H., 2023. Mechanisms of nanomaterials for improving plant salt tolerance. Crop Environ. 2, 92-99.

[10]

Ganapati, R.K., Naveed, S.A., Zafar, S., Wang, W., Xu, J., 2022. Saline-alkali tolerance in rice: physiological response, molecular mechanism, and QTL identification and application to breeding. Rice Sci. 29, 412-434.

[11]

Gao, Z., Xie, W., Ashraf, U., Li, Y., Ma, L., Gui, R., Mo, Z., 2020. Exogenous γ-aminobutyric acid (GABA) application at different growth stages regulates 2-acetyl-1-pyrroline, yield, quality and antioxidant attributes in fragrant rice. J. Plant Interact. 15 (1), 139-152.

[12]

Gay, F., Maraval, I., Roques, S., Gunata, Z., Boulanger, R., Audebert, A., Mestres, C., 2010. Effect of salinity on yield and 2-acetyl-1-pyrroline content in the grains of three fragrant rice cultivars (Oryza sativa L.) in Camargue (France). Field Crops Res. 117, 154-160.

[13]

Huang, Y., Huang, L., Cheng, M., Li, C., Zhou, X., Ullah, A., Sarfraz, S., Khatab, A., Xie, G., 2024. Progresses in biosynthesis pathway, regulatory mechanism and potential application of 2-acetyl-1-pyrroline in fragrant rice. Plant Physiol. Biochem. 215, 109047.

[14]

Jakhar, A.M., Aziz, I., Kaleri, A.R., Hasnain, M., Haider, G., Ma, J., Abideen, Z., 2022. Nanofertilizers: a sustainable technology for improving crop nutrition and food security. NanoImpact 27, 100411.

[15]

Li, L., Huang, Z., Zhang, Y., Mu, Y., Li, Y., Nie, L., 2025. Regulation of 2-acetyl-1-pyrroline ( 2-AP) biosynthesis and grain quality in fragrant rice under salt stress. Field Crops Res. 322, 109747.

[16]

Li, L., Zhang, Z., Tian, H., Ashraf, U., Hamoud, Y.A., Alaa, A.A., Tang, X., Duan, M., Wang, Z., Pan, S., 2022. Nitrogen deep placement combined with straw mulch cultivation enhances physiological traits, grain yield and nitrogen use efficiency in mechanical pot-seedling transplanting rice. Rice Sci. 29, 89-100.

[17]

Li, Y., Ai, Z., Mu, Y., Zhao, T., Zhang, Y., Li, L., Huang, Z., Nie, L., Khan, M.N., 2023. Rice yield penalty and quality deterioration is associated with failure of nitrogen uptake from regreening to panicle initiation stage under salinity. Front. Plant Sci. 14, 1120755.

[18]

Liu, C., Mao, B., Yuan, D., Chu, C., Duan, M., 2022. Salt tolerance in rice: physiological responses and molecular mechanisms. Crop J. 10, 13-25.

[19]

Liu, X., Huang, Z., Li, Y., Xie, W., Li, W., Tang, X., Ashraf, U., Kong, L., Wu, L., Wang, S., Mo, Z., 2020. Selenium-silicon (Se-Si) induced modulations in physio-biochemical responses, grain yield, quality, aroma formation and lodging in fragrant rice. Ecotoxicol. Environ. Saf. 196, 110525.

[20]

Luo, H., Du, B., He, L., He, J., Hu, L., Pan, S., Tang, X., 2019. Exogenous application of Zinc (Zn) at the heading stage regulates 2-acetyl-1-pyrroline (2-AP) biosynthesis in different fragrant rice genotypes. Sci. Rep. 9, 19513.

[21]

Luo, H., Duan, M., Kong, L., He, L., Chen, Y., Wang, Z., Tang, X., 2021. The regulatory mechanism of 2-acetyl-1-pyrroline biosynthesis in fragrant Rice (Oryza sativa L.) under different soil moisture contents. Front. Plant Sci. 12, 772728.

[22]

Mai, Y., Ren, Y., Deng, S., Ashraf, U., Tang, X., Duan, M., Mo, Z., 2024. Influence of ZnO nanoparticles on early growth stage of fragrant rice at low temperature (LT) stress. J. Soil Sci. Plant Nutr. 24, 1301-1317.

[23]

Mazhar, Z., Akhtar, J., Alhodaib, A., Naz, T., Zafar, M.I., Iqbal, M.M., Fatima, H., Naz, I., 2023. Efficacy of ZnO nanoparticles in Zn fortification and partitioning of wheat and rice grains under salt stress. Sci. Rep. 13, 2022.

[24]

Mo, Z., Li, Y., Nie, J., He, L., Pan, S., Duan, M., Tian, H., Xiao, L., Zhong, K., Tang, X., 2019. Nitrogen application and different water regimes at booting stage improved yield and 2-acetyl-1-pyrroline (2AP) formation in fragrant rice. Rice 12, 1-16.

[25]

Mu, Y., Li, Y., Zhang, Y., Guo, X., Song, S., Huang, Z., Li, L., Ma, Q., Khan, M.N., Nie, L., 2023. A comparative study on the role of conventional, chemical and nanopriming for better salt tolerance during seed germination of direct seeding rice. J. Integr. Agric. 23 (12), 3998-4017.

[26]

Munns, R., Tester, M., 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651-681.

[27]

Mushtaq, N.U., Alghamdi, K.M., Saleem, S., Tahir, I., Bahieldin, A., Henrissat, B., Alghamdi, M.K., Rehman, R.U., Hakeem, K.R., 2023. Exogenous zinc mitigates salinity stress by stimulating proline metabolism in proso millet (Panicum miliaceum L.). Front. Plant Sci. 14, 1053869.

[28]

Naseer, I., Javad, S., Iqbal, S., Shah, A.A., Alwutayd, K., Abdelgawad, H., 2023. Deciphering the role of zinc oxide nanoparticles on physiochemical attributes of Zea mays exposed to saline conditions through modulation in antioxidant enzyme defensive system. South Afr. J. Bot. 160, 469-482.

[29]

Nazir, F., Mahajan, M., Khatoon, S., Albaqami, M., Ashfaque, F., Chhillar, H., Chopra, P., Khan, M., 2023. Sustaining nitrogen dynamics: a critical aspect for improving salt tolerance in plants. Front. Plant Sci. 14, 1087946.

[30]

Niu, X., Tang, W., Huang, W., Ren, G., Wang, Q., Luo, D., Xiao, Y., Yang, S., Wang, F., Lu, B., Gao, F., Lu, T., Liu, Y., 2008. RNAi-directed downregulation of OsBADH 2 results in aroma (2-acetyl-1-pyrroline) production in rice (Oryza sativa L.). BMC Plant Biol. 8, 100.

[31]

Okpala, N.E., Potcho, M.P., An, T., Ahator, S.D., Duan, L., Tang, X., 2020. Low temperature increased the biosynthesis of 2-AP, cooked rice elongation percentage and amylose content percentage in rice. J. Cereal. Sci. 93, 102980.

[32]

Poonlaphdecha, J., Maraval, I., Roques, S., Audebert, A., Boulanger, R., Bry, X., Gunata, Z., 2012. Effect of timing and duration of salt treatment during growth of a fragrant rice variety on yield and 2-acetyl-1-pyrroline, proline, and GABA levels. J. Agric. Food Chem. 60, 3824-3830.

[33]

Qian, J., Shan, R., Shi, Y., Li, H., Xue, L., Song, Y., Zhao, T., Zhu, S., Chen, J., Jiang, M., 2024. Zinc oxide nanoparticles alleviate salt stress in cotton (Gossypium hirsutum L.) by adjusting Na+/K+ ratio and antioxidative ability. Life 14, 595.

[34]

Renuka, N., Barvkar, V.T., Ansari, Z., 2022. Co-functioning of 2-AP precursor amino acids enhances 2-acetyl-1-pyrroline under salt stress in aromatic rice ( Oryza sativa L.) cultivars. Sci. Rep. 12 (1), 3911.

[35]

Seleiman, M.F., Ahmad, A., Battaglia, M.L., Bilal, H.M., Alhammad, B.A., Khan, N., 2023.

[36]

Zinc oxide nanoparticles: a unique saline stress mitigator with the potential to increase future crop production. South Afr. J. Bot. 159, 208-218.

[37]

Seo, D.H., Seomun, S., Choi, Y.D., Jang, G., 2020. Root development and stress tolerance in rice: the key to improving stress tolerance without yield penalties. Int. J. Mol. Sci. 21 (5), 1807.

[38]

Shalaby, T.A., Abd-Alkarim, E., El-Aidy, F., Hamed, E., Sharaf-Eldin, M., Taha, N., El- Ramady, H., Bayoumi, Y., Dos Reis, A.R., 2021. Nano-selenium, silicon and H2O 2 boost growth and productivity of cucumber under combined salinity and heat stress. Ecotoxicol. Environ. Saf. 212, 111962.

[39]

Singh, A., Sengar, R.S., Rajput, V.D., Minkina, T., Singh, R.K., 2022. Zinc oxide nanoparticles improve salt tolerance in rice seedlings by improving physiological and biochemical indices. Agriculture-Basel 12, 1014.

[40]

Singh, A., Sengar, R.S., Shahi, U.P., Rajput, V.D., Minkina, T., Ghazaryan, K.A., 2023. Prominent effects of zinc oxide nanoparticles on roots of rice (Oryza sativa L.) grown under salinity stress. Stresses 3, 33-46.

[41]

Song, S., Li, L., Yin, Q., Nie, L., 2022. Effect of in situ incorporation of three types of green manure on soil quality, grain yield and 2-acetyl-1-pyrrolline content in tropical region. Crop Environ. 1, 189-197.

[42]

Tolay, I., 2021. The impact of different zinc (Zn) levels on growth and nutrient uptake of basil (Ocimum basilicum L.) grown under salinity stress. PLoS One 16, e0246493.

[43]

Wan, J., Wang, R., Bai, H., Wang, Y., Xu, J., 2020. Comparative physiological and metabolomics analysis reveals that single-walled carbon nanohorns and ZnO nanoparticles affect salt tolerance in Sophora alopecuroides. Environ. Sci. Nano 7, 2968-2981.

[44]

Wang, R., Mi, K., Yuan, X., Chen, J., Pu, J., Shi, X., Yang, Y., Zhang, H., Zhang, H., 2023b.

[45]

Zinc oxide nanoparticles foliar application effectively enhanced zinc and aroma content in rice ( Oryza, sativa L.)grains. Rice 16, 36.

[46]

Wang, S., Fang, R., Yuan, X., Chen, J., Mi, K., Wang, R., Zhang, H., Zhang, H., 2023a.

[47]

Foliar spraying of ZnO nanoparticles enhanced the yield, quality, and zinc enrichment of rice grains. Foods 12, 3677.

[48]

Xing, P., Luo, H., He, Z., 2023. Trans-Zeatin induced regulation of the biosynthesis of 2- acetyl-1-pyrroline in fragrant rice ( Oryza sativa L.) seedlings. BMC Plant Biol. 23, 88.

[49]

Zeid, I., Mohamed, F.H., Metwali, E., 2023. Responses of two strawberry cultivars to NaCl-induced salt stress under the influence of ZnO nanoparticles. Saudi J. Biol. Sci. 30, 103623.

[50]

Zhai, J., Xian, X., Zhang, Z., Wang, Y., 2025. Nano-zinc oxide can enhance the tolerance of apple rootstock m9-t 337 seedlings to saline alkali stress by initiating a variety of physiological and biochemical pathways. Plants 14, 233.

[51]

Zhang, H., Zhao, X., Bai, J., Tang, M., Du, W., Lv, Z., Siddique, K.H., Mao, H., 2024. Effect of ZnO nanoparticle application on crop safety and soil environment: a case study of potato planting. Environ. Sci. Nano 11, 351-362.

AI Summary AI Mindmap
PDF

455

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/